organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-Bis[(1H-imidazol-1-yl)meth­yl]-2,2′-bi­pyridine methanol disolvate

aDepartment of Food & Nutrition, Kyungnam College of Information and Technology, Busan 616-701, Republic of Korea, and bDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr

(Received 25 January 2011; accepted 28 January 2011; online 2 February 2011)

The title compound, C18H16N6·2CH3OH, was prepared by the reaction of 5,5′-bis­(bromo­meth­yl)-2,2′-bipyridine with imidazole. The main mol­ecule lies on an inversion center located at the mid-point of the C—C bond joining the two pyridine rings. The asymmetric unit therefore contains one half-mol­ecule and one methanol solvent mol­ecule. The dihedral angle between the pyridine and imidazole rings is 72.32 (5)°. In the crystal, weak inter­molecular O—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds contribute to the stabilization of the packing.

Related literature

For related syntheses, see: Sambrook et al. (2006[Sambrook, M. R., Curiel, D., Hayes, E. J., Beer, P. D., Pope, S. J. A. & Faulkner, S. (2006). New J. Chem. 30, 1133-1136.]); Zang et al. (2010[Zang, H.-Y., Lan, Y.-Q., Yang, G.-S., Wang, X.-L., Shao, K.-Z., Xu, G.-J. & Su, Z.-M. (2010). CrystEngComm, 12, 434-445.]). For a related structure, see: Zang et al. (2010[Zang, H.-Y., Lan, Y.-Q., Yang, G.-S., Wang, X.-L., Shao, K.-Z., Xu, G.-J. & Su, Z.-M. (2010). CrystEngComm, 12, 434-445.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N6·2CH4O

  • Mr = 380.45

  • Monoclinic, P 21 /c

  • a = 4.5653 (4) Å

  • b = 14.7886 (12) Å

  • c = 14.5378 (11) Å

  • β = 93.805 (2)°

  • V = 979.35 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.35 × 0.30 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.991

  • 5948 measured reflections

  • 2136 independent reflections

  • 1619 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.144

  • S = 1.09

  • 2136 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N3i 0.84 1.93 2.7662 (19) 171
C3—H3⋯O1 0.95 2.44 3.360 (2) 162
C8—H8⋯N1ii 0.95 2.57 3.422 (2) 149
C9—H9⋯O1iii 0.95 2.54 3.470 (2) 168
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was prepared to use as a multi-dentate ligand in the formation of metallosupramolecules in line with similar previously reported compounds (Sambrook et al., 2006; Zang et al., 2010).

In the title compound (Scheme 1, Fig. 1), two pyridine rings are coplanar because the title compound lies on a crystallographic inversion center. The dihedral angle between the pyridine and imidazole rings is 72.32 (5)°. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure, as shown in Fig. 2, weak intermolecular O–H···N, C–H···N and C–H···O hydrogen bonds are observed (Table 1). These intermolecular interactions may be contribute to the stabilization of the packing.

Related literature top

For related syntheses, see: Sambrook et al. (2006); Zang et al. (2010). For a related structure, see: Zang et al. (2010). For reference bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of imidazole (0.120 g, 1.76 mmol) and potassium hydroxide (0.440 g, 7.84 mmol) in DMSO (10 ml) was stirred for 1 h. A DMSO solution (20 ml) of 5,5'-bis(bromomethyl)-2,2'-bipyridine (0.30 g, 0.88 mmol) was slowly added and the solution stirred for 6 h at room temperature. After water (100 ml) was added, the reaction mixture was extracted with chloroform (3×100 ml), washed with water and then dried over anhydrous MgSO4. The solvent was removed to give the title compound in 63% yield. X-ray quality single crystals were obtained by slow evaporation of a solution in MeOH.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic, d(C—H) = 0.84 Å, Uiso = 1.5Ueq(C) for hydroxyl, d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for methyl protons.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. (Symmetry code: i) -x + 2, -y + 1, -z + 1)
[Figure 2] Fig. 2. Crystal packing of the title compound with intermolecular O–H···N, C–H···N and C–H···O hydrogen bonds shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity (Symmetry codes: i) -x + 1, -y + 1, -z; ii) x, -y + 1/2, z - 1/2; iii) -x + 1, y - 1/2, -z + 1/2; iv) x, -y + 1/2, z + 1/2; v) -x + 2, -y + 1, -z + 1).
5,5'-Bis[(1H-imidazol-1-yl)methyl]-2,2'-bipyridine methanol disolvate top
Crystal data top
C18H16N6·2CH4OF(000) = 404
Mr = 380.45Dx = 1.290 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2441 reflections
a = 4.5653 (4) Åθ = 2.8–28.2°
b = 14.7886 (12) ŵ = 0.09 mm1
c = 14.5378 (11) ÅT = 173 K
β = 93.805 (2)°Plate, colorless
V = 979.35 (14) Å30.35 × 0.30 × 0.10 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2136 independent reflections
Radiation source: fine-focus sealed tube1619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 45
Tmin = 0.970, Tmax = 0.991k = 1818
5948 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0772P)2 + 0.1442P]
where P = (Fo2 + 2Fc2)/3
2136 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H16N6·2CH4OV = 979.35 (14) Å3
Mr = 380.45Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.5653 (4) ŵ = 0.09 mm1
b = 14.7886 (12) ÅT = 173 K
c = 14.5378 (11) Å0.35 × 0.30 × 0.10 mm
β = 93.805 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2136 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1619 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.991Rint = 0.053
5948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.09Δρmax = 0.21 e Å3
2136 reflectionsΔρmin = 0.24 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8022 (3)0.40136 (8)0.45831 (9)0.0287 (3)
N20.4002 (3)0.36956 (9)0.17390 (9)0.0281 (3)
N30.5877 (4)0.36182 (11)0.03818 (10)0.0441 (4)
C10.5974 (4)0.37871 (10)0.39254 (11)0.0301 (4)
H10.53290.31760.39010.036*
C20.4722 (3)0.43832 (10)0.32748 (10)0.0254 (4)
C30.5628 (4)0.52770 (11)0.33297 (11)0.0302 (4)
H30.48310.57100.29000.036*
C40.7704 (4)0.55308 (10)0.40161 (11)0.0290 (4)
H40.83280.61430.40700.035*
C50.8868 (3)0.48825 (9)0.46263 (10)0.0230 (3)
C60.2535 (4)0.40622 (11)0.25242 (11)0.0309 (4)
H6B0.12730.35890.27740.037*
H6A0.12600.45730.23130.037*
C70.4342 (4)0.41095 (12)0.09281 (12)0.0370 (4)
H70.35630.46890.07700.044*
C80.6558 (4)0.28448 (12)0.08778 (13)0.0408 (5)
H80.76650.23530.06630.049*
C90.5437 (4)0.28818 (11)0.17102 (12)0.0357 (4)
H90.56040.24360.21810.043*
O10.2950 (3)0.64181 (9)0.14603 (8)0.0371 (3)
H1A0.34470.63600.09170.056*
C100.0113 (4)0.65194 (15)0.14519 (15)0.0484 (5)
H10B0.06870.66040.20840.073*
H10A0.10690.59770.11860.073*
H10C0.07170.70480.10800.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0345 (8)0.0239 (7)0.0274 (7)0.0042 (5)0.0002 (6)0.0016 (5)
N20.0318 (8)0.0278 (7)0.0244 (7)0.0002 (5)0.0000 (6)0.0046 (5)
N30.0533 (10)0.0507 (9)0.0289 (8)0.0131 (8)0.0063 (7)0.0033 (7)
C10.0367 (9)0.0246 (8)0.0290 (8)0.0063 (6)0.0016 (7)0.0023 (6)
C20.0250 (8)0.0304 (8)0.0215 (7)0.0000 (6)0.0065 (6)0.0043 (6)
C30.0337 (9)0.0288 (8)0.0279 (8)0.0038 (7)0.0008 (7)0.0034 (6)
C40.0351 (9)0.0219 (8)0.0296 (8)0.0011 (6)0.0009 (7)0.0008 (6)
C50.0256 (8)0.0240 (7)0.0201 (7)0.0001 (6)0.0065 (6)0.0015 (5)
C60.0267 (9)0.0379 (9)0.0283 (9)0.0004 (6)0.0034 (7)0.0065 (7)
C70.0471 (11)0.0361 (9)0.0280 (9)0.0088 (8)0.0030 (8)0.0007 (7)
C80.0483 (11)0.0390 (10)0.0345 (10)0.0132 (8)0.0015 (8)0.0112 (8)
C90.0456 (11)0.0273 (8)0.0337 (9)0.0037 (7)0.0014 (8)0.0043 (7)
O10.0342 (7)0.0493 (7)0.0277 (6)0.0074 (5)0.0024 (5)0.0017 (5)
C100.0350 (10)0.0590 (13)0.0515 (12)0.0067 (9)0.0053 (9)0.0012 (9)
Geometric parameters (Å, º) top
N1—C11.335 (2)C4—H40.9500
N1—C51.3420 (19)C5—C5i1.490 (3)
N2—C71.346 (2)C6—H6B0.9900
N2—C91.372 (2)C6—H6A0.9900
N2—C61.4653 (19)C7—H70.9500
N3—C71.313 (2)C8—C91.346 (3)
N3—C81.377 (2)C8—H80.9500
C1—C21.388 (2)C9—H90.9500
C1—H10.9500O1—C101.406 (2)
C2—C31.386 (2)O1—H1A0.8400
C2—C61.506 (2)C10—H10B0.9800
C3—C41.382 (2)C10—H10A0.9800
C3—H30.9500C10—H10C0.9800
C4—C51.388 (2)
C1—N1—C5117.36 (14)N2—C6—H6B109.3
C7—N2—C9106.80 (14)C2—C6—H6B109.3
C7—N2—C6126.80 (14)N2—C6—H6A109.3
C9—N2—C6126.30 (14)C2—C6—H6A109.3
C7—N3—C8104.71 (15)H6B—C6—H6A108.0
N1—C1—C2124.46 (14)N3—C7—N2112.04 (16)
N1—C1—H1117.8N3—C7—H7124.0
C2—C1—H1117.8N2—C7—H7124.0
C3—C2—C1117.31 (15)C9—C8—N3110.55 (15)
C3—C2—C6121.56 (15)C9—C8—H8124.7
C1—C2—C6121.11 (14)N3—C8—H8124.7
C4—C3—C2119.24 (15)C8—C9—N2105.89 (15)
C4—C3—H3120.4C8—C9—H9127.1
C2—C3—H3120.4N2—C9—H9127.1
C3—C4—C5119.28 (14)C10—O1—H1A109.5
C3—C4—H4120.4O1—C10—H10B109.5
C5—C4—H4120.4O1—C10—H10A109.5
N1—C5—C4122.32 (14)H10B—C10—H10A109.5
N1—C5—C5i116.18 (16)O1—C10—H10C109.5
C4—C5—C5i121.50 (16)H10B—C10—H10C109.5
N2—C6—C2111.44 (13)H10A—C10—H10C109.5
C5—N1—C1—C21.6 (2)C9—N2—C6—C273.5 (2)
N1—C1—C2—C31.5 (2)C3—C2—C6—N294.07 (17)
N1—C1—C2—C6176.79 (15)C1—C2—C6—N284.11 (18)
C1—C2—C3—C40.1 (2)C8—N3—C7—N20.1 (2)
C6—C2—C3—C4178.13 (14)C9—N2—C7—N30.3 (2)
C2—C3—C4—C51.0 (2)C6—N2—C7—N3177.02 (15)
C1—N1—C5—C40.3 (2)C7—N3—C8—C90.1 (2)
C1—N1—C5—C5i179.33 (15)N3—C8—C9—N20.3 (2)
C3—C4—C5—N10.9 (2)C7—N2—C9—C80.3 (2)
C3—C4—C5—C5i179.44 (16)C6—N2—C9—C8177.10 (16)
C7—N2—C6—C2102.61 (19)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3ii0.841.932.7662 (19)171
C3—H3···O10.952.443.360 (2)162
C8—H8···N1iii0.952.573.422 (2)149
C9—H9···O1iv0.952.543.470 (2)168
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H16N6·2CH4O
Mr380.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)4.5653 (4), 14.7886 (12), 14.5378 (11)
β (°) 93.805 (2)
V3)979.35 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.30 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5948, 2136, 1619
Rint0.053
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.144, 1.09
No. of reflections2136
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3i0.841.932.7662 (19)171
C3—H3···O10.952.443.360 (2)162
C8—H8···N1ii0.952.573.422 (2)149
C9—H9···O1iii0.952.543.470 (2)168
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

This research was supported by the National Nuclear R&D Program through the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (2010–0018586)

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSambrook, M. R., Curiel, D., Hayes, E. J., Beer, P. D., Pope, S. J. A. & Faulkner, S. (2006). New J. Chem. 30, 1133–1136.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZang, H.-Y., Lan, Y.-Q., Yang, G.-S., Wang, X.-L., Shao, K.-Z., Xu, G.-J. & Su, Z.-M. (2010). CrystEngComm, 12, 434–445.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds