organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­bromo-3-(5-nitro-2-fur­yl)-1-phenyl­propan-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 25 January 2011; accepted 27 January 2011; online 2 February 2011)

In the title compound, C13H9Br2NO4, the phenyl and 2-nitro­furan rings are linked by a 2,3-dibromo­propanal group, six atoms of which, including a furyl C atom, are disordered over two positions with a site-occupancy ratio of 0.733 (11):0.267 (11). The dihedral angle between the furan [maximum deviation = 0.028 (4) Å] and phenyl rings in the major component is 16.9 (3)°. In the minor component, the corresponding values are 0.87 (4) Å and 23.3 (5)°. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into two-dimensional arrays parallel to the ab plane.

Related literature

For the biological activity of sydnones, see: Holla et al. (1986[Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1986). Curr. Sci. 55, 73-76.], 1987[Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1987). Curr. Sci. 56, 236-238.], 1992[Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1992). Rev. Roum. Chim. 37, 1159-1164.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Shahani, T., Nithinchandra & Kalluraya, B. (2010). Acta Cryst. E66, o2818-o2819.], 2011[Fun, H.-K., Shahani, T., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o79.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Br2NO4

  • Mr = 403.03

  • Triclinic, [P \overline 1]

  • a = 8.6939 (7) Å

  • b = 8.7834 (8) Å

  • c = 10.4722 (9) Å

  • α = 89.334 (2)°

  • β = 69.846 (2)°

  • γ = 68.114 (2)°

  • V = 690.32 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.88 mm−1

  • T = 100 K

  • 0.28 × 0.18 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.292, Tmax = 0.644

  • 10644 measured reflections

  • 4015 independent reflections

  • 3390 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.100

  • S = 1.33

  • 4015 reflections

  • 216 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9A—H9AA⋯O1i 0.98 2.25 3.098 (6) 145
C4—H4A⋯O4ii 0.93 2.46 3.200 (6) 136
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitrofurans belong to a class of synthetic compounds characterized by the presence of the 5-nitro-2-furyl group. The presence of a nitro group at the 5-position of the molecule conferred antibacterial activity (Holla et al.1986). A large number of nitrofurans have attained commercial utility as antibacterial agents in humans and in veterinary medicine because of their broad spectrum of activity (Holla & Kalluraya et al.1992; Holla et al. 1987). Dibromopropanones were obtained by the bromination of 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones. Acid-catalysed condensation of acetophenones with nitrofural diacetate in acetic acid yielded the required 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones known as chalcones (Rai et al., 2008).

The title compound, C13H9Br2NO4, (Fig. 1), consist of phenyl (C1–C6) and 2-nitrofuran (C10–C13/O2–O4/N1) rings linked by a 2,3-dibromopropanal group (O1/C7–C9/Br1/Br2). Six atoms (C8–C10/Br1/Br2/O2) of this linking group including a furyl C atom are disordered over two positions with a site-occupancy ratio of 0.733 (11): 0.267 (11). The dihedral angle between the furan (C11–C13/O2/C10) (maximum deviation of 0.028 (4) Å of at atom C12) and phenyl rings in the major component is 16.9 (3)°. In the minor component, the corresponding values are 0.87 (4) Å at atom C12 and 23.3 (5)°. Bond lengths (Allen et al., 1987) and angles are normal and comparable to those in related structures (Fun et al., 2010, 2011).

In the crystal packing (Fig. 2), intermolecular C9A—H9AA···O1 and C4—H4A···O4 hydrogen bonds (Table 1) link the molecules into two-dimensional arrays parallel to the ab plane.

Related literature top

For the biological activity of sydnones, see: Holla et al. (1986, 1987, 1992); Rai et al. (2008). For related structures, see: Fun et al. (2010, 2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Experimental top

1-Phenyl-3-(5-nitro-2-furyl)-2-propen-1-one (0.01 mol) was dissolved in glacial acetic acid (25 ml) by gentle warming. A solution of bromine in glacial acetic acid (30% w/v) was added to it with constant stirring till the yellow color of the bromine persisted. The reaction mixture was kept aside at room temperature for overnight. Crystals of dibromopropanone that separated out were collected by filtration and washed with petroleum ether and dried. They were then recrystallized from glacial acetic acid. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement top

All the H atoms were positioned geometrically [C–H = 0.9300 or 0.9800 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq (C). Six atoms are disordered over two positions with a refined occupany ratio of 0.733 (11):0.267 (11).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Both major and minor components are shown with bonds to atoms of the minor component drawn as open lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Only the major disordered component is shown.
2,3-Dibromo-3-(5-nitro-2-furyl)-1-phenylpropan-1-one top
Crystal data top
C13H9Br2NO4Z = 2
Mr = 403.03F(000) = 392
Triclinic, P1Dx = 1.939 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6939 (7) ÅCell parameters from 4381 reflections
b = 8.7834 (8) Åθ = 2.7–29.9°
c = 10.4722 (9) ŵ = 5.88 mm1
α = 89.334 (2)°T = 100 K
β = 69.846 (2)°Block, colourless
γ = 68.114 (2)°0.28 × 0.18 × 0.08 mm
V = 690.32 (10) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4015 independent reflections
Radiation source: fine-focus sealed tube3390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.292, Tmax = 0.644k = 1212
10644 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.33 w = 1/[σ2(Fo2) + (0.P)2 + 1.8339P]
where P = (Fo2 + 2Fc2)/3
4015 reflections(Δ/σ)max = 0.004
216 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C13H9Br2NO4γ = 68.114 (2)°
Mr = 403.03V = 690.32 (10) Å3
Triclinic, P1Z = 2
a = 8.6939 (7) ÅMo Kα radiation
b = 8.7834 (8) ŵ = 5.88 mm1
c = 10.4722 (9) ÅT = 100 K
α = 89.334 (2)°0.28 × 0.18 × 0.08 mm
β = 69.846 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4015 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3390 reflections with I > 2σ(I)
Tmin = 0.292, Tmax = 0.644Rint = 0.030
10644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.33Δρmax = 0.71 e Å3
4015 reflectionsΔρmin = 0.60 e Å3
216 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br1A0.5867 (5)0.0270 (6)0.3027 (5)0.0390 (6)0.733 (11)
Br2A0.3391 (5)0.3650 (6)0.0580 (4)0.0351 (7)0.733 (11)
Br1B0.3448 (12)0.3749 (13)0.0447 (8)0.0197 (10)0.267 (11)
Br2B0.5581 (11)0.0069 (17)0.3178 (13)0.0296 (14)0.267 (11)
O10.2667 (4)0.0406 (4)0.1625 (3)0.0338 (7)
O2A0.6226 (6)0.3610 (7)0.2085 (5)0.0189 (9)0.733 (11)
O2B0.6469 (19)0.3223 (18)0.2302 (15)0.018 (3)*0.267 (11)
O30.6434 (4)0.5677 (4)0.3755 (3)0.0325 (6)
O40.8888 (4)0.5635 (4)0.2207 (3)0.0415 (8)
N10.7672 (4)0.5148 (4)0.2642 (3)0.0249 (6)
C10.0571 (5)0.1488 (5)0.3829 (4)0.0212 (7)
H1A0.04790.09240.30430.025*
C20.2122 (5)0.1970 (5)0.4979 (4)0.0253 (7)
H2A0.30840.17550.49600.030*
C30.2236 (5)0.2777 (5)0.6167 (4)0.0294 (8)
H3A0.32740.30950.69430.035*
C40.0827 (5)0.3104 (6)0.6197 (4)0.0323 (9)
H4A0.09070.36250.70000.039*
C50.0721 (5)0.2667 (5)0.5041 (4)0.0292 (8)
H5A0.16620.29180.50620.035*
C60.0856 (5)0.1849 (5)0.3846 (4)0.0228 (7)
C70.2483 (5)0.1296 (5)0.2579 (4)0.0247 (7)
C8A0.4061 (7)0.1730 (7)0.2557 (5)0.0216 (12)0.733 (11)
H8AA0.36450.27230.32040.026*0.733 (11)
C9A0.5127 (6)0.1929 (6)0.1129 (5)0.0193 (12)0.733 (11)
H9AA0.56010.08950.05150.023*0.733 (11)
C10A0.6591 (8)0.2419 (8)0.1058 (6)0.0203 (11)0.733 (11)
C8B0.3734 (19)0.229 (2)0.2179 (16)0.021 (3)*0.267 (11)
H8BA0.35110.30220.29810.025*0.267 (11)
C9B0.5672 (17)0.1115 (16)0.1590 (13)0.018 (3)*0.267 (11)
H9BA0.59210.03910.07760.022*0.267 (11)
C10B0.688 (2)0.200 (2)0.1295 (18)0.019 (4)*0.267 (11)
C110.8299 (5)0.1960 (5)0.0144 (4)0.0253 (8)
H11A0.88830.11330.06050.030*
C120.9001 (5)0.2992 (5)0.0562 (4)0.0240 (7)
H12A1.01040.30420.01090.029*
C130.7741 (5)0.3889 (5)0.1753 (4)0.0214 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0594 (17)0.0360 (9)0.0387 (12)0.0285 (13)0.0276 (13)0.0186 (8)
Br2A0.0317 (11)0.0294 (7)0.0539 (16)0.0122 (6)0.0269 (10)0.0123 (8)
Br1B0.0144 (15)0.026 (2)0.0159 (13)0.0064 (14)0.0040 (10)0.0003 (13)
Br2B0.0210 (13)0.049 (4)0.0275 (18)0.0201 (15)0.0118 (11)0.017 (2)
O10.0328 (15)0.0468 (19)0.0237 (14)0.0266 (14)0.0000 (12)0.0101 (12)
O2A0.0164 (18)0.022 (2)0.018 (2)0.0095 (17)0.0035 (16)0.0004 (17)
O30.0296 (14)0.0340 (16)0.0319 (15)0.0137 (13)0.0073 (12)0.0056 (12)
O40.0337 (16)0.053 (2)0.0443 (18)0.0308 (16)0.0064 (14)0.0062 (15)
N10.0224 (14)0.0256 (16)0.0300 (17)0.0107 (13)0.0117 (13)0.0014 (13)
C10.0196 (15)0.0248 (18)0.0199 (16)0.0109 (14)0.0055 (13)0.0004 (13)
C20.0197 (16)0.029 (2)0.0276 (19)0.0124 (15)0.0056 (14)0.0034 (15)
C30.0229 (18)0.034 (2)0.029 (2)0.0116 (16)0.0062 (15)0.0009 (16)
C40.0281 (19)0.042 (2)0.0228 (19)0.0168 (18)0.0010 (15)0.0096 (16)
C50.0233 (17)0.039 (2)0.0235 (18)0.0166 (17)0.0010 (14)0.0095 (16)
C60.0211 (16)0.0255 (18)0.0207 (17)0.0118 (14)0.0033 (13)0.0018 (13)
C70.0212 (16)0.0291 (19)0.0222 (17)0.0146 (15)0.0008 (14)0.0042 (14)
C8A0.020 (2)0.024 (3)0.022 (2)0.012 (2)0.0047 (19)0.001 (2)
C9A0.018 (2)0.021 (3)0.018 (2)0.0080 (18)0.0042 (17)0.0023 (17)
C10A0.022 (3)0.019 (3)0.021 (3)0.008 (2)0.008 (2)0.002 (2)
C110.0210 (17)0.029 (2)0.0205 (17)0.0097 (15)0.0014 (14)0.0038 (14)
C120.0154 (15)0.029 (2)0.0251 (18)0.0089 (14)0.0039 (13)0.0019 (14)
C130.0183 (15)0.0254 (18)0.0239 (17)0.0126 (14)0.0074 (13)0.0026 (13)
Geometric parameters (Å, º) top
Br1A—C8A2.061 (7)C4—H4A0.9300
Br2A—C9A1.942 (7)C5—C61.398 (5)
Br1B—C8B2.24 (2)C5—H5A0.9300
Br2B—C9B1.944 (18)C6—C71.485 (5)
O1—C71.205 (5)C7—C8A1.547 (6)
O2A—C131.356 (5)C7—C8B1.586 (15)
O2A—C10A1.376 (7)C8A—C9A1.512 (7)
O2B—C10B1.37 (2)C8A—H8AA0.9800
O2B—C131.390 (15)C9A—C10A1.468 (7)
O3—N11.228 (4)C9A—H9AA0.9800
O4—N11.229 (4)C10A—C111.366 (6)
N1—C131.424 (5)C8B—C9B1.513 (19)
C1—C21.384 (5)C8B—H8BA0.9800
C1—C61.396 (5)C9B—C10B1.48 (2)
C1—H1A0.9300C9B—H9BA0.9800
C2—C31.394 (6)C10B—C111.382 (17)
C2—H2A0.9300C11—C121.411 (5)
C3—C41.369 (6)C11—H11A0.9300
C3—H3A0.9300C12—C131.347 (5)
C4—C51.388 (5)C12—H12A0.9300
C13—O2A—C10A104.7 (4)C8A—C9A—Br2A104.1 (3)
C10B—O2B—C13103.9 (12)C10A—C9A—H9AA109.5
O3—N1—O4124.8 (3)C8A—C9A—H9AA109.5
O3—N1—C13119.5 (3)Br2A—C9A—H9AA109.5
O4—N1—C13115.7 (3)C11—C10A—O2A110.5 (4)
C2—C1—C6120.1 (3)C11—C10A—C9A133.2 (5)
C2—C1—H1A119.9O2A—C10A—C9A116.3 (4)
C6—C1—H1A119.9C9B—C8B—C7110.4 (11)
C1—C2—C3119.8 (3)C9B—C8B—Br1B102.2 (9)
C1—C2—H2A120.1C7—C8B—Br1B112.9 (9)
C3—C2—H2A120.1C9B—C8B—H8BA110.4
C4—C3—C2120.3 (4)C7—C8B—H8BA110.4
C4—C3—H3A119.8Br1B—C8B—H8BA110.4
C2—C3—H3A119.8C10B—C9B—C8B111.8 (12)
C3—C4—C5120.7 (4)C10B—C9B—Br2B114.8 (11)
C3—C4—H4A119.7C8B—C9B—Br2B95.2 (9)
C5—C4—H4A119.7C10B—C9B—H9BA111.3
C4—C5—C6119.6 (4)C8B—C9B—H9BA111.3
C4—C5—H5A120.2Br2B—C9B—H9BA111.3
C6—C5—H5A120.2O2B—C10B—C11111.1 (14)
C1—C6—C5119.6 (3)O2B—C10B—C9B115.5 (14)
C1—C6—C7117.5 (3)C11—C10B—C9B133.2 (15)
C5—C6—C7123.0 (3)C10A—C11—C10B20.1 (6)
O1—C7—C6122.0 (3)C10A—C11—C12106.3 (4)
O1—C7—C8A119.2 (3)C10B—C11—C12105.3 (8)
C6—C7—C8A118.5 (3)C10A—C11—H11A126.8
O1—C7—C8B113.5 (6)C10B—C11—H11A124.3
C6—C7—C8B121.2 (6)C12—C11—H11A126.8
C8A—C7—C8B24.7 (5)C13—C12—C11105.7 (3)
C9A—C8A—C7111.9 (4)C13—C12—H12A127.1
C9A—C8A—Br1A103.2 (3)C11—C12—H12A127.1
C7—C8A—Br1A108.7 (4)C12—C13—O2A112.5 (4)
C9A—C8A—H8AA110.9C12—C13—O2B111.5 (7)
C7—C8A—H8AA110.9O2A—C13—O2B18.2 (5)
Br1A—C8A—H8AA110.9C12—C13—N1131.7 (3)
C10A—C9A—C8A114.2 (4)O2A—C13—N1115.6 (3)
C10A—C9A—Br2A109.9 (4)O2B—C13—N1115.6 (7)
C6—C1—C2—C31.7 (6)C7—C8B—C9B—C10B176.0 (12)
C1—C2—C3—C40.4 (6)Br1B—C8B—C9B—C10B63.7 (13)
C2—C3—C4—C51.2 (7)C7—C8B—C9B—Br2B56.6 (11)
C3—C4—C5—C61.6 (7)Br1B—C8B—C9B—Br2B176.9 (7)
C2—C1—C6—C51.3 (6)C13—O2B—C10B—C112.7 (15)
C2—C1—C6—C7179.9 (4)C13—O2B—C10B—C9B177.7 (12)
C4—C5—C6—C10.3 (6)C8B—C9B—C10B—O2B45.3 (18)
C4—C5—C6—C7178.2 (4)Br2B—C9B—C10B—O2B61.8 (16)
C1—C6—C7—O18.5 (6)C8B—C9B—C10B—C11128.2 (19)
C5—C6—C7—O1170.0 (4)Br2B—C9B—C10B—C11124.7 (17)
C1—C6—C7—C8A178.1 (4)O2A—C10A—C11—C10B86 (3)
C5—C6—C7—C8A3.4 (6)C9A—C10A—C11—C10B96 (3)
C1—C6—C7—C8B149.7 (8)O2A—C10A—C11—C124.1 (7)
C5—C6—C7—C8B31.8 (9)C9A—C10A—C11—C12174.2 (7)
O1—C7—C8A—C9A36.3 (6)O2B—C10B—C11—C10A84 (3)
C6—C7—C8A—C9A150.1 (4)C9B—C10B—C11—C10A89 (3)
C8B—C7—C8A—C9A46.6 (14)O2B—C10B—C11—C1211.5 (14)
O1—C7—C8A—Br1A77.1 (5)C9B—C10B—C11—C12174.8 (16)
C6—C7—C8A—Br1A96.5 (4)C10A—C11—C12—C135.3 (5)
C8B—C7—C8A—Br1A159.9 (15)C10B—C11—C12—C1315.6 (9)
C7—C8A—C9A—C10A177.2 (5)C11—C12—C13—O2A4.7 (5)
Br1A—C8A—C9A—C10A66.1 (5)C11—C12—C13—O2B14.9 (7)
C7—C8A—C9A—Br2A57.4 (5)C11—C12—C13—N1178.8 (4)
Br1A—C8A—C9A—Br2A174.0 (3)C10A—O2A—C13—C122.2 (6)
C13—O2A—C10A—C111.3 (7)C10A—O2A—C13—O2B88 (3)
C13—O2A—C10A—C9A177.3 (5)C10A—O2A—C13—N1177.3 (4)
C8A—C9A—C10A—C11139.8 (8)C10B—O2B—C13—C127.8 (12)
Br2A—C9A—C10A—C11103.6 (8)C10B—O2B—C13—O2A89 (3)
C8A—C9A—C10A—O2A41.9 (7)C10B—O2B—C13—N1176.6 (9)
Br2A—C9A—C10A—O2A74.7 (6)O3—N1—C13—C12172.8 (4)
O1—C7—C8B—C9B59.4 (13)O4—N1—C13—C127.9 (6)
C6—C7—C8B—C9B140.8 (9)O3—N1—C13—O2A13.3 (6)
C8A—C7—C8B—C9B49.9 (13)O4—N1—C13—O2A166.0 (4)
O1—C7—C8B—Br1B54.3 (9)O3—N1—C13—O2B6.9 (8)
C6—C7—C8B—Br1B105.5 (7)O4—N1—C13—O2B173.8 (7)
C8A—C7—C8B—Br1B163.6 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9A—H9AA···O1i0.982.253.098 (6)145
C4—H4A···O4ii0.932.463.200 (6)136
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H9Br2NO4
Mr403.03
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.6939 (7), 8.7834 (8), 10.4722 (9)
α, β, γ (°)89.334 (2), 69.846 (2), 68.114 (2)
V3)690.32 (10)
Z2
Radiation typeMo Kα
µ (mm1)5.88
Crystal size (mm)0.28 × 0.18 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.292, 0.644
No. of measured, independent and
observed [I > 2σ(I)] reflections
10644, 4015, 3390
Rint0.030
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.100, 1.33
No. of reflections4015
No. of parameters216
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.60

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9A—H9AA···O1i0.982.253.098 (6)145
C4—H4A···O4ii0.932.463.200 (6)136
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Shahani, T., Nithinchandra & Kalluraya, B. (2010). Acta Cryst. E66, o2818–o2819.  Google Scholar
First citationFun, H.-K., Shahani, T., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o79.  Google Scholar
First citationHolla, B. S., Kalluraya, B. & Shridhar, K. R. (1986). Curr. Sci. 55, 73–76.  CAS Google Scholar
First citationHolla, B. S., Kalluraya, B. & Shridhar, K. R. (1987). Curr. Sci. 56, 236–238.  CAS Google Scholar
First citationHolla, B. S., Kalluraya, B. & Shridhar, K. R. (1992). Rev. Roum. Chim. 37, 1159–1164.  CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds