metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­ethyl­ammonium tetra­chlorido(pyridine-2-carboxyl­ato-κ2N,O)stannate(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 5 February 2011; accepted 14 February 2011; online 19 February 2011)

The cation and the anion in the title salt, (C6H16N)[SnCl4(C6H4NO2)], are linked by an N—H⋯O hydrogen bond. The SnIV atom in the stannate anion is chelated by the pyridine-2-carboxyl­ate group and exists in a cis-SnCl4NO octa­hedral geometry. The cation is disordered over two positions in a 0.564 (1):0.436 (1) ratio.

Related literature

For another ammonium tetra­chlorido(pyridine-2-carboxyl­ato)stannate, see: Najafi et al. (2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m239.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H16N)[SnCl4(C6H4NO2)]

  • Mr = 484.79

  • Monoclinic, P 21 /n

  • a = 11.6310 (7) Å

  • b = 10.4912 (6) Å

  • c = 16.4452 (9) Å

  • β = 109.672 (1)°

  • V = 1889.57 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.596, Tmax = 0.910

  • 17476 measured reflections

  • 4344 independent reflections

  • 3896 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.01

  • 4344 reflections

  • 242 parameters

  • 25 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.88 1.95 2.828 (4) 172
N2′—H2′⋯O2 0.88 2.02 2.895 (5) 173

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the reaction of pyridine-2-carboxylic acid and stannic chloride in methanol, one equivalent of the carboxylic acid is protonated at the amino site and is also esterified, the reaction yielding the salt, (C7H8NO2)+ [SnCl4(C6H4NO2)]-. The SnIV atom in the anion is N,O-chelated by the pyridine-2-carboxylate in a cis-SnNOCl4 octahedral geometry (Najafi et al., 2011). In the present study, triethylamine was added to function as proton abstractor. The reaction affords a similar salt, (Et3NH)+ [SnCl4(C6H4NO2)]- (Scheme I, Fig. 1). The tin atom in the stannate is chelated by the pyridine-2-carboxylate group and it exists in a cis-SnCl4NO octahedral geometry.

Related literature top

For another ammonium tetrachlorido(pyridine-2-carboxylato)stannate, see: Najafi et al. (2011).

Experimental top

The reaction was carried out under a nitrogen atmosphere. Pyridine-2-carboxylic acid (1.0 mmol, 0.12 g) and the triethylamine (1.0 mmol, 0.10 g) were dissolved in dry methanol (20 ml). Stannic chloride ((1.0 mmol, 0.35 g) was added to the mixture and stirred for 12 h. Suitable crystals were obtained by slow evaporation of the solvent.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99, N–H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The triethylammonium cation is disordered over two positions in a 56.4 (1): 43.6 (1) ratio. The N–C distances were restrained to within 0.01 Å of each other, as were the C–C distances. Because the C11' atom is close to the C11 atom (the C12' atom is also close to the C12 atom), the temperature factors of the C11' atom were restrained to those of the C11 atom; those of the C12' atom were set to those of the C12 atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (Et3NH)+ [SnCl4(C6H4NO2)]- at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the cation is not shown.
Triethylammonium tetrachlorido(pyridine-2-carboxylato-κ2N,O)stannate(IV) top
Crystal data top
(C6H16N)[SnCl4(C6H4NO2)]F(000) = 960
Mr = 484.79Dx = 1.704 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8286 reflections
a = 11.6310 (7) Åθ = 2.3–28.3°
b = 10.4912 (6) ŵ = 1.92 mm1
c = 16.4452 (9) ÅT = 100 K
β = 109.672 (1)°Prism, colorless
V = 1889.57 (19) Å30.30 × 0.25 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4344 independent reflections
Radiation source: fine-focus sealed tube3896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.596, Tmax = 0.910k = 1313
17476 measured reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0213P)2 + 0.5451P]
where P = (Fo2 + 2Fc2)/3
4344 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 0.41 e Å3
25 restraintsΔρmin = 0.39 e Å3
Crystal data top
(C6H16N)[SnCl4(C6H4NO2)]V = 1889.57 (19) Å3
Mr = 484.79Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6310 (7) ŵ = 1.92 mm1
b = 10.4912 (6) ÅT = 100 K
c = 16.4452 (9) Å0.30 × 0.25 × 0.05 mm
β = 109.672 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4344 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3896 reflections with I > 2σ(I)
Tmin = 0.596, Tmax = 0.910Rint = 0.033
17476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01925 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
4344 reflectionsΔρmin = 0.39 e Å3
242 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.563342 (11)0.304590 (11)0.743404 (8)0.01440 (5)
Cl10.37811 (4)0.38342 (5)0.64455 (3)0.02443 (11)
Cl20.47250 (5)0.23860 (5)0.84821 (3)0.02561 (11)
Cl30.56293 (4)0.08950 (4)0.69586 (3)0.01948 (10)
Cl40.67771 (4)0.36886 (4)0.65317 (3)0.01872 (10)
O10.59288 (12)0.48336 (12)0.80497 (8)0.0200 (3)
O20.69627 (13)0.58704 (13)0.92554 (9)0.0263 (3)
N10.74369 (14)0.28596 (14)0.84631 (10)0.0150 (3)
C10.68201 (17)0.49487 (17)0.87734 (12)0.0187 (4)
C20.77238 (17)0.38638 (17)0.90022 (11)0.0151 (4)
C30.87950 (17)0.39107 (17)0.96906 (12)0.0183 (4)
H30.89680.46121.00790.022*
C40.96192 (18)0.29127 (18)0.98084 (12)0.0207 (4)
H41.03770.29331.02690.025*
C50.93224 (19)0.18882 (18)0.92456 (12)0.0208 (4)
H50.98730.11950.93170.025*
C60.82192 (18)0.18857 (17)0.85810 (12)0.0189 (4)
H60.80090.11780.81990.023*
N20.5100 (3)0.7717 (3)0.8635 (2)0.0168 (8)0.564 (3)
H20.57180.71810.88040.020*0.564 (3)
C70.5607 (4)0.9017 (4)0.8956 (3)0.0209 (9)0.564 (3)
H7A0.60020.93760.85590.025*0.564 (3)
H7B0.49270.95890.89480.025*0.564 (3)
C80.6523 (4)0.8976 (4)0.9858 (3)0.0289 (9)0.564 (3)
H8A0.68340.98371.00350.043*0.564 (3)
H8B0.72030.84160.98680.043*0.564 (3)
H8C0.61300.86481.02560.043*0.564 (3)
C90.4203 (3)0.7295 (3)0.9059 (2)0.0227 (8)0.564 (3)
H9A0.35430.79360.89410.027*0.564 (3)
H9B0.46230.72630.96910.027*0.564 (3)
C100.3642 (5)0.6008 (5)0.8754 (4)0.0307 (12)0.564 (3)
H10A0.30670.57910.90530.046*0.564 (3)
H10B0.42860.53610.88820.046*0.564 (3)
H10C0.32070.60360.81300.046*0.564 (3)
C110.4630 (14)0.7685 (17)0.7665 (4)0.0215 (11)0.564 (3)
H11A0.43880.68010.74720.026*0.564 (3)
H11B0.52970.79340.74500.026*0.564 (3)
C120.3551 (13)0.8558 (13)0.7272 (9)0.0279 (18)0.564 (3)
H12A0.33400.85650.66430.042*0.564 (3)
H12B0.37620.94230.74970.042*0.564 (3)
H12C0.28520.82500.74220.042*0.564 (3)
N2'0.4707 (4)0.7281 (4)0.8540 (3)0.0178 (10)0.436 (3)
H2'0.53760.68450.88010.021*0.436 (3)
C7'0.4711 (4)0.8380 (4)0.9124 (3)0.0232 (11)0.436 (3)
H7'A0.45610.80580.96450.028*0.436 (3)
H7'B0.40360.89680.88220.028*0.436 (3)
C8'0.5902 (5)0.9107 (6)0.9395 (5)0.0281 (14)0.436 (3)
H8'A0.58570.98190.97700.042*0.436 (3)
H8'B0.60500.94380.88820.042*0.436 (3)
H8'C0.65700.85370.97110.042*0.436 (3)
C9'0.3664 (5)0.6386 (5)0.8450 (4)0.0206 (12)0.436 (3)
H9'A0.36000.57770.79770.025*0.436 (3)
H9'B0.28950.68810.82890.025*0.436 (3)
C10'0.3807 (5)0.5650 (5)0.9267 (4)0.0288 (12)0.436 (3)
H10D0.31190.50610.91660.043*0.436 (3)
H10E0.38220.62450.97300.043*0.436 (3)
H10F0.45720.51670.94350.043*0.436 (3)
C11'0.4774 (19)0.765 (2)0.7673 (6)0.0215 (11)0.44
H11C0.48770.68710.73660.026*0.436 (3)
H11D0.55020.81940.77620.026*0.436 (3)
C12'0.3646 (18)0.8367 (19)0.7110 (11)0.0279 (18)0.44
H12D0.36980.84900.65330.042*0.436 (3)
H12E0.36030.91980.73700.042*0.436 (3)
H12F0.29130.78720.70660.042*0.436 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01336 (7)0.01342 (7)0.01478 (7)0.00074 (5)0.00259 (5)0.00027 (5)
Cl10.0152 (2)0.0307 (3)0.0233 (2)0.00400 (19)0.00109 (19)0.00435 (19)
Cl20.0271 (3)0.0307 (3)0.0228 (2)0.0027 (2)0.0133 (2)0.0037 (2)
Cl30.0254 (2)0.0132 (2)0.0181 (2)0.00356 (17)0.00515 (18)0.00112 (17)
Cl40.0195 (2)0.0163 (2)0.0205 (2)0.00436 (17)0.00697 (18)0.00023 (17)
O10.0195 (7)0.0164 (6)0.0194 (7)0.0054 (5)0.0005 (6)0.0035 (5)
O20.0283 (8)0.0197 (7)0.0251 (7)0.0066 (6)0.0015 (6)0.0080 (6)
N10.0164 (8)0.0141 (7)0.0131 (7)0.0015 (6)0.0033 (6)0.0008 (6)
C10.0198 (10)0.0157 (9)0.0197 (9)0.0019 (7)0.0054 (8)0.0004 (7)
C20.0180 (9)0.0149 (8)0.0139 (9)0.0008 (7)0.0072 (7)0.0005 (7)
C30.0204 (10)0.0179 (9)0.0146 (9)0.0006 (7)0.0033 (7)0.0012 (7)
C40.0187 (10)0.0236 (10)0.0159 (9)0.0029 (8)0.0008 (8)0.0029 (7)
C50.0234 (10)0.0183 (9)0.0191 (10)0.0073 (8)0.0049 (8)0.0024 (7)
C60.0221 (10)0.0152 (9)0.0192 (9)0.0031 (7)0.0069 (8)0.0005 (7)
N20.0134 (19)0.018 (2)0.0199 (17)0.0040 (13)0.0071 (15)0.0005 (15)
C70.021 (2)0.0159 (18)0.028 (2)0.0027 (15)0.012 (2)0.0004 (19)
C80.036 (3)0.028 (2)0.026 (2)0.0108 (19)0.015 (2)0.0077 (18)
C90.0178 (17)0.0273 (19)0.0266 (19)0.0008 (14)0.0120 (15)0.0011 (15)
C100.030 (2)0.027 (3)0.038 (4)0.012 (2)0.015 (3)0.003 (2)
C110.021 (3)0.0250 (13)0.0191 (10)0.0037 (17)0.0075 (11)0.0019 (8)
C120.026 (2)0.029 (4)0.026 (5)0.004 (2)0.006 (2)0.005 (3)
N2'0.015 (3)0.018 (3)0.022 (2)0.0004 (17)0.009 (2)0.0004 (19)
C7'0.021 (2)0.019 (2)0.030 (3)0.0010 (18)0.010 (2)0.0072 (19)
C8'0.030 (4)0.023 (3)0.032 (4)0.005 (3)0.012 (3)0.009 (3)
C9'0.020 (3)0.018 (3)0.027 (3)0.002 (2)0.013 (2)0.001 (2)
C10'0.036 (3)0.027 (3)0.027 (3)0.005 (2)0.016 (3)0.001 (2)
C11'0.021 (3)0.0250 (13)0.0191 (10)0.0037 (17)0.0075 (11)0.0019 (8)
C12'0.026 (2)0.029 (4)0.026 (5)0.004 (2)0.006 (2)0.005 (3)
Geometric parameters (Å, º) top
Sn1—O12.1039 (13)C10—H10A0.9800
Sn1—N12.2163 (15)C10—H10B0.9800
Sn1—Cl12.3686 (5)C10—H10C0.9800
Sn1—Cl32.3876 (5)C11—C121.512 (8)
Sn1—Cl42.3990 (5)C11—H11A0.9900
Sn1—Cl22.4066 (5)C11—H11B0.9900
O1—C11.294 (2)C12—H12A0.9800
O2—C11.226 (2)C12—H12B0.9800
N1—C61.338 (2)C12—H12C0.9800
N1—C21.345 (2)N2'—C7'1.499 (5)
C1—C21.509 (2)N2'—C9'1.501 (5)
C2—C31.374 (3)N2'—C11'1.504 (7)
C3—C41.388 (3)N2'—H2'0.8800
C3—H30.9500C7'—C8'1.511 (6)
C4—C51.384 (3)C7'—H7'A0.9900
C4—H40.9500C7'—H7'B0.9900
C5—C61.377 (3)C8'—H8'A0.9800
C5—H50.9500C8'—H8'B0.9800
C6—H60.9500C8'—H8'C0.9800
N2—C111.503 (6)C9'—C10'1.509 (6)
N2—C91.503 (4)C9'—H9'A0.9900
N2—C71.508 (5)C9'—H9'B0.9900
N2—H20.8800C10'—H10D0.9800
C7—C81.508 (5)C10'—H10E0.9800
C7—H7A0.9900C10'—H10F0.9800
C7—H7B0.9900C11'—C12'1.524 (13)
C8—H8A0.9800C11'—H11C0.9900
C8—H8B0.9800C11'—H11D0.9900
C8—H8C0.9800C12'—H12D0.9800
C9—C101.510 (5)C12'—H12E0.9800
C9—H9A0.9900C12'—H12F0.9800
C9—H9B0.9900
O1—Sn1—N175.63 (5)C9—C10—H10A109.5
O1—Sn1—Cl189.00 (4)C9—C10—H10B109.5
N1—Sn1—Cl1164.42 (4)H10A—C10—H10B109.5
O1—Sn1—Cl3169.14 (4)C9—C10—H10C109.5
N1—Sn1—Cl393.66 (4)H10A—C10—H10C109.5
Cl1—Sn1—Cl3101.778 (17)H10B—C10—H10C109.5
O1—Sn1—Cl490.71 (4)N2—C11—C12113.1 (11)
N1—Sn1—Cl485.28 (4)N2—C11—H11A108.9
Cl1—Sn1—Cl492.462 (18)C12—C11—H11A108.9
Cl3—Sn1—Cl490.200 (16)N2—C11—H11B108.9
O1—Sn1—Cl287.23 (4)C12—C11—H11B108.9
N1—Sn1—Cl287.63 (4)H11A—C11—H11B107.8
Cl1—Sn1—Cl294.290 (18)C11—C12—H12A109.5
Cl3—Sn1—Cl290.554 (18)C11—C12—H12B109.5
Cl4—Sn1—Cl2172.905 (17)H12A—C12—H12B109.5
C1—O1—Sn1118.44 (11)C11—C12—H12C109.5
C6—N1—C2119.80 (16)H12A—C12—H12C109.5
C6—N1—Sn1126.91 (12)H12B—C12—H12C109.5
C2—N1—Sn1113.29 (12)C7'—N2'—C9'111.9 (4)
O2—C1—O1124.09 (17)C7'—N2'—C11'114.7 (10)
O2—C1—C2120.18 (17)C9'—N2'—C11'111.5 (10)
O1—C1—C2115.73 (16)C7'—N2'—H2'106.0
N1—C2—C3121.77 (16)C9'—N2'—H2'106.0
N1—C2—C1115.42 (16)C11'—N2'—H2'106.0
C3—C2—C1122.75 (16)N2'—C7'—C8'112.5 (4)
C2—C3—C4118.69 (17)N2'—C7'—H7'A109.1
C2—C3—H3120.7C8'—C7'—H7'A109.1
C4—C3—H3120.7N2'—C7'—H7'B109.1
C5—C4—C3119.16 (18)C8'—C7'—H7'B109.1
C5—C4—H4120.4H7'A—C7'—H7'B107.8
C3—C4—H4120.4C7'—C8'—H8'A109.5
C6—C5—C4119.22 (17)C7'—C8'—H8'B109.5
C6—C5—H5120.4H8'A—C8'—H8'B109.5
C4—C5—H5120.4C7'—C8'—H8'C109.5
N1—C6—C5121.32 (17)H8'A—C8'—H8'C109.5
N1—C6—H6119.3H8'B—C8'—H8'C109.5
C5—C6—H6119.3N2'—C9'—C10'112.9 (5)
C11—N2—C9115.1 (7)N2'—C9'—H9'A109.0
C11—N2—C7110.6 (8)C10'—C9'—H9'A109.0
C9—N2—C7110.8 (3)N2'—C9'—H9'B109.0
C11—N2—H2106.6C10'—C9'—H9'B109.0
C9—N2—H2106.6H9'A—C9'—H9'B107.8
C7—N2—H2106.6C9'—C10'—H10D109.5
C8—C7—N2112.4 (4)C9'—C10'—H10E109.5
C8—C7—H7A109.1H10D—C10'—H10E109.5
N2—C7—H7A109.1C9'—C10'—H10F109.5
C8—C7—H7B109.1H10D—C10'—H10F109.5
N2—C7—H7B109.1H10E—C10'—H10F109.5
H7A—C7—H7B107.8N2'—C11'—C12'113.2 (14)
C7—C8—H8A109.5N2'—C11'—H11C108.9
C7—C8—H8B109.5C12'—C11'—H11C108.9
H8A—C8—H8B109.5N2'—C11'—H11D108.9
C7—C8—H8C109.5C12'—C11'—H11D108.9
H8A—C8—H8C109.5H11C—C11'—H11D107.7
H8B—C8—H8C109.5C11'—C12'—H12D109.5
N2—C9—C10113.6 (3)C11'—C12'—H12E109.5
N2—C9—H9A108.8H12D—C12'—H12E109.5
C10—C9—H9A108.8C11'—C12'—H12F109.5
N2—C9—H9B108.8H12D—C12'—H12F109.5
C10—C9—H9B108.8H12E—C12'—H12F109.5
H9A—C9—H9B107.7
N1—Sn1—O1—C111.42 (13)O1—C1—C2—N15.5 (2)
Cl1—Sn1—O1—C1171.18 (14)O2—C1—C2—C37.3 (3)
Cl3—Sn1—O1—C11.6 (3)O1—C1—C2—C3171.81 (17)
Cl4—Sn1—O1—C196.37 (14)N1—C2—C3—C42.5 (3)
Cl2—Sn1—O1—C176.84 (14)C1—C2—C3—C4174.58 (18)
O1—Sn1—N1—C6171.97 (17)C2—C3—C4—C51.8 (3)
Cl1—Sn1—N1—C6162.25 (12)C3—C4—C5—C60.2 (3)
Cl3—Sn1—N1—C69.87 (16)C2—N1—C6—C50.2 (3)
Cl4—Sn1—N1—C680.03 (15)Sn1—N1—C6—C5179.52 (14)
Cl2—Sn1—N1—C6100.27 (16)C4—C5—C6—N10.8 (3)
O1—Sn1—N1—C27.73 (12)C11—N2—C7—C8156.5 (7)
Cl1—Sn1—N1—C217.5 (2)C9—N2—C7—C874.7 (4)
Cl3—Sn1—N1—C2170.42 (12)C11—N2—C9—C1052.6 (8)
Cl4—Sn1—N1—C299.68 (12)C7—N2—C9—C10179.0 (4)
Cl2—Sn1—N1—C280.02 (12)C9—N2—C11—C1261.6 (14)
Sn1—O1—C1—O2167.96 (16)C7—N2—C11—C1264.9 (13)
Sn1—O1—C1—C212.9 (2)C9'—N2'—C7'—C8'166.0 (5)
C6—N1—C2—C31.5 (3)C11'—N2'—C7'—C8'65.8 (10)
Sn1—N1—C2—C3178.74 (14)C7'—N2'—C9'—C10'69.7 (6)
C6—N1—C2—C1175.77 (17)C11'—N2'—C9'—C10'160.4 (10)
Sn1—N1—C2—C14.0 (2)C7'—N2'—C11'—C12'66.1 (18)
O2—C1—C2—N1175.38 (18)C9'—N2'—C11'—C12'62.3 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.881.952.828 (4)172
N2—H2···O20.882.022.895 (5)173

Experimental details

Crystal data
Chemical formula(C6H16N)[SnCl4(C6H4NO2)]
Mr484.79
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.6310 (7), 10.4912 (6), 16.4452 (9)
β (°) 109.672 (1)
V3)1889.57 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.92
Crystal size (mm)0.30 × 0.25 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.596, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
17476, 4344, 3896
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.01
No. of reflections4344
No. of parameters242
No. of restraints25
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.881.952.828 (4)172
N2'—H2'···O20.882.022.895 (5)173
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m239.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds