metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­methyl­bis­­(thio­cyanato-κN)tin(IV)]-μ-(4,4′-bi­pyridine-κ2N:N′)]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 5 February 2011; accepted 14 February 2011; online 19 February 2011)

The title dimethyl­tin diisothio­cyanate adduct of 4,4′-bipyridine, [Sn(CH3)2(NCS)2(C10H8N2)]n, adopts a chain motif in which the N-heterocycle functions as a bridge to adjacent all-trans octa­hedrally coordinated tin atoms. The SnIV atom lies on a special position of 2/m site symmetry, the methyl C atom on a special position of 2 site symmetry, and the thio­cyanate and 4,4′-bipyridine on a special position of m site symmetry.

Related literature

For the 4,4′-bipyridine adducts of diorganotin dichlorides, see: Ma et al. (2004[Ma, C.-L., Zhang, J.-H. & Zhang, R.-F. (2004). Heteroatom. Chem. 15, 338-346.]); Ng (1998[Ng, S. W. (1998). Acta Cryst. C54, 1393-1395.]). For the dimethyl­tin di(isothio­cyanate) adduct of 1,10-phenanthroline, see: Najafi et al. (2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67. Submitted (si2333).]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(NCS)2(C10H8N2)]

  • Mr = 421.10

  • Monoclinic, C 2/m

  • a = 10.8697 (8) Å

  • b = 7.7741 (6) Å

  • c = 11.3979 (8) Å

  • β = 115.817 (1)°

  • V = 867.0 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.628, Tmax = 0.847

  • 4033 measured reflections

  • 1066 independent reflections

  • 1064 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.061

  • S = 1.08

  • 1066 reflections

  • 64 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.82 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The 4,4'-bipyridine ligand forms a number of adducts with diorganotin dihalides; the adducts adopt linear chain structures as the ligand functions in a bridging mode. The organotin dihalides include dimethyltin dichloride (Ng, 1998), dibutyltin dichloride and dibenzyltin dichloride (Ma et al., 2004); no pseudohalides have been reported. The dimethyltin diisothiocyanate adduct similarly adopts a chain motif (Scheme I, Fig. 1). Polymeric [Sn(NCS)2(CH3)2(C10H8N2)2]n has the N-heterocycle functioning as a bridging to adjacent all-trans octahedrally coordinated tin atoms. The tin atom lies on a special position of 2/m site symmetry, the methyl carbon on a special position of 2 site symmetry, and the isothiocyanate and 4,4'-bipyridine on a special position of m site symmetry. The geometry of the tin atom in the dimethyltin di(isothiocyanate) adduct with 1,10-phenanthroline is a cis-octahedron (Najafi et al., 2011).

Related literature top

For the 4,4'-bipyridine adducts of diorganotin dichlorides, see: Ma et al. (2004); Ng (1998). For the dimethyltin di(isothiocyanate) adduct of 1,10-phenanthroline, see: Najafi et al. (2011).

Experimental top

Dimethyltin diisothiocyanate (1 mmol, 0.26 g) and 4,4'-bipyridine (1 mmol, 0.16 g) were loaded into a convection tube. The tube was filled with acetonitrile and methanol (v:v / 9:1) and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the Sn(NCS)2(CH3)2(C10H8N2) chain at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
catena-Poly[[dimethylbis(thiocyanato-κN)tin(IV)]- µ-(4,4'-bipyridine-κ2N:N')] top
Crystal data top
[Sn(CH3)2(NCS)2(C10H8N2)]F(000) = 416
Mr = 421.10Dx = 1.613 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 3765 reflections
a = 10.8697 (8) Åθ = 3.8–28.3°
b = 7.7741 (6) ŵ = 1.71 mm1
c = 11.3979 (8) ÅT = 295 K
β = 115.817 (1)°Prism, colorless
V = 867.0 (1) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
1066 independent reflections
Radiation source: fine-focus sealed tube1064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.628, Tmax = 0.847k = 1010
4033 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.048P)2 + 0.1158P]
where P = (Fo2 + 2Fc2)/3
1066 reflections(Δ/σ)max = 0.001
64 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Sn(CH3)2(NCS)2(C10H8N2)]V = 867.0 (1) Å3
Mr = 421.10Z = 2
Monoclinic, C2/mMo Kα radiation
a = 10.8697 (8) ŵ = 1.71 mm1
b = 7.7741 (6) ÅT = 295 K
c = 11.3979 (8) Å0.30 × 0.20 × 0.10 mm
β = 115.817 (1)°
Data collection top
Bruker SMART APEX
diffractometer
1066 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1064 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.847Rint = 0.021
4033 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.08Δρmax = 0.49 e Å3
1066 reflectionsΔρmin = 0.82 e Å3
64 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.50000.50000.50000.03309 (11)
S10.6834 (2)0.50000.18029 (16)0.0967 (5)
N10.3011 (3)0.50000.2981 (2)0.0404 (5)
N20.6379 (4)0.50000.3960 (4)0.0763 (12)
C10.50000.2290 (5)0.50000.0713 (12)
H1A0.52540.18780.58690.107*0.50
H1B0.56440.18780.46970.107*0.50
H1C0.41030.18780.44340.107*0.50
C20.1780 (4)0.50000.2946 (3)0.0713 (14)
H20.17170.50000.37340.086*
C30.0584 (4)0.50000.1812 (3)0.0721 (15)
H30.02540.50000.18490.087*
C40.0628 (3)0.50000.0623 (3)0.0388 (6)
C50.1893 (4)0.50000.0663 (4)0.102 (3)
H50.19850.50000.01120.122*
C60.3047 (4)0.50000.1840 (4)0.099 (2)
H60.38960.50000.18260.119*
C70.6565 (3)0.50000.3071 (4)0.0501 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02266 (15)0.04968 (17)0.02072 (15)0.0000.00366 (10)0.000
S10.1031 (11)0.1490 (14)0.0594 (8)0.0000.0554 (8)0.000
N10.0246 (11)0.0643 (15)0.0225 (11)0.0000.0011 (9)0.000
N20.0413 (17)0.146 (4)0.0449 (19)0.0000.0216 (16)0.000
C10.064 (3)0.0532 (19)0.068 (3)0.0000.002 (2)0.000
C20.0298 (16)0.154 (5)0.0201 (15)0.0000.0018 (13)0.000
C30.0252 (16)0.157 (5)0.0280 (17)0.0000.0057 (14)0.000
C40.0231 (13)0.0624 (16)0.0215 (13)0.0000.0009 (12)0.000
C50.0260 (17)0.253 (8)0.0205 (17)0.0000.0053 (14)0.000
C60.0210 (16)0.244 (8)0.0231 (17)0.0000.0016 (14)0.000
C70.0300 (15)0.077 (2)0.0387 (17)0.0000.0110 (13)0.000
Geometric parameters (Å, º) top
Sn1—C1i2.107 (4)C1—H1B0.9600
Sn1—C12.107 (4)C1—H1C0.9600
Sn1—N2i2.280 (3)C2—C31.378 (5)
Sn1—N22.280 (3)C2—H20.9300
Sn1—N1i2.374 (2)C3—C41.376 (4)
Sn1—N12.374 (2)C3—H30.9300
S1—C71.595 (4)C4—C51.356 (5)
N1—C61.318 (5)C4—C4ii1.480 (5)
N1—C21.321 (5)C5—C61.381 (5)
N2—C71.116 (5)C5—H50.9300
C1—H1A0.9600C6—H60.9300
C1i—Sn1—C1180.0H1A—C1—H1B109.5
C1i—Sn1—N2i90.0Sn1—C1—H1C109.5
C1—Sn1—N2i90.000 (1)H1A—C1—H1C109.5
C1i—Sn1—N290.000 (1)H1B—C1—H1C109.5
C1—Sn1—N290.0N1—C2—C3123.9 (3)
N2i—Sn1—N2180.000 (1)N1—C2—H2118.1
C1i—Sn1—N1i90.000 (1)C3—C2—H2118.1
C1—Sn1—N1i90.000 (1)C4—C3—C2120.0 (3)
N2i—Sn1—N1i91.34 (12)C4—C3—H3120.0
N2—Sn1—N1i88.66 (12)C2—C3—H3120.0
C1i—Sn1—N190.0C5—C4—C3115.9 (3)
C1—Sn1—N190.000 (1)C5—C4—C4ii122.0 (3)
N2i—Sn1—N188.66 (12)C3—C4—C4ii122.1 (4)
N2—Sn1—N191.34 (12)C4—C5—C6120.7 (3)
N1i—Sn1—N1180.0C4—C5—H5119.6
C6—N1—C2115.8 (3)C6—C5—H5119.6
C6—N1—Sn1123.4 (2)N1—C6—C5123.6 (3)
C2—N1—Sn1120.8 (2)N1—C6—H6118.2
C7—N2—Sn1153.1 (3)C5—C6—H6118.2
Sn1—C1—H1A109.5N2—C7—S1179.8 (4)
Sn1—C1—H1B109.5
C1i—Sn1—N1—C690.0N1—Sn1—N2—C70.000 (2)
C1—Sn1—N1—C690.0C6—N1—C2—C30.0
N2i—Sn1—N1—C6180.0Sn1—N1—C2—C3180.0
N2—Sn1—N1—C60.0N1—C2—C3—C40.0
C1i—Sn1—N1—C290.0C2—C3—C4—C50.0
C1—Sn1—N1—C290.0C2—C3—C4—C4ii180.0
N2i—Sn1—N1—C20.0C3—C4—C5—C60.0
N2—Sn1—N1—C2180.0C4ii—C4—C5—C6180.0
C1i—Sn1—N2—C790.000 (1)C2—N1—C6—C50.0
C1—Sn1—N2—C790.000 (1)Sn1—N1—C6—C5180.0
N1i—Sn1—N2—C7180.000 (2)C4—C5—C6—N10.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(NCS)2(C10H8N2)]
Mr421.10
Crystal system, space groupMonoclinic, C2/m
Temperature (K)295
a, b, c (Å)10.8697 (8), 7.7741 (6), 11.3979 (8)
β (°) 115.817 (1)
V3)867.0 (1)
Z2
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.628, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
4033, 1066, 1064
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.08
No. of reflections1066
No. of parameters64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.82

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMa, C.-L., Zhang, J.-H. & Zhang, R.-F. (2004). Heteroatom. Chem. 15, 338–346.  Web of Science CSD CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67. Submitted (si2333).  Google Scholar
First citationNg, S. W. (1998). Acta Cryst. C54, 1393–1395.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds