organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl-2,3-di­hydro­phenanthro[9,10-b][1,4]dioxine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 28 January 2011; accepted 31 January 2011; online 5 February 2011)

In the title compound, C22H16O2, the phenanthrene ring system is essentially planar [maximum deviation = 0.058 (1) Å] and is inclined at an angle of 58.39 (6)° to the phenyl ring. The 1,4-dioxane ring is in a chair conformation. In the crystal, mol­ecules are stacked along the b axis, but no significant hydrogen bonds are observed.

Related literature

For general background to and details of the biological activity of phenanthrene derivatives, see: Wang et al. (2010[Wang, K., Hu, Y., Liu, Y., Mi, N., Fan, Z., Liu, Y. & Wang, Q. (2010). J. Agric. Food Chem. 58, 12337-12342.]); Li & Wang (2009[Li, S. & Wang, Z. (2009). Molecules, 14, 5042-5053.]); Gao & Wong (2010[Gao, Y. & Wong, M. H. (2010). Environ. Pollut. 158 2596-2603.]); Zhan & Jiang (2010[Zhan, X. & Jiang, T. (2010). J. Environ. Sci. 22, 607-614.]); Becker & Dettbarn (2009[Becker, K. & Dettbarn, G. (2009). Epidemiology, 20, S37.]); Jones & Mathews (1997[Jones, G. B. & Mathews, J. E. (1997). Tetrahedron, 53, 14599-14614]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16O2

  • Mr = 312.35

  • Monoclinic, P 21 /c

  • a = 12.1831 (3) Å

  • b = 5.4674 (1) Å

  • c = 24.6064 (7) Å

  • β = 106.005 (2)°

  • V = 1575.50 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.49 × 0.41 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.989

  • 17018 measured reflections

  • 4613 independent reflections

  • 2927 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.145

  • S = 1.04

  • 4613 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenanthrene is a major structural component of many natural products that play important roles in pharmaceutical and biological fields. For example, phenanthrene-based tylophorine derivatives could serve as potential antiviral agents against the tobacco mosaic virus in vitro (Wang et al., 2010). In addition, phenanthrene-based alkaloids are found to possess antitumor activities (Li & Wang, 2009) and other important bioactivities. Gao & Wong reported that phenanthrene has important effect on rice cultivation by degrading the bacterium affecting the rice plants (Gao & Wong, 2010). In a phenanthrene-contaminated soil, the activity of urease and catalase may be decreased while polyphenol oxidase was stimulated (Zhan & Jiang, 2010). The importance of 9,10-disubstituted phenanthrene in biochemistry also has been reported. Phenanthrene 9,10-dihydrodiol could be used as a biomarker for ETS-exposure of children and the derivatives of pyrrolo(9, 10b)-phenanthrene were good templates for DNA intercalating drug delivery system (Becker & Dettbarn, 2009; Jones & Mathews, 1997). Due to the importance of the 9, 10-disubstituted phenanthrene derivatives, herewith, we report the crystal structure of the title compound.

The title compound (Fig. 1) is made up of a phenanthrene (C9-C22) ring system, a phenyl (C1-C6) ring and a 1,4-dioxane (O1/O2/C7-C9/C22) ring. The phenanthrene ring system is essentially planar, with a maximum deviation of 0.058 (1) Å at atom C21, and is inclined at an angle of 58.39 (6) ° with the phenyl ring. The 1,4-dioxane ring is in chair conformation, puckering parameters (Cremer & Pople, 1975) Q = 0.4811 (14) Å; Θ = 51.41 (16)° and ϕ = 79.22 (18)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal (Fig.2), molecules are stacked along the b-axis but no significant hydrogen bonds are observed.

Related literature top

For general background to and details of the biological activity of phenanthrene derivatives, see: Wang et al. (2010); Li & Wang (2009); Gao & Wong (2010); Zhan & Jiang (2010); Becker & Dettbarn (2009); Jones & Mathews (1997). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound is a product of the photoreaction between phenanthrenequinone and styrene. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:10) as eluents. Good quality crystals of the title compound were obtained from slow evaporation of an acetone and petroleum ether solution (1:10).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 -0.98 Å and Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak is located at 0.74 Å from H1A and the deepest hole is located at 1.33 Å from C14.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis.
2-Phenyl-2,3-dihydrophenanthro[9,10-b][1,4]dioxine top
Crystal data top
C22H16O2F(000) = 656
Mr = 312.35Dx = 1.317 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4055 reflections
a = 12.1831 (3) Åθ = 2.8–28.1°
b = 5.4674 (1) ŵ = 0.08 mm1
c = 24.6064 (7) ÅT = 296 K
β = 106.005 (2)°Plate, colourless
V = 1575.50 (7) Å30.49 × 0.41 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4613 independent reflections
Radiation source: fine-focus sealed tube2927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.960, Tmax = 0.989k = 77
17018 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.1135P]
where P = (Fo2 + 2Fc2)/3
4613 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C22H16O2V = 1575.50 (7) Å3
Mr = 312.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1831 (3) ŵ = 0.08 mm1
b = 5.4674 (1) ÅT = 296 K
c = 24.6064 (7) Å0.49 × 0.41 × 0.13 mm
β = 106.005 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4613 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2927 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.989Rint = 0.030
17018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.04Δρmax = 0.13 e Å3
4613 reflectionsΔρmin = 0.18 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69332 (7)0.38054 (17)0.93970 (4)0.0546 (2)
O20.88773 (8)0.39205 (19)0.89709 (4)0.0634 (3)
C10.70209 (14)0.0387 (3)1.00451 (6)0.0650 (4)
H1A0.64550.02750.97040.078*
C20.69661 (18)0.2210 (3)1.04270 (7)0.0778 (5)
H2A0.63660.33251.03400.093*
C30.77931 (18)0.2381 (3)1.09335 (7)0.0790 (5)
H3A0.77550.36121.11890.095*
C40.86718 (15)0.0739 (3)1.10617 (7)0.0779 (5)
H4A0.92320.08541.14050.093*
C50.87316 (13)0.1090 (3)1.06854 (6)0.0643 (4)
H5A0.93270.22151.07780.077*
C60.79093 (11)0.1262 (2)1.01686 (5)0.0502 (3)
C70.80427 (11)0.3130 (2)0.97448 (5)0.0504 (3)
H7A0.84270.45790.99440.060*
C80.87275 (12)0.2128 (3)0.93669 (6)0.0590 (3)
H8A0.94700.15980.95980.071*
H8B0.83380.07160.91640.071*
C90.79160 (10)0.5302 (2)0.87464 (5)0.0501 (3)
C100.79662 (11)0.6914 (2)0.82942 (5)0.0505 (3)
C110.89116 (12)0.6902 (3)0.80716 (6)0.0619 (4)
H11A0.95010.57900.82080.074*
C120.89711 (14)0.8519 (3)0.76553 (6)0.0706 (4)
H12A0.95960.84910.75070.085*
C130.81042 (15)1.0190 (3)0.74551 (6)0.0706 (4)
H13A0.81581.13110.71790.085*
C140.71683 (14)1.0214 (3)0.76584 (6)0.0639 (4)
H14A0.65901.13440.75160.077*
C150.70603 (11)0.8569 (2)0.80781 (5)0.0511 (3)
C160.60599 (11)0.8495 (2)0.82931 (5)0.0500 (3)
C170.51242 (13)1.0099 (3)0.81093 (6)0.0629 (4)
H17A0.51391.12830.78400.075*
C180.41948 (13)0.9955 (3)0.83177 (6)0.0669 (4)
H18A0.35931.10470.81920.080*
C190.41436 (12)0.8191 (3)0.87158 (6)0.0626 (4)
H19A0.35030.80820.88500.075*
C200.50375 (11)0.6612 (3)0.89093 (6)0.0545 (3)
H20A0.50000.54290.91750.065*
C210.60128 (10)0.6763 (2)0.87100 (5)0.0473 (3)
C220.69876 (10)0.5239 (2)0.89464 (5)0.0479 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0505 (5)0.0640 (5)0.0521 (5)0.0110 (4)0.0191 (4)0.0106 (4)
O20.0592 (6)0.0747 (6)0.0649 (6)0.0212 (5)0.0314 (5)0.0178 (5)
C10.0845 (10)0.0617 (8)0.0518 (7)0.0079 (7)0.0238 (7)0.0085 (7)
C20.1138 (13)0.0596 (8)0.0736 (10)0.0131 (9)0.0484 (10)0.0079 (8)
C30.1175 (15)0.0642 (9)0.0705 (10)0.0252 (10)0.0512 (10)0.0158 (8)
C40.0789 (11)0.0925 (12)0.0645 (9)0.0307 (10)0.0234 (8)0.0236 (9)
C50.0577 (8)0.0761 (9)0.0595 (8)0.0153 (7)0.0166 (6)0.0094 (7)
C60.0571 (7)0.0507 (7)0.0471 (6)0.0110 (6)0.0216 (6)0.0017 (5)
C70.0521 (7)0.0520 (7)0.0476 (7)0.0079 (5)0.0147 (5)0.0002 (5)
C80.0630 (8)0.0620 (8)0.0576 (8)0.0183 (6)0.0258 (6)0.0086 (7)
C90.0507 (7)0.0542 (7)0.0468 (6)0.0081 (5)0.0160 (5)0.0011 (6)
C100.0575 (7)0.0538 (7)0.0424 (6)0.0003 (6)0.0173 (5)0.0052 (5)
C110.0644 (9)0.0720 (9)0.0546 (8)0.0038 (7)0.0255 (6)0.0002 (7)
C120.0743 (10)0.0852 (11)0.0600 (8)0.0074 (8)0.0315 (7)0.0007 (8)
C130.0871 (11)0.0733 (9)0.0535 (8)0.0100 (9)0.0229 (8)0.0090 (7)
C140.0744 (9)0.0633 (8)0.0523 (7)0.0020 (7)0.0147 (7)0.0060 (7)
C150.0603 (8)0.0519 (7)0.0394 (6)0.0017 (6)0.0108 (5)0.0051 (5)
C160.0543 (7)0.0515 (7)0.0410 (6)0.0038 (5)0.0078 (5)0.0060 (5)
C170.0700 (9)0.0598 (8)0.0545 (8)0.0120 (7)0.0098 (7)0.0025 (7)
C180.0609 (9)0.0694 (9)0.0664 (9)0.0197 (7)0.0106 (7)0.0024 (8)
C190.0508 (8)0.0738 (9)0.0620 (8)0.0089 (7)0.0136 (6)0.0084 (7)
C200.0506 (7)0.0608 (8)0.0518 (7)0.0042 (6)0.0139 (6)0.0028 (6)
C210.0477 (7)0.0501 (6)0.0425 (6)0.0027 (5)0.0095 (5)0.0068 (5)
C220.0522 (7)0.0505 (6)0.0419 (6)0.0048 (5)0.0147 (5)0.0002 (5)
Geometric parameters (Å, º) top
O1—C221.3742 (14)C10—C111.4053 (19)
O1—C71.4347 (15)C10—C151.4130 (18)
O2—C91.3749 (15)C11—C121.370 (2)
O2—C81.4285 (16)C11—H11A0.9300
C1—C61.376 (2)C12—C131.381 (2)
C1—C21.384 (2)C12—H12A0.9300
C1—H1A0.9300C13—C141.366 (2)
C2—C31.373 (3)C13—H13A0.9300
C2—H2A0.9300C14—C151.4027 (18)
C3—C41.366 (3)C14—H14A0.9300
C3—H3A0.9300C15—C161.4570 (19)
C4—C51.378 (2)C16—C211.4086 (18)
C4—H4A0.9300C16—C171.4103 (18)
C5—C61.3882 (19)C17—C181.368 (2)
C5—H5A0.9300C17—H17A0.9300
C6—C71.5002 (18)C18—C191.388 (2)
C7—C81.5128 (18)C18—H18A0.9300
C7—H7A0.9800C19—C201.3680 (18)
C8—H8A0.9700C19—H19A0.9300
C8—H8B0.9700C20—C211.4074 (18)
C9—C221.3527 (17)C20—H20A0.9300
C9—C101.4337 (17)C21—C221.4361 (17)
C22—O1—C7112.41 (9)C15—C10—C9119.32 (11)
C9—O2—C8113.33 (10)C12—C11—C10120.44 (14)
C6—C1—C2120.25 (15)C12—C11—H11A119.8
C6—C1—H1A119.9C10—C11—H11A119.8
C2—C1—H1A119.9C11—C12—C13120.06 (14)
C3—C2—C1120.32 (17)C11—C12—H12A120.0
C3—C2—H2A119.8C13—C12—H12A120.0
C1—C2—H2A119.8C14—C13—C12120.62 (14)
C4—C3—C2119.81 (15)C14—C13—H13A119.7
C4—C3—H3A120.1C12—C13—H13A119.7
C2—C3—H3A120.1C13—C14—C15121.39 (14)
C3—C4—C5120.33 (16)C13—C14—H14A119.3
C3—C4—H4A119.8C15—C14—H14A119.3
C5—C4—H4A119.8C14—C15—C10117.76 (12)
C4—C5—C6120.40 (16)C14—C15—C16122.88 (12)
C4—C5—H5A119.8C10—C15—C16119.36 (11)
C6—C5—H5A119.8C21—C16—C17117.38 (12)
C1—C6—C5118.87 (13)C21—C16—C15119.29 (11)
C1—C6—C7121.44 (12)C17—C16—C15123.32 (12)
C5—C6—C7119.58 (13)C18—C17—C16121.56 (14)
O1—C7—C6108.98 (10)C18—C17—H17A119.2
O1—C7—C8108.36 (10)C16—C17—H17A119.2
C6—C7—C8111.39 (10)C17—C18—C19120.48 (13)
O1—C7—H7A109.4C17—C18—H18A119.8
C6—C7—H7A109.4C19—C18—H18A119.8
C8—C7—H7A109.4C20—C19—C18119.84 (14)
O2—C8—C7111.52 (11)C20—C19—H19A120.1
O2—C8—H8A109.3C18—C19—H19A120.1
C7—C8—H8A109.3C19—C20—C21120.61 (13)
O2—C8—H8B109.3C19—C20—H20A119.7
C7—C8—H8B109.3C21—C20—H20A119.7
H8A—C8—H8B108.0C20—C21—C16120.07 (11)
C22—C9—O2123.01 (11)C20—C21—C22120.54 (11)
C22—C9—C10121.12 (11)C16—C21—C22119.33 (11)
O2—C9—C10115.82 (11)C9—C22—O1122.63 (11)
C11—C10—C15119.68 (12)C9—C22—C21121.26 (11)
C11—C10—C9120.98 (12)O1—C22—C21116.06 (10)
C6—C1—C2—C30.4 (2)C11—C10—C15—C142.33 (19)
C1—C2—C3—C40.2 (2)C9—C10—C15—C14176.42 (11)
C2—C3—C4—C50.0 (2)C11—C10—C15—C16177.24 (12)
C3—C4—C5—C60.9 (2)C9—C10—C15—C164.02 (18)
C2—C1—C6—C51.3 (2)C14—C15—C16—C21179.16 (12)
C2—C1—C6—C7175.03 (13)C10—C15—C16—C210.38 (17)
C4—C5—C6—C11.5 (2)C14—C15—C16—C171.50 (19)
C4—C5—C6—C7174.83 (13)C10—C15—C16—C17178.96 (12)
C22—O1—C7—C6171.11 (9)C21—C16—C17—C181.3 (2)
C22—O1—C7—C849.75 (14)C15—C16—C17—C18179.35 (13)
C1—C6—C7—O131.63 (16)C16—C17—C18—C190.7 (2)
C5—C6—C7—O1152.09 (11)C17—C18—C19—C201.2 (2)
C1—C6—C7—C887.87 (15)C18—C19—C20—C210.2 (2)
C5—C6—C7—C888.41 (15)C19—C20—C21—C162.18 (19)
C9—O2—C8—C740.45 (16)C19—C20—C21—C22174.94 (12)
O1—C7—C8—O261.41 (15)C17—C16—C21—C202.68 (18)
C6—C7—C8—O2178.73 (11)C15—C16—C21—C20177.94 (11)
C8—O2—C9—C2210.01 (18)C17—C16—C21—C22174.49 (11)
C8—O2—C9—C10172.32 (11)C15—C16—C21—C224.90 (17)
C22—C9—C10—C11177.33 (12)O2—C9—C22—O10.8 (2)
O2—C9—C10—C114.95 (18)C10—C9—C22—O1176.74 (11)
C22—C9—C10—C153.94 (19)O2—C9—C22—C21178.22 (11)
O2—C9—C10—C15173.77 (11)C10—C9—C22—C210.67 (19)
C15—C10—C11—C121.4 (2)C7—O1—C22—C921.05 (16)
C9—C10—C11—C12177.34 (13)C7—O1—C22—C21156.48 (10)
C10—C11—C12—C130.6 (2)C20—C21—C22—C9177.71 (12)
C11—C12—C13—C141.6 (2)C16—C21—C22—C95.14 (18)
C12—C13—C14—C150.6 (2)C20—C21—C22—O14.72 (17)
C13—C14—C15—C101.4 (2)C16—C21—C22—O1172.42 (10)
C13—C14—C15—C16178.18 (13)

Experimental details

Crystal data
Chemical formulaC22H16O2
Mr312.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.1831 (3), 5.4674 (1), 24.6064 (7)
β (°) 106.005 (2)
V3)1575.50 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.49 × 0.41 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.960, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
17018, 4613, 2927
Rint0.030
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.145, 1.04
No. of reflections4613
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). Financial support from the National Science Foundation of China (20702024) is also acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBecker, K. & Dettbarn, G. (2009). Epidemiology, 20, S37.  CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGao, Y. & Wong, M. H. (2010). Environ. Pollut. 158 2596–2603.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJones, G. B. & Mathews, J. E. (1997). Tetrahedron, 53, 14599–14614  CrossRef CAS Web of Science Google Scholar
First citationLi, S. & Wang, Z. (2009). Molecules, 14, 5042–5053.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, K., Hu, Y., Liu, Y., Mi, N., Fan, Z., Liu, Y. & Wang, Q. (2010). J. Agric. Food Chem. 58, 12337–12342.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhan, X. & Jiang, T. (2010). J. Environ. Sci. 22, 607–614.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds