organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o544-o545

Di­methyl 8-acetyl-2-methyl-1,2-di­hydro­quinoline-2,4-di­carboxyl­ate

aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Çankırı Karatekin University, TR-18100 Çankırı, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 19 January 2011; accepted 27 January 2011; online 2 February 2011)

In the title compound, C16H17NO5, the six-membered N-containing ring has a half-boat form; the spiro C atom deviates by 0.34 (2) Å from the plane (r.m.s. deviation = 0.051 Å) defined by the N and four aromatic C atoms. Intra­molecular N—H⋯O hydrogen bonding generates an S(6) ring motif and the dihedral angle between the mean plane though the S(6) ring and that through the five-atom half-boat plane is 3.39 (2)°. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into zigzag chains along [001] due to c-glide symmetry, and C—H⋯π inter­actions extend along [010].

Related literature

For the preparation of 1,2-dihydro­quinoline, see: Dauphinee & Forrest (1978[Dauphinee, G. A. & Forrest, T. P. (1978). Can. J. Chem. 56, 632-634.]); Katritzky et al. (1996[Katritzky, A. R., Rachwal, S. & Rachwal, B. (1996). Tetrahedron, 52, 15031-15070.]); Elmore et al. (2001[Elmore, S. W., Coghlan, M. J., Anderson, D. D., Pratt, J. K., Green, B. E., Wang, A. X., Stashko, M. A., Lin, C. W., Tyree, C. M., Miner, J. N., Jacobson, P. B., Wilcox, D. M. & Lane, B. C. (2001). J. Med. Chem. 44, 4481-4491.]); Lu & Malinakova (2004[Lu, G. & Malinakova, H. C. (2004). J. Org. Chem. 69, 4701-4715.]); Wang et al. (2009[Wang, Y. F., Zhang, W., Luo, S. P., Li, B. L., Xia, A. B., Zhong, A. G. & Xu, D. Q. (2009). Chem. Asian. J. 4, 1834-1838.]); Rezgui et al. (1999[Rezgui, F., Mangeney, P. & Alexakis, A. (1999). Tetrahedron Lett. 40, 6241-6244.]). For related structures, see: Yadav et al. (2007[Yadav, J. S., Reddy, B. V. S., Premalatha, K. & Murty, M. S. R. (2007). J. Mol. Catal. A, 271, 161-163.]); Kamakshi & Reddy (2007[Kamakshi, R. & Reddy, B. S. R. (2007). Catal. Commun. 8, 825-828.]); Kim et al. (2001[Kim, J. N., Kim, H. S., Gong, J. H. & Chung, Y. M. (2001). Tetrahedron Lett. 42, 8341-8344.]); Sundèn et al. (2007[Sundèn, H., Rios, R., Ibrahem, I., Zhao, G. L., Eriksson, L. & Cordova, A. (2007). Adv. Synth. Catal. 349, 827-832.]); Waldmann et al. (2008[Waldmann, H., Karunakar, G. V. & Kumar, K. (2008). Org. Lett. 10, 2159-2162.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO5

  • Mr = 303.31

  • Monoclinic, P 21 /c

  • a = 8.0222 (3) Å

  • b = 18.2466 (9) Å

  • c = 10.3478 (4) Å

  • β = 101.042 (3)°

  • V = 1486.65 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.74 × 0.43 × 0.23 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.823, Tmax = 0.968

  • 14613 measured reflections

  • 3068 independent reflections

  • 2221 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.169

  • S = 1.07

  • 14613 reflections

  • 205 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 (2) 1.95 (2) 2.650 (2) 138 (2)
C10—H10⋯O3i 0.93 2.59 3.517 (3) 174
C14—H14CCg1i 0.96 2.89 3.692 (3) 142
C8—H8BCg1ii 0.96 2.85 3.501 (3) 126
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Dihydroquinoline moiety is found in a wide variety of natural products and they have attracted a lot of attention from synthetic organic chemists (Kamakshi & Reddy, 2007). 1,2-Dihydroquinolines have received substantial attention due to their potential biological activities arising from their antioxidative properties as well as their usefulness as precursors of some other biologically active compounds (Kim et al., 2001). 1,2-Dihydroquinoline derivatives are known to exhibit a wide spectrum of biological activities such as antimalarial, antibacterial and anti-inflammatory behavior (Yadav et al., 2007).

Asymmetric synthesis of 1,2-dihydroquinolin have been attracted in recent years (Wang et al., 2009; Rezgui et al., 1999). Sundèn and co-worker has reported asymmetric synthesis of 1,2-dihydroquinolines using Domino reactions between 2-aminobenzaldehyde and α,β-unsaturated aldehydes to give pharmaceutically valuable 1,2-dihydroquinolines in high enantioselectivity (Sundèn et al., 2007). 1,2-dihydroquinolines was used for several applications, such as synthesis of quinolines: (Dauphinee & Forrest, 1978; Lu & Malinakova, 2004), 1,2,3,4- tetrahydroquinolines: (Katritzky et al., 1996) and natural products: (Elmore et al., 2001).

The molecule of the title compound contains dihydroquinoline, two methoxycarbonyl (O=C—O—CH3) and acetyl group (O=C—CH3). The two –CO2Me groups are antisymmetric with respect to atom C10 (Fig. 1).

The six-membered N containing ring of the quinoline system displays a half-boat conformation with the puckering parameters of QT=0.261 (2) Å, Φ=146.7 (6)° and Θ=112.7 (4) ° (Cremer & Pople, 1975) and the spiro carbon atom deviates 0.34 (2) Å from the plane (r.m.s. deviation 0.051 Å) defined by the N1 and C1, C6, C9, C10 atoms. The intramolecular N—H..O hydrogen bond generate S(6) ring motif (Bernstein et al., 1995) (Fig. 1, Table 1). The dihedral angle between the S(6) ring mean plane and the half-boat plane of five atoms is 3.39 (2)°.

The crystal packing is stabilized by C10—H10···O3i intermolecular hydrogen bonds linking the molecules into chains in a zigzag mode along [0 0 1] due to c-glide symmetry, and there are also two C—H···π interactions C14—H14c···Cg1i and C8—H8b···Cg1ii [(i): x,1/2 - y,-1/2 + z; (ii):1 - x,1 - y,1 - z] extending along the b axis (Fig. 2., Table 1.).

Related literature top

For the preparation of 1,2-dihydroquinoline, see: Dauphinee & Forrest (1978); Katritzky et al. (1996); Elmore et al. (2001); Lu & Malinakova (2004); Wang et al. (2009); Rezgui et al. (1999). For related structures, see: Yadav et al. (2007); Kamakshi & Reddy (2007); Kim et al. (2001); Sundèn et al. (2007); Waldmann et al. (2008). For ring puckering analysis, see: Cremer & Pople (1975). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized after a method described by Waldmann et al., (2008). 2'-aminoacetophenone (100 mg, 1 eq) was dissolved in acetonitrile (1.5 ml) in a screw-capped test tube and Bi(OTf)3 (5 mol %, 0.05 eq) was added to the mixture. This mixture were stirred at room temperature for 4 days until the starting material was completely consumed as monitored by TLC. The resultant residue was directly purified by flash chromatography on silica (EtOAc: Cyclohexane 2:98) gave 27% yield as a yellow solid. Recrystallized over pentan and ethyl acetate gave yellow crystalline solid. Rf 0.5 (2:1 Cyclohexane/EtOAc); m.p: (374–375 K).

Refinement top

The H atom of the NH group was located in a difference Fourier map and refined with the constraint N—H = 0.86 (2) Å. All other H atoms were positioned with idealized geometry using a riding model, [C—H = 0.93–0.96Å and Uiso = 1.2Ueq(C)].

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Dashed lines indicate H-bonds.
[Figure 2] Fig. 2. A packing diagram for (I), showing the C—H···O hydrogen bonds and C—H···π interactions. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity. [Symmetry code; (i): x,1/2 - y,-1/2 + z; (ii): 1 - x,1 - y,1 - z]. (Cg1 is the centroid of the C1—C6 ring).
Dimethyl 8-acetyl-2-methyl-1,2-dihydroquinoline-2,4-dicarboxylate top
Crystal data top
C16H17NO5F(000) = 640
Mr = 303.31Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14613 reflections
a = 8.0222 (3) Åθ = 2.0–28.0°
b = 18.2466 (9) ŵ = 0.10 mm1
c = 10.3478 (4) ÅT = 296 K
β = 101.042 (3)°Prism, brown
V = 1486.65 (11) Å30.74 × 0.43 × 0.23 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
3068 independent reflections
Radiation source: fine-focus sealed tube2221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
rotation method scansθmax = 26.5°, θmin = 2.2°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1010
Tmin = 0.823, Tmax = 0.968k = 2222
14613 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0846P)2 + 0.2827P]
where P = (Fo2 + 2Fc2)/3
14613 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C16H17NO5V = 1486.65 (11) Å3
Mr = 303.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0222 (3) ŵ = 0.10 mm1
b = 18.2466 (9) ÅT = 296 K
c = 10.3478 (4) Å0.74 × 0.43 × 0.23 mm
β = 101.042 (3)°
Data collection top
Stoe IPDS 2
diffractometer
3068 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2221 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 0.968Rint = 0.055
14613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.43 e Å3
14613 reflectionsΔρmin = 0.36 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4104 (2)0.37012 (12)0.3615 (2)0.0427 (5)
C20.5203 (3)0.39441 (12)0.4782 (2)0.0458 (5)
C30.4559 (3)0.39964 (14)0.5939 (2)0.0537 (6)
H30.52670.41610.67020.064*
C40.2911 (3)0.38117 (16)0.5987 (2)0.0582 (6)
H40.25120.38530.67710.070*
C50.1846 (3)0.35628 (15)0.4853 (2)0.0529 (6)
H50.07320.34360.48870.064*
C60.2403 (2)0.34998 (13)0.3675 (2)0.0436 (5)
C70.6980 (3)0.41517 (14)0.4779 (2)0.0507 (6)
C80.8065 (3)0.44802 (16)0.5984 (3)0.0618 (7)
H8A0.84020.41040.66300.074*
H8B0.74310.48500.63410.074*
H8C0.90580.46970.57510.074*
C90.1341 (2)0.32351 (13)0.2442 (2)0.0454 (5)
C100.1863 (3)0.32944 (14)0.1302 (2)0.0491 (5)
H100.11690.31130.05470.059*
C110.3514 (3)0.36395 (13)0.1178 (2)0.0462 (5)
C120.0356 (3)0.28883 (15)0.2385 (2)0.0521 (6)
C130.2120 (3)0.21400 (18)0.3394 (3)0.0732 (8)
H13A0.28440.24890.37080.088*
H13B0.19790.17190.39600.088*
H13C0.26250.19930.25150.088*
C140.4362 (3)0.32316 (16)0.0183 (2)0.0572 (6)
H14A0.54100.34700.01190.069*
H14B0.36200.32340.06630.069*
H14C0.45880.27350.04690.069*
C150.3165 (3)0.44329 (14)0.0688 (2)0.0496 (6)
C160.1661 (4)0.51590 (18)0.1039 (3)0.0788 (9)
H16A0.11760.54630.04500.095*
H16B0.08610.51020.18510.095*
H16C0.26780.53840.12110.095*
N10.4639 (2)0.36371 (12)0.24524 (18)0.0508 (5)
O10.7624 (2)0.40668 (13)0.38037 (19)0.0708 (6)
O20.1528 (2)0.29932 (15)0.1485 (2)0.0906 (8)
O30.0469 (2)0.24724 (11)0.33918 (18)0.0657 (5)
O40.3796 (3)0.49676 (12)0.1243 (2)0.0794 (6)
O50.2062 (2)0.44499 (10)0.04465 (18)0.0641 (5)
H10.566 (2)0.3785 (15)0.248 (3)0.065 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0390 (10)0.0448 (12)0.0419 (11)0.0046 (9)0.0017 (8)0.0007 (9)
C20.0438 (11)0.0449 (12)0.0450 (12)0.0039 (9)0.0014 (9)0.0003 (10)
C30.0524 (12)0.0619 (16)0.0425 (12)0.0001 (11)0.0015 (10)0.0073 (11)
C40.0540 (13)0.0755 (18)0.0454 (13)0.0000 (12)0.0099 (10)0.0068 (12)
C50.0463 (11)0.0635 (15)0.0486 (13)0.0016 (10)0.0081 (10)0.0037 (11)
C60.0397 (10)0.0455 (12)0.0431 (12)0.0025 (8)0.0018 (8)0.0009 (9)
C70.0441 (11)0.0536 (14)0.0507 (14)0.0021 (10)0.0005 (10)0.0018 (11)
C80.0503 (12)0.0684 (17)0.0611 (16)0.0086 (11)0.0031 (11)0.0069 (13)
C90.0392 (10)0.0497 (13)0.0446 (12)0.0008 (9)0.0013 (9)0.0021 (10)
C100.0422 (10)0.0575 (14)0.0440 (12)0.0040 (10)0.0007 (9)0.0034 (10)
C110.0407 (10)0.0574 (14)0.0391 (11)0.0018 (9)0.0041 (8)0.0030 (10)
C120.0461 (12)0.0657 (16)0.0424 (12)0.0063 (10)0.0027 (10)0.0011 (11)
C130.0639 (15)0.086 (2)0.0689 (18)0.0292 (15)0.0113 (13)0.0083 (16)
C140.0509 (12)0.0676 (17)0.0534 (15)0.0019 (11)0.0108 (10)0.0106 (12)
C150.0463 (11)0.0599 (15)0.0428 (12)0.0056 (10)0.0095 (9)0.0046 (11)
C160.0801 (19)0.077 (2)0.074 (2)0.0029 (16)0.0012 (15)0.0221 (17)
N10.0375 (9)0.0726 (14)0.0405 (10)0.0042 (9)0.0032 (8)0.0029 (9)
O10.0446 (9)0.1052 (16)0.0605 (11)0.0100 (9)0.0051 (8)0.0129 (11)
O20.0528 (10)0.149 (2)0.0624 (12)0.0263 (11)0.0078 (9)0.0270 (13)
O30.0573 (9)0.0731 (13)0.0615 (11)0.0174 (8)0.0020 (8)0.0178 (10)
O40.1003 (15)0.0624 (12)0.0673 (13)0.0137 (11)0.0043 (11)0.0087 (10)
O50.0648 (10)0.0631 (12)0.0566 (11)0.0039 (8)0.0079 (8)0.0080 (9)
Geometric parameters (Å, º) top
C1—N11.358 (3)C10—H100.9300
C1—C21.423 (3)C11—N11.448 (3)
C1—C61.426 (3)C11—C141.531 (3)
C2—C31.395 (3)C11—C151.542 (3)
C2—C71.475 (3)C12—O21.205 (3)
C3—C41.374 (3)C12—O31.306 (3)
C3—H30.9300C13—O31.457 (3)
C4—C51.389 (3)C13—H13A0.9600
C4—H40.9300C13—H13B0.9600
C5—C61.381 (3)C13—H13C0.9600
C5—H50.9300C14—H14A0.9600
C6—C91.474 (3)C14—H14B0.9600
C7—O11.229 (3)C14—H14C0.9600
C7—C81.502 (3)C15—O41.195 (3)
C8—H8A0.9600C15—O51.328 (3)
C8—H8B0.9600C16—O51.442 (3)
C8—H8C0.9600C16—H16A0.9600
C9—C101.330 (3)C16—H16B0.9600
C9—C121.492 (3)C16—H16C0.9600
C10—C111.494 (3)N1—H10.858 (17)
N1—C1—C2121.97 (18)N1—C11—C14109.33 (18)
N1—C1—C6118.91 (19)C10—C11—C14111.6 (2)
C2—C1—C6119.11 (19)N1—C11—C15110.15 (19)
C3—C2—C1118.56 (19)C10—C11—C15108.43 (18)
C3—C2—C7120.1 (2)C14—C11—C15108.15 (19)
C1—C2—C7121.3 (2)O2—C12—O3123.1 (2)
C4—C3—C2122.1 (2)O2—C12—C9122.3 (2)
C4—C3—H3118.9O3—C12—C9114.68 (19)
C2—C3—H3118.9O3—C13—H13A109.5
C3—C4—C5119.3 (2)O3—C13—H13B109.5
C3—C4—H4120.3H13A—C13—H13B109.5
C5—C4—H4120.3O3—C13—H13C109.5
C6—C5—C4121.5 (2)H13A—C13—H13C109.5
C6—C5—H5119.3H13B—C13—H13C109.5
C4—C5—H5119.3C11—C14—H14A109.5
C5—C6—C1119.4 (2)C11—C14—H14B109.5
C5—C6—C9124.05 (19)H14A—C14—H14B109.5
C1—C6—C9116.55 (19)C11—C14—H14C109.5
O1—C7—C2121.9 (2)H14A—C14—H14C109.5
O1—C7—C8117.6 (2)H14B—C14—H14C109.5
C2—C7—C8120.5 (2)O4—C15—O5123.7 (2)
C7—C8—H8A109.5O4—C15—C11125.1 (2)
C7—C8—H8B109.5O5—C15—C11111.1 (2)
H8A—C8—H8B109.5O5—C16—H16A109.5
C7—C8—H8C109.5O5—C16—H16B109.5
H8A—C8—H8C109.5H16A—C16—H16B109.5
H8B—C8—H8C109.5O5—C16—H16C109.5
C10—C9—C6120.85 (19)H16A—C16—H16C109.5
C10—C9—C12116.1 (2)H16B—C16—H16C109.5
C6—C9—C12123.04 (19)C1—N1—C11124.00 (17)
C9—C10—C11123.1 (2)C1—N1—H1114.2 (19)
C9—C10—H10118.5C11—N1—H1116.7 (19)
C11—C10—H10118.5C12—O3—C13116.44 (19)
N1—C11—C10109.17 (18)C15—O5—C16117.0 (2)
N1—C1—C2—C3179.9 (2)C12—C9—C10—C11178.9 (2)
C6—C1—C2—C31.8 (3)C9—C10—C11—N120.8 (3)
N1—C1—C2—C71.1 (3)C9—C10—C11—C14141.8 (2)
C6—C1—C2—C7179.3 (2)C9—C10—C11—C1599.2 (3)
C1—C2—C3—C40.9 (4)C10—C9—C12—O237.6 (4)
C7—C2—C3—C4179.8 (2)C6—C9—C12—O2142.5 (3)
C2—C3—C4—C50.2 (4)C10—C9—C12—O3143.2 (2)
C3—C4—C5—C60.3 (4)C6—C9—C12—O336.7 (3)
C4—C5—C6—C10.6 (4)N1—C11—C15—O43.5 (3)
C4—C5—C6—C9179.6 (2)C10—C11—C15—O4122.9 (3)
N1—C1—C6—C5180.0 (2)C14—C11—C15—O4115.9 (3)
C2—C1—C6—C51.7 (3)N1—C11—C15—O5176.59 (17)
N1—C1—C6—C90.2 (3)C10—C11—C15—O557.2 (2)
C2—C1—C6—C9178.5 (2)C14—C11—C15—O564.0 (2)
C3—C2—C7—O1175.0 (3)C2—C1—N1—C11158.1 (2)
C1—C2—C7—O16.1 (4)C6—C1—N1—C1123.6 (3)
C3—C2—C7—C85.2 (4)C10—C11—N1—C132.7 (3)
C1—C2—C7—C8173.6 (2)C14—C11—N1—C1155.0 (2)
C5—C6—C9—C10169.4 (2)C15—C11—N1—C186.3 (3)
C1—C6—C9—C1010.4 (3)O2—C12—O3—C130.9 (4)
C5—C6—C9—C1210.7 (4)C9—C12—O3—C13178.3 (2)
C1—C6—C9—C12169.5 (2)O4—C15—O5—C161.8 (4)
C6—C9—C10—C111.3 (4)C11—C15—O5—C16178.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.86 (2)1.95 (2)2.650 (2)138 (2)
C10—H10···O3i0.932.593.517 (3)174
C14—H14C···Cg1i0.962.893.692 (3)142
C8—H8B···Cg1ii0.962.853.501 (3)126
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H17NO5
Mr303.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.0222 (3), 18.2466 (9), 10.3478 (4)
β (°) 101.042 (3)
V3)1486.65 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.74 × 0.43 × 0.23
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.823, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
14613, 3068, 2221
Rint0.055
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.169, 1.07
No. of reflections14613
No. of parameters205
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.36

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.858 (17)1.95 (2)2.650 (2)138 (2)
C10—H10···O3i0.932.593.517 (3)174
C14—H14C···Cg1i0.962.893.692 (3)142
C8—H8B···Cg1ii0.962.853.501 (3)126
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The title product was synthesized at RWTH Aachen University. The authors thank Professor Magnus Rueping of RWTH Aachen University, Germany, for helpful discussions and acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDauphinee, G. A. & Forrest, T. P. (1978). Can. J. Chem. 56, 632–634.  CrossRef CAS Web of Science Google Scholar
First citationElmore, S. W., Coghlan, M. J., Anderson, D. D., Pratt, J. K., Green, B. E., Wang, A. X., Stashko, M. A., Lin, C. W., Tyree, C. M., Miner, J. N., Jacobson, P. B., Wilcox, D. M. & Lane, B. C. (2001). J. Med. Chem. 44, 4481–4491.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKamakshi, R. & Reddy, B. S. R. (2007). Catal. Commun. 8, 825–828.  CrossRef CAS Google Scholar
First citationKatritzky, A. R., Rachwal, S. & Rachwal, B. (1996). Tetrahedron, 52, 15031–15070.  CrossRef CAS Web of Science Google Scholar
First citationKim, J. N., Kim, H. S., Gong, J. H. & Chung, Y. M. (2001). Tetrahedron Lett. 42, 8341–8344.  CrossRef CAS Google Scholar
First citationLu, G. & Malinakova, H. C. (2004). J. Org. Chem. 69, 4701–4715.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRezgui, F., Mangeney, P. & Alexakis, A. (1999). Tetrahedron Lett. 40, 6241–6244.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSundèn, H., Rios, R., Ibrahem, I., Zhao, G. L., Eriksson, L. & Cordova, A. (2007). Adv. Synth. Catal. 349, 827–832.  Google Scholar
First citationWaldmann, H., Karunakar, G. V. & Kumar, K. (2008). Org. Lett. 10, 2159–2162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, Y. F., Zhang, W., Luo, S. P., Li, B. L., Xia, A. B., Zhong, A. G. & Xu, D. Q. (2009). Chem. Asian. J. 4, 1834–1838.  Web of Science PubMed CAS Google Scholar
First citationYadav, J. S., Reddy, B. V. S., Premalatha, K. & Murty, M. S. R. (2007). J. Mol. Catal. A, 271, 161–163.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o544-o545
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds