organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o701-o702

3-(4-Bromo­phen­yl)-5-[4-(di­methyl­amino)­phen­yl]-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 9 February 2011; accepted 17 February 2011; online 23 February 2011)

The mol­ecule of the title pyrazole derivative, C18H19BrN4S, is twisted. The central pyrazole ring, which adopts a flattened envelope conformation, is almost coplanar with the 4-bromo­phenyl ring, whereas it is inclined to the 4-(dimethyl­amino)­phenyl ring making dihedral angles of 1.68 (6) and 85.12 (6)°, respectively. The dihedral angle between the two benzene rings is 86.56 (6)°. The dimethyl­amino group is slightly twisted from the attached benzene ring [C—C—N—C torsion angles = 8.4 (2) and 8.9 (2)°]. In the crystal, mol­ecules are linked by inter­molecular N—H⋯S hydrogen bonds into chains along [2[\overline{1}]0]. The crystal is further stabilized by C—H⋯π inter­actions.

Related literature

For background to chalcone synthesis and the biological activity of pyrazole derivatives, see: Bekhit et al. (2008[Bekhit, A. A., Ashour, H. M. A., Ghany, Y. S. A., Bekhit, A. E.-D. A. & Baraka, A. (2008). Eur. J. Med. Chem. 43, 456-463.]); Ono et al. (2007[Ono, M., Haratake, M., Mori, H. & Nakayama, M. (2007). Bioorg. Med. Chem. 15, 6802-6809.]); Cottineau et al. (2002[Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. Lett. 12, 2105-2108.]); Gadakh et al. (2010[Gadakh, A. V., Pandit, C., Rindhe, S. S. & Karale, B. K. (2010). Bioorg. Med. Chem. Lett. 20, 5572-5576.]); Hall et al. (2008[Hall, A., Billinton, A., Brown, S. H., Clayton, N. M., Chowdhury, A., Giblin, G. M. P., Goldsmith, P., Hayhow, T. G., Hurst, D. N., Kilford, I. R., Naylor, A., Passingham, B. & Winyard, L. (2008). Bioorg. Med. Chem. Lett. 18, 3392-3399.]); Hoepping et al. (2007[Hoepping, A., Scheunemann, M., Fischer, S., Deuther-Conrad, W., Hiller, A., Wegner, F., Diekers, M., Steinbach, J. & Brust, P. (2007). Nucl. Med. Biol. 34, 559-570.]); Mikhaylichenko et al. (2009[Mikhaylichenko, S. N., Patel, S. M., Dalili, S., Chesnyuk, A. A. & Zaplishny, V. N. (2009). Tetrahedron Lett. 50, 2505-2508.]); Park et al. (2005[Park, H.-J., Lee, K., Park, S.-J., Ahn, B., Lee, J.-C., Cho, H. Y. & Lee, K.-I. (2005). Bioorg. Med. Chem. Lett. 15, 3307-3312.]) Souza et al. (2002[Souza, F. R., Souza, V. T., Ratzlaff, V., Borges, L. P., Oliveira, M. R., Bonacorso, H. G., Zanatta, N., Martins, M. A. P. & Mello, C. F. (2002). Eur. J. Pharmacol. 451, 141-147.]); Xie et al. (2008[Xie, Y.-S., Pan, X.-H., Zhao, B.-X., Liu, J.-T., Shin, D.-S., Zhang, J.-H., Zheng, L.-W., Zhao, J. & Miao, J.-Y. (2008). J. Organomet. Chem. 693, 1367-1374.]). For related structures, see; Chantrapromma et al. (2009[Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893-o894.]); Suwunwong et al. (2009[Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o120.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19BrN4S

  • Mr = 403.34

  • Triclinic, [P \overline 1]

  • a = 6.9153 (1) Å

  • b = 9.5122 (1) Å

  • c = 15.1545 (2) Å

  • α = 72.196 (1)°

  • β = 80.941 (1)°

  • γ = 69.845 (1)°

  • V = 889.48 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.44 mm−1

  • T = 100 K

  • 0.55 × 0.32 × 0.31 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.349, Tmax = 0.520

  • 28456 measured reflections

  • 7823 independent reflections

  • 6784 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.05

  • 7823 reflections

  • 227 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯S1i 0.84 (2) 2.54 (2) 3.3679 (11) 170.8 (17)
C5—H5ACg2ii 0.93 2.72 3.5462 (12) 149
C16—H16BCg2iii 0.96 2.71 3.6676 (18) 154
C17—H17CCg1iv 0.96 2.74 3.5990 (19) 149
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y, z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pyrazole moiety is one of the core structures in a number of natural products (Xie et al., 2008). Numerous compounds which contain the pyrazole moiety are known to exhibit a wide range of biological properties such as antihypertensive (Mikhaylichenko et al., 2009), analgesic (Hall et al., 2008), anti-inflammatory (Bekhit et al., 2008), antipyretic (Souza et al., 2002), antimicrobial (Gadakh et al., 2010), hypoglycemic (Cottineau et al., 2002), sedative-hypnotic (Hoepping et al., 2007) and antitumor activities (Park et al., 2005). Our on going research on biological activities of pyrazole derivatives led us to synthesize the title compound by cyclization of the chalcone derivative (Ono et al., 2007) with excess thiosemicarbazide. Herein we report the crystal structure of the title compound.

The molecular structure of the title compound is twisted. The central pyrazole ring adopts a flattened envelope conformation with puckering parameter Q = 0.1775 (11) Å and ϕ = 75.9 (3)° (Cremer & Pople, 1975), with the slightly puckered C9 atom having the maximum deviation of 0.1120 (11) Å. The pyrazole ring is coplanar with the 4-bromophenyl whereas inclined to the 4-dimethylaminophenyl rings with dihedral angles of 1.68 (6) and 85.12 (6)°, respectively. The dihedral angle between the two phenyl rings being 86.56 (6)°. The dimethylamino group is slightly twisted from the attached benzene ring with the torsion angles C16–N3–C13–C14 = 8.9 (2)° and C17–N3–C13–C12 = 8.4 (2)°. The carbothioamide is slightly twisted from the pyrazole ring as indicated by the torsions angles N4–C18–N2–N1 = 5.51 (14)° and S1–C18–N2–N1 = -172.28 (7)°. The bond distances agree with the literature values (Allen et al., 1987) and are comparable to those observed in related structures (Chantrapromma et al., 2009; Suwunwong et al., 2009).

In the crystal structure (Fig. 2), the molecules are linked by intermolecular N—H···S hydrogen bonds (Table 1) into chains along the [2 1 0] direction. The crystal is further stabilized by C—H···π interactions (Table 1).

Related literature top

For background to chalcone synthesis and the biological activity of pyrazole derivatives, see: Bekhit et al. (2008); Ono et al. (2007); Cottineau et al. (2002); Gadakh et al. (2010); Hall et al. (2008); Hoepping et al. (2007); Mikhaylichenko et al. (2009); Park et al. (2005) Souza et al. (2002); Xie et al. (2008). For related structures, see; Chantrapromma et al. (2009); Suwunwong et al. (2009). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized by dissolving (E)-1-(4-bromophenyl)-3-(4-(dimethylamino)phenyl)prop-2-en-1-one (Ono et al., 2007) (0.33 g, 1.0 mmol) in a solution of KOH (0.06 g, 1.0 mmol) in ethanol (20 ml). An excess thiosemicarbazide (0.14 g, 1.5 mmol) in ethanol (20 ml) was then added, and the reaction mixture was vigorously stirred and refluxed for 7 h. The yellow solid of the title compound obtained after cooling of the reaction mixture was filtered off under vacuum. Pale yellow block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from acetone/ethanol (1:1 v/v) by slow evaporation of the solvent at room temperature after several days. M.p. 481–482 K.

Refinement top

The amino H atoms were located in difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic, 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.75 Å from Br1 and the deepest hole is located at 0.56 Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are drawn as dashed lines.
3-(4-Bromophenyl)-5-[4-(dimethylamino)phenyl]-4,5-dihydro-1H-pyrazole- 1-carbothioamide top
Crystal data top
C18H19BrN4SZ = 2
Mr = 403.34F(000) = 412
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Melting point = 481–482 K
a = 6.9153 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5122 (1) ÅCell parameters from 7823 reflections
c = 15.1545 (2) Åθ = 2.4–35.1°
α = 72.196 (1)°µ = 2.44 mm1
β = 80.941 (1)°T = 100 K
γ = 69.845 (1)°Block, pale yellow
V = 889.48 (2) Å30.55 × 0.32 × 0.31 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7823 independent reflections
Radiation source: sealed tube6784 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 35.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1110
Tmin = 0.349, Tmax = 0.520k = 1515
28456 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.3232P]
where P = (Fo2 + 2Fc2)/3
7823 reflections(Δ/σ)max = 0.003
227 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C18H19BrN4Sγ = 69.845 (1)°
Mr = 403.34V = 889.48 (2) Å3
Triclinic, P1Z = 2
a = 6.9153 (1) ÅMo Kα radiation
b = 9.5122 (1) ŵ = 2.44 mm1
c = 15.1545 (2) ÅT = 100 K
α = 72.196 (1)°0.55 × 0.32 × 0.31 mm
β = 80.941 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7823 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6784 reflections with I > 2σ(I)
Tmin = 0.349, Tmax = 0.520Rint = 0.023
28456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.96 e Å3
7823 reflectionsΔρmin = 0.50 e Å3
227 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.641401 (17)0.173962 (13)0.169443 (10)0.02713 (4)
S10.08981 (4)0.61386 (3)0.083129 (18)0.01668 (5)
N10.62104 (13)0.27982 (10)0.13070 (6)0.01465 (14)
N20.44511 (13)0.40189 (10)0.14121 (6)0.01404 (14)
N30.0497 (2)0.25372 (15)0.52890 (9)0.0346 (3)
N40.31575 (15)0.37031 (12)0.02111 (7)0.01857 (16)
C11.02110 (17)0.05782 (12)0.12650 (8)0.01819 (18)
H1A0.92130.05440.09330.022*
C21.21950 (17)0.04510 (13)0.12460 (9)0.02047 (19)
H2A1.25340.11790.09080.025*
C31.36736 (16)0.03752 (12)0.17431 (8)0.01850 (18)
C41.32036 (16)0.06853 (12)0.22612 (8)0.01758 (18)
H4A1.42080.07110.25930.021*
C51.12052 (15)0.17132 (12)0.22782 (7)0.01604 (17)
H5A1.08730.24320.26230.019*
C60.96924 (15)0.16730 (11)0.17801 (7)0.01418 (16)
C70.76209 (15)0.27851 (11)0.17797 (7)0.01395 (15)
C80.69425 (15)0.40713 (12)0.22566 (7)0.01553 (16)
H8A0.75850.48700.19520.019*
H8B0.72660.36710.29040.019*
C90.45956 (15)0.47007 (11)0.21552 (7)0.01428 (16)
H9A0.41350.58390.19370.017*
C100.33157 (15)0.41586 (12)0.30181 (7)0.01506 (16)
C110.40552 (17)0.27201 (13)0.36660 (8)0.01809 (18)
H11A0.54110.21040.35900.022*
C120.28225 (18)0.21843 (14)0.44205 (8)0.0221 (2)
H12A0.33710.12260.48420.027*
C130.07487 (19)0.30739 (14)0.45555 (8)0.0219 (2)
C140.00187 (17)0.45394 (14)0.39134 (8)0.01970 (19)
H14A0.13320.51670.39880.024*
C150.12813 (16)0.50602 (13)0.31725 (7)0.01712 (17)
H15A0.07610.60390.27650.021*
C160.2680 (2)0.3366 (2)0.53468 (10)0.0324 (3)
H16A0.32760.34930.47850.049*
H16B0.28800.43700.54280.049*
H16C0.33340.27860.58660.049*
C170.0361 (3)0.1144 (2)0.60089 (12)0.0443 (4)
H17A0.15640.12030.62190.067*
H17B0.07370.02560.57680.067*
H17C0.06450.10460.65190.067*
C180.29283 (15)0.45225 (12)0.08212 (7)0.01415 (16)
H1N40.211 (3)0.386 (2)0.0067 (13)0.028 (4)*
H2N40.414 (3)0.287 (2)0.0245 (12)0.027 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01316 (5)0.01906 (5)0.05023 (9)0.00079 (4)0.00226 (5)0.01560 (5)
S10.01295 (10)0.01764 (10)0.01829 (11)0.00210 (8)0.00309 (8)0.00530 (8)
N10.0112 (3)0.0157 (3)0.0161 (4)0.0029 (3)0.0005 (3)0.0046 (3)
N20.0112 (3)0.0159 (3)0.0149 (3)0.0024 (3)0.0014 (3)0.0059 (3)
N30.0276 (6)0.0347 (6)0.0316 (6)0.0095 (5)0.0114 (5)0.0020 (5)
N40.0150 (4)0.0224 (4)0.0189 (4)0.0026 (3)0.0039 (3)0.0088 (3)
C10.0155 (4)0.0180 (4)0.0224 (5)0.0042 (3)0.0027 (3)0.0078 (4)
C20.0165 (4)0.0178 (4)0.0284 (5)0.0035 (3)0.0014 (4)0.0102 (4)
C30.0125 (4)0.0140 (4)0.0282 (5)0.0032 (3)0.0008 (3)0.0060 (4)
C40.0128 (4)0.0158 (4)0.0251 (5)0.0044 (3)0.0029 (3)0.0061 (4)
C50.0131 (4)0.0150 (4)0.0210 (4)0.0046 (3)0.0012 (3)0.0060 (3)
C60.0112 (4)0.0140 (4)0.0170 (4)0.0044 (3)0.0005 (3)0.0034 (3)
C70.0120 (4)0.0142 (4)0.0153 (4)0.0043 (3)0.0001 (3)0.0035 (3)
C80.0122 (4)0.0167 (4)0.0194 (4)0.0043 (3)0.0012 (3)0.0073 (3)
C90.0124 (4)0.0153 (4)0.0164 (4)0.0046 (3)0.0016 (3)0.0055 (3)
C100.0133 (4)0.0168 (4)0.0161 (4)0.0038 (3)0.0011 (3)0.0068 (3)
C110.0154 (4)0.0189 (4)0.0185 (4)0.0033 (3)0.0000 (3)0.0059 (3)
C120.0207 (5)0.0216 (5)0.0194 (5)0.0046 (4)0.0007 (4)0.0023 (4)
C130.0208 (5)0.0256 (5)0.0199 (5)0.0086 (4)0.0040 (4)0.0078 (4)
C140.0147 (4)0.0244 (5)0.0204 (5)0.0041 (4)0.0008 (3)0.0100 (4)
C150.0142 (4)0.0195 (4)0.0173 (4)0.0027 (3)0.0017 (3)0.0072 (3)
C160.0234 (6)0.0522 (9)0.0273 (6)0.0184 (6)0.0087 (5)0.0162 (6)
C170.0419 (9)0.0417 (8)0.0351 (8)0.0142 (7)0.0126 (7)0.0035 (6)
C180.0124 (4)0.0167 (4)0.0131 (4)0.0051 (3)0.0005 (3)0.0032 (3)
Geometric parameters (Å, º) top
Br1—C31.8976 (10)C7—C81.5091 (14)
S1—C181.6896 (10)C8—C91.5391 (14)
N1—C71.2927 (13)C8—H8A0.9700
N1—N21.3901 (12)C8—H8B0.9700
N2—C181.3518 (13)C9—C101.5155 (14)
N2—C91.4917 (13)C9—H9A0.9800
N3—C131.3759 (16)C10—C111.3972 (15)
N3—C171.441 (2)C10—C151.3990 (14)
N3—C161.4450 (19)C11—C121.3893 (16)
N4—C181.3404 (14)C11—H11A0.9300
N4—H1N40.842 (19)C12—C131.4113 (17)
N4—H2N40.841 (19)C12—H12A0.9300
C1—C21.3859 (15)C13—C141.4090 (17)
C1—C61.4049 (15)C14—C151.3848 (16)
C1—H1A0.9300C14—H14A0.9300
C2—C31.3945 (16)C15—H15A0.9300
C2—H2A0.9300C16—H16A0.9600
C3—C41.3848 (15)C16—H16B0.9600
C4—C51.3926 (14)C16—H16C0.9600
C4—H4A0.9300C17—H17A0.9600
C5—C61.3999 (14)C17—H17B0.9600
C5—H5A0.9300C17—H17C0.9600
C6—C71.4583 (14)
C7—N1—N2107.84 (8)N2—C9—C8100.12 (8)
C18—N2—N1119.42 (8)C10—C9—C8114.94 (8)
C18—N2—C9127.78 (8)N2—C9—H9A110.4
N1—N2—C9112.61 (8)C10—C9—H9A110.4
C13—N3—C17120.35 (12)C8—C9—H9A110.4
C13—N3—C16120.36 (12)C11—C10—C15117.01 (10)
C17—N3—C16119.29 (12)C11—C10—C9122.25 (9)
C18—N4—H1N4117.0 (13)C15—C10—C9120.66 (9)
C18—N4—H2N4120.0 (12)C12—C11—C10121.88 (10)
H1N4—N4—H2N4119.5 (17)C12—C11—H11A119.1
C2—C1—C6120.68 (10)C10—C11—H11A119.1
C2—C1—H1A119.7C11—C12—C13120.90 (10)
C6—C1—H1A119.7C11—C12—H12A119.6
C1—C2—C3118.82 (10)C13—C12—H12A119.6
C1—C2—H2A120.6N3—C13—C14121.54 (11)
C3—C2—H2A120.6N3—C13—C12121.30 (11)
C4—C3—C2121.77 (10)C14—C13—C12117.15 (10)
C4—C3—Br1119.03 (8)C15—C14—C13121.01 (10)
C2—C3—Br1119.19 (8)C15—C14—H14A119.5
C3—C4—C5119.05 (10)C13—C14—H14A119.5
C3—C4—H4A120.5C14—C15—C10122.00 (10)
C5—C4—H4A120.5C14—C15—H15A119.0
C4—C5—C6120.47 (10)C10—C15—H15A119.0
C4—C5—H5A119.8N3—C16—H16A109.5
C6—C5—H5A119.8N3—C16—H16B109.5
C5—C6—C1119.21 (9)H16A—C16—H16B109.5
C5—C6—C7120.05 (9)N3—C16—H16C109.5
C1—C6—C7120.72 (9)H16A—C16—H16C109.5
N1—C7—C6121.29 (9)H16B—C16—H16C109.5
N1—C7—C8113.61 (8)N3—C17—H17A109.5
C6—C7—C8124.98 (9)N3—C17—H17B109.5
C7—C8—C9102.52 (8)H17A—C17—H17B109.5
C7—C8—H8A111.3N3—C17—H17C109.5
C9—C8—H8A111.3H17A—C17—H17C109.5
C7—C8—H8B111.3H17B—C17—H17C109.5
C9—C8—H8B111.3N4—C18—N2116.40 (9)
H8A—C8—H8B109.2N4—C18—S1122.21 (8)
N2—C9—C10110.17 (8)N2—C18—S1121.35 (8)
C7—N1—N2—C18164.20 (9)C7—C8—C9—N216.35 (9)
C7—N1—N2—C911.12 (11)C7—C8—C9—C10101.64 (9)
C6—C1—C2—C30.38 (17)N2—C9—C10—C1182.45 (11)
C1—C2—C3—C40.78 (18)C8—C9—C10—C1129.71 (13)
C1—C2—C3—Br1178.27 (9)N2—C9—C10—C1594.19 (11)
C2—C3—C4—C50.65 (17)C8—C9—C10—C15153.64 (9)
Br1—C3—C4—C5178.40 (8)C15—C10—C11—C121.39 (16)
C3—C4—C5—C60.12 (16)C9—C10—C11—C12175.37 (10)
C4—C5—C6—C10.25 (16)C10—C11—C12—C130.81 (18)
C4—C5—C6—C7178.15 (10)C17—N3—C13—C14170.94 (15)
C2—C1—C6—C50.12 (16)C16—N3—C13—C148.9 (2)
C2—C1—C6—C7178.27 (10)C17—N3—C13—C128.4 (2)
N2—N1—C7—C6177.42 (9)C16—N3—C13—C12171.79 (13)
N2—N1—C7—C81.24 (11)C11—C12—C13—N3178.51 (13)
C5—C6—C7—N1178.25 (10)C11—C12—C13—C142.16 (18)
C1—C6—C7—N10.12 (15)N3—C13—C14—C15179.34 (12)
C5—C6—C7—C82.53 (15)C12—C13—C14—C151.33 (17)
C1—C6—C7—C8175.85 (10)C13—C14—C15—C100.88 (17)
N1—C7—C8—C912.11 (11)C11—C10—C15—C142.23 (16)
C6—C7—C8—C9171.88 (9)C9—C10—C15—C14174.59 (10)
C18—N2—C9—C1081.36 (12)N1—N2—C18—N45.51 (14)
N1—N2—C9—C10103.80 (9)C9—N2—C18—N4179.96 (9)
C18—N2—C9—C8157.18 (10)N1—N2—C18—S1172.28 (7)
N1—N2—C9—C817.65 (10)C9—N2—C18—S12.25 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H1N4···S1i0.84 (2)2.54 (2)3.3679 (11)170.8 (17)
C5—H5A···Cg2ii0.932.723.5462 (12)149
C16—H16B···Cg2iii0.962.713.6676 (18)154
C17—H17C···Cg1iv0.962.743.5990 (19)149
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H19BrN4S
Mr403.34
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.9153 (1), 9.5122 (1), 15.1545 (2)
α, β, γ (°)72.196 (1), 80.941 (1), 69.845 (1)
V3)889.48 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.44
Crystal size (mm)0.55 × 0.32 × 0.31
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.349, 0.520
No. of measured, independent and
observed [I > 2σ(I)] reflections
28456, 7823, 6784
Rint0.023
(sin θ/λ)max1)0.809
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.05
No. of reflections7823
No. of parameters227
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 0.50

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H1N4···S1i0.84 (2)2.54 (2)3.3679 (11)170.8 (17)
C5—H5A···Cg2ii0.932.723.5462 (12)149
C16—H16B···Cg2iii0.962.713.6676 (18)154
C17—H17C···Cg1iv0.962.743.5990 (19)149
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

TS thanks the Graduate School, Prince of Songkla University for partial financial support. The authors thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit and also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBekhit, A. A., Ashour, H. M. A., Ghany, Y. S. A., Bekhit, A. E.-D. A. & Baraka, A. (2008). Eur. J. Med. Chem. 43, 456–463.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. Lett. 12, 2105–2108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGadakh, A. V., Pandit, C., Rindhe, S. S. & Karale, B. K. (2010). Bioorg. Med. Chem. Lett. 20, 5572–5576.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHall, A., Billinton, A., Brown, S. H., Clayton, N. M., Chowdhury, A., Giblin, G. M. P., Goldsmith, P., Hayhow, T. G., Hurst, D. N., Kilford, I. R., Naylor, A., Passingham, B. & Winyard, L. (2008). Bioorg. Med. Chem. Lett. 18, 3392–3399.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHoepping, A., Scheunemann, M., Fischer, S., Deuther-Conrad, W., Hiller, A., Wegner, F., Diekers, M., Steinbach, J. & Brust, P. (2007). Nucl. Med. Biol. 34, 559–570.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMikhaylichenko, S. N., Patel, S. M., Dalili, S., Chesnyuk, A. A. & Zaplishny, V. N. (2009). Tetrahedron Lett. 50, 2505–2508.  Web of Science CSD CrossRef CAS Google Scholar
First citationOno, M., Haratake, M., Mori, H. & Nakayama, M. (2007). Bioorg. Med. Chem. 15, 6802–6809.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPark, H.-J., Lee, K., Park, S.-J., Ahn, B., Lee, J.-C., Cho, H. Y. & Lee, K.-I. (2005). Bioorg. Med. Chem. Lett. 15, 3307–3312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, F. R., Souza, V. T., Ratzlaff, V., Borges, L. P., Oliveira, M. R., Bonacorso, H. G., Zanatta, N., Martins, M. A. P. & Mello, C. F. (2002). Eur. J. Pharmacol. 451, 141–147.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, Y.-S., Pan, X.-H., Zhao, B.-X., Liu, J.-T., Shin, D.-S., Zhang, J.-H., Zheng, L.-W., Zhao, J. & Miao, J.-Y. (2008). J. Organomet. Chem. 693, 1367–1374.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o701-o702
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds