metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η4-s-cis-1,3-Butadiene)tetra­carbonyl­chromium(0)

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@uni-duesseldorf.de

(Received 31 January 2011; accepted 7 February 2011; online 12 February 2011)

In the title complex, [Cr(C4H6)(CO)4], the Cr0 atom shows a distorted octa­hedral environment from four C atoms of the carbonyl ligands and the two π-bonds of the s-cis-1,3-butadiene ligand. The complex has an approximate non-crystallographic mirror symmetry m passing through the chromium atom, two carbonyl ligands and the mid-point of the central C—C bond of the s-cis-1,3-butadiene ligand. The C—C bond lengths in the s-cis-1,3-butadiene ligand alternate, the terminal distances being shorter than the central distance.

Related literature

For experimental and theoretical data for the title compound, see: Fischler et al. (1976[Fischler, M., Budzwait, M. & Koerner von Gustorf, E. A. (1976). J. Organomet. Chem. 105, 325-330.]); Kotzian et al. (1982[Kotzian, M., Kreiter, C. G. & Özkar, S. (1982). J. Organomet. Chem. 229, 29-42.]); Kreiter & Özkar (1978[Kreiter, C. G. & Özkar, S. (1978). J. Organomet. Chem. 152, C13-C18.]); Okamoto et al. (1991[Okamoto, Y., Inui, Y., Onimatsu, H. & Imanaka, T. (1991). J. Phys. Chem. 95, 4596-4598.]); von Ragué Schleyer et al. (2000[Ragué Schleyer, P. von, Kiran, B., Simion, D. V. & Sorensen, T. S. (2000). J. Am. Chem. Soc. 122, 510-513.]). For related chromium complexes, see: Pavkovic & Zaluzec (1989[Pavkovic, S. F. & Zaluzec, E. J. (1989). Acta Cryst. C45, 18-21.]), Betz et al. (1993[Betz, P., Döhring, A., Emrich, R., Goddard, R., Jolly, P. W., Krüger, C., Romão, C. C., Schönfelder, K. U. & Tsay, Y.-H. (1993). Polyhedron, 12, 2651-2662.]), Wang et al. (1990[Wang, N.-F., Wink, D. J. & Dewan, J. C. (1990). Organometallics, 9, 335-340.]), Konietzny et al. (2010[Konietzny, S., Finze, M. & Reiss, G. J. (2010). J. Organomet. Chem. 695, 2089-2092.]). For related s-cis-butadiene complexes, see: Reiss (2010[Reiss, G. J. (2010). Acta Cryst. E66, m1369.]), Reiss & Konietzny (2002[Reiss, G. J. & Konietzny, S. (2002). Dalton Trans. pp. 862-864.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C4H6)(CO)4]

  • Mr = 218.13

  • Triclinic, [P \overline 1]

  • a = 6.4011 (8) Å

  • b = 6.7666 (8) Å

  • c = 11.0642 (10) Å

  • α = 84.728 (7)°

  • β = 81.840 (8)°

  • γ = 69.127 (8)°

  • V = 442.80 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 137 K

  • 0.38 × 0.26 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: Gaussian (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.711, Tmax = 0.946

  • 2829 measured reflections

  • 1735 independent reflections

  • 1498 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.068

  • S = 1.05

  • 1735 reflections

  • 140 parameters

  • All H-atom parameters refined

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Cr1—C5 1.852 (2)
Cr1—C6 1.887 (2)
Cr1—C7 1.873 (2)
Cr1—C8 1.914 (2)
Cr1—C1 2.312 (2)
Cr1—C2 2.184 (2)
Cr1—C3 2.190 (2)
Cr1—C4 2.325 (2)
C1—C2 1.379 (3)
C2—C3 1.436 (3)
C3—C4 1.371 (3)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Simple butadiene complexes of transition metals are of general interest because they are model systems that allow a deeper understanding of the bonding situation between transition metal centers and olefins that play an important role for example in catalysis. [Cr(C4H6)(CO)4] that was first described in the 70s of the last century (Fischler et al. 1976) was subject to a number of spectroscopic (Kotzian et al. 1982) as well as theoretical studies (von Ragué Schleyer et al. 2000) and its chemistry was investigated (Kreiter & Özkar, 1978; Okamoto et al. 1991) with the focus on photochemical ligand exchange reactions (Fischler et al. 1976).

The coordination at Cr(0) in the title compound is best described as a distorted octahedron formed by four carbonyl ligands and one s-cis-1,3-butadiene ligand. The Cr–CO distances of the carbonyl ligands that are trans to the s-cis-1,3-butadiene ligand are slightly shorter than the two other Cr–CO distances (Table 1). This finding is in good agreement to Cr—CO distances in the structure of the related tetracarbonyl chromium(0) complex [Cr(C19H23NO2)(CO)4]: d(Cr–COtrans) = 1.884 (4), 1.887 (6) Å and d(Cr–CO) = 1.847 (5), 1.837 (4) Å (Pavkovic & Zaluzec, 1989). In the structure of the title complex the Cr–C distances to the terminal carbon atoms of the s-cis-1,3-butadiene ligand are longer compared to the respective distances to the central carbon atoms of the diene ligand. A similar trend to longer Cr–C distances for the terminal carbon atoms was found for example for the s-cis-1,3-butadiene chromium(1) complex [CrCp*(C4H6)(CO)] (Betz et al. 1993). As known from a few other chromium(0) complexes of s-cis-1,3-butadiene and related coordination compounds (Pavkovic & Zaluzec, 1989; Betz et al. 1993; Wang et al. 1990; Konietzny et al. 2010) in [Cr(C4H6)(CO)4] the terminal C–C distances are significantly shorter than the central d(C–C) Δ(d(C–C)) = 0.057–0.065 Å. In contrast, for comparable iron(0) and manganese(0) complexes almost equilibrated C–C distances have been reported (Reiss, 2010; Reiss & Konietzny 2002), e. g. in the structure of the s-cis-1,3-butadiene iron(0) complex [Fe(C4H6)(CO)3] Δ(d(C–C)) = 0.005 Å [d(C–C)central = 1.4142 (19) Å, d(C–C)terminal = 1.4194 (14) Å] (Reiss, 2010).

Related literature top

For experimental and theoretical data for the title compound, see: Fischler et al. (1976); Kotzian et al. (1982); Kreiter & Özkar (1978); Okamoto et al. (1991); von Ragué Schleyer et al. (2000). For related chromium complexes, see: Pavkovic & Zaluzec (1989), Betz et al. (1993), Wang et al. (1990), Konietzny et al. (2010). For related s-cis-butadiene complexes, see: Reiss (2010), Reiss & Konietzny (2002).

Experimental top

Synthesis

[Cr(C4H6)(CO)4] was synthesized according to a published procedure (Fischler, 1976). The crystal was obtained by slow evaporation of a solution of pentane.

Refinement top

All hydrogen atoms were located from difference Fourier synthesis. For the terminal H atom pairs of the CH2 groups common Uiso(H) = 0.031 (4)/0.027 (4) Å2 and individual Uiso(H) = 0.027 (6) and 0.019 (5) Å2 for the two central H atoms were refined freely with distances in the range 0.90 (2) - 0.98 (3) Å.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Hydrogen atoms are drawn with an arbitrary radius and the displacement ellipsoids are shown at the 50% probability level.
(η4-s-cis-1,3-Butadiene)tetracarbonylchromium(0) top
Crystal data top
[Cr(C4H6)(CO)4]Z = 2
Mr = 218.13F(000) = 220
Triclinic, P1Dx = 1.636 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4011 (8) ÅCell parameters from 2257 reflections
b = 6.7666 (8) Åθ = 3.4–28.7°
c = 11.0642 (10) ŵ = 1.27 mm1
α = 84.728 (7)°T = 137 K
β = 81.840 (8)°Platelet, yellow
γ = 69.127 (8)°0.38 × 0.26 × 0.04 mm
V = 442.80 (8) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1498 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 26.0°, θmin = 4.1°
ω scansh = 77
Absorption correction: gaussian
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 88
Tmin = 0.711, Tmax = 0.946l = 1313
2829 measured reflections3 standard reflections every 60 min
1735 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
1735 reflections(Δ/σ)max = 0.001
140 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cr(C4H6)(CO)4]γ = 69.127 (8)°
Mr = 218.13V = 442.80 (8) Å3
Triclinic, P1Z = 2
a = 6.4011 (8) ÅMo Kα radiation
b = 6.7666 (8) ŵ = 1.27 mm1
c = 11.0642 (10) ÅT = 137 K
α = 84.728 (7)°0.38 × 0.26 × 0.04 mm
β = 81.840 (8)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1498 reflections with I > 2σ(I)
Absorption correction: gaussian
(CrysAlis PRO; Oxford Diffraction, 2009)
Rint = 0.020
Tmin = 0.711, Tmax = 0.9463 standard reflections every 60 min
2829 measured reflections intensity decay: none
1735 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.068All H-atom parameters refined
S = 1.05Δρmax = 0.29 e Å3
1735 reflectionsΔρmin = 0.38 e Å3
140 parameters
Special details top

Experimental. A single-crystal suitable for structure determination was harvested under a dry nitrogen atmosphere and was directly transferred into the cooling stream of an Oxford-Xcalibur diffractometer equipped with an EOS-CCD detector. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.52 (release 06–11-2009). Numerical absorption correction based on Gaussian integration over a multifaceted crystal model.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.66351 (5)0.59871 (5)0.74506 (3)0.01600 (12)
O60.8591 (3)0.2852 (3)0.94893 (13)0.0342 (4)
C60.7852 (3)0.4125 (3)0.87540 (17)0.0212 (4)
O50.3023 (3)0.4055 (2)0.79702 (16)0.0342 (4)
O80.4722 (3)0.7542 (3)0.50255 (13)0.0329 (4)
C80.5444 (3)0.7032 (3)0.59328 (18)0.0222 (4)
C50.4434 (3)0.4763 (3)0.77460 (18)0.0216 (4)
O71.0248 (3)0.2629 (3)0.59598 (14)0.0329 (4)
C70.8870 (3)0.3908 (3)0.65151 (18)0.0222 (4)
C30.8024 (4)0.8098 (3)0.81772 (19)0.0258 (5)
H30.921 (4)0.746 (4)0.864 (2)0.027 (6)*
C20.5762 (4)0.8487 (3)0.8746 (2)0.0269 (5)
H20.556 (3)0.811 (3)0.955 (2)0.019 (5)*
C10.3978 (4)0.9184 (4)0.8059 (2)0.0287 (5)
H120.403 (4)1.009 (4)0.732 (2)0.031 (4)*
H110.261 (4)0.918 (4)0.846 (2)0.031 (4)*
C40.8493 (4)0.8394 (4)0.6940 (2)0.0282 (5)
H410.748 (4)0.940 (4)0.647 (2)0.027 (4)*
H420.995 (4)0.789 (4)0.655 (2)0.027 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.01916 (18)0.01729 (18)0.01228 (17)0.00607 (13)0.00425 (11)0.00170 (12)
O60.0401 (9)0.0363 (10)0.0225 (8)0.0080 (8)0.0115 (7)0.0083 (7)
C60.0233 (10)0.0242 (11)0.0161 (10)0.0078 (9)0.0006 (8)0.0052 (9)
O50.0282 (8)0.0266 (9)0.0510 (10)0.0139 (7)0.0031 (7)0.0027 (8)
O80.0432 (9)0.0350 (9)0.0230 (8)0.0128 (8)0.0179 (7)0.0042 (7)
C80.0234 (10)0.0225 (11)0.0223 (11)0.0089 (9)0.0038 (8)0.0034 (9)
C50.0233 (10)0.0165 (10)0.0222 (10)0.0017 (9)0.0065 (8)0.0023 (8)
O70.0317 (9)0.0334 (9)0.0260 (8)0.0027 (7)0.0040 (7)0.0098 (7)
C70.0258 (11)0.0263 (11)0.0171 (10)0.0113 (9)0.0066 (8)0.0025 (9)
C30.0335 (12)0.0233 (11)0.0266 (11)0.0133 (10)0.0142 (9)0.0010 (9)
C20.0429 (13)0.0194 (11)0.0200 (11)0.0111 (10)0.0045 (9)0.0073 (9)
C10.0309 (12)0.0188 (11)0.0339 (13)0.0047 (9)0.0013 (10)0.0080 (10)
C40.0312 (13)0.0305 (13)0.0302 (12)0.0189 (11)0.0080 (10)0.0021 (10)
Geometric parameters (Å, º) top
Cr1—C51.852 (2)O8—C81.138 (2)
Cr1—C61.887 (2)C1—C21.379 (3)
Cr1—C71.873 (2)C2—C31.436 (3)
Cr1—C81.914 (2)C3—C41.371 (3)
Cr1—C12.312 (2)C1—H110.92 (2)
Cr1—C22.184 (2)C1—H120.98 (3)
Cr1—C32.190 (2)C2—H20.90 (2)
Cr1—C42.325 (2)C3—H30.92 (2)
O5—C51.153 (3)C4—H410.93 (3)
O6—C61.148 (3)C4—H420.93 (3)
O7—C71.142 (3)
C5—Cr1—C683.10 (9)C2—C3—C4121.6 (2)
C5—Cr1—C799.88 (9)C2—C1—H11116.0 (15)
C7—Cr1—C682.30 (8)C2—C1—H12120.2 (14)
C5—Cr1—C885.80 (9)C1—C2—H2120.7 (14)
C7—Cr1—C884.94 (9)C3—C2—H2118.0 (14)
C6—Cr1—C8161.38 (9)C4—C3—H3118.6 (15)
O6—C6—Cr1174.03 (18)C2—C3—H3119.2 (15)
O8—C8—Cr1176.01 (19)C3—C4—H41122.7 (15)
O5—C5—Cr1177.16 (18)C3—C4—H42121.8 (15)
O7—C7—Cr1178.99 (18)H12—C1—H11120 (2)
C1—C2—C3120.8 (2)H41—C4—H42114 (2)
C4—C3—C2—C10.3 (3)

Experimental details

Crystal data
Chemical formula[Cr(C4H6)(CO)4]
Mr218.13
Crystal system, space groupTriclinic, P1
Temperature (K)137
a, b, c (Å)6.4011 (8), 6.7666 (8), 11.0642 (10)
α, β, γ (°)84.728 (7), 81.840 (8), 69.127 (8)
V3)442.80 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.38 × 0.26 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionGaussian
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.711, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
2829, 1735, 1498
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.05
No. of reflections1735
No. of parameters140
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.29, 0.38

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010).

Selected bond lengths (Å) top
Cr1—C51.852 (2)Cr1—C32.190 (2)
Cr1—C61.887 (2)Cr1—C42.325 (2)
Cr1—C71.873 (2)C1—C21.379 (3)
Cr1—C81.914 (2)C2—C31.436 (3)
Cr1—C12.312 (2)C3—C41.371 (3)
Cr1—C22.184 (2)
 

References

First citationBetz, P., Döhring, A., Emrich, R., Goddard, R., Jolly, P. W., Krüger, C., Romão, C. C., Schönfelder, K. U. & Tsay, Y.-H. (1993). Polyhedron, 12, 2651–2662.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFischler, M., Budzwait, M. & Koerner von Gustorf, E. A. (1976). J. Organomet. Chem. 105, 325–330.  CrossRef CAS Web of Science Google Scholar
First citationKonietzny, S., Finze, M. & Reiss, G. J. (2010). J. Organomet. Chem. 695, 2089–2092.  Web of Science CSD CrossRef CAS Google Scholar
First citationKotzian, M., Kreiter, C. G. & Özkar, S. (1982). J. Organomet. Chem. 229, 29–42.  CrossRef CAS Web of Science Google Scholar
First citationKreiter, C. G. & Özkar, S. (1978). J. Organomet. Chem. 152, C13–C18.  CrossRef CAS Web of Science Google Scholar
First citationOkamoto, Y., Inui, Y., Onimatsu, H. & Imanaka, T. (1991). J. Phys. Chem. 95, 4596–4598.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPavkovic, S. F. & Zaluzec, E. J. (1989). Acta Cryst. C45, 18–21.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRagué Schleyer, P. von, Kiran, B., Simion, D. V. & Sorensen, T. S. (2000). J. Am. Chem. Soc. 122, 510–513.  Google Scholar
First citationReiss, G. J. (2010). Acta Cryst. E66, m1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReiss, G. J. & Konietzny, S. (2002). Dalton Trans. pp. 862–864.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, N.-F., Wink, D. J. & Dewan, J. C. (1990). Organometallics, 9, 335–340.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds