organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o562-o563

2,4-Bis[(3-butyl­imidazol-3-ium-1-yl)meth­yl]-1,3,5-tri­methyl­benzene bis­­(hexa­fluoro­phosphate)

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 January 2011; accepted 31 January 2011; online 5 February 2011)

In the title molecular salt, C25H38N42+·2PF6, one of the butyl groups and four F atoms in the basal plane of one of the PF6 octa­hedra are disordered over two sets of sites, with occupancy ratios of 0.704 (5):0.296 (5) and 0.71 (3):0.29 (3), respectively. The central benzene ring makes dihedral angles of 85.17 (12) and 81.97 (12)° with the terminal imidazole rings. In the crystal, cations and anions are linked together via inter­molecular C—H⋯F hydrogen bonds forming a three-dimensional network.

Related literature

For applications of N-heterocyclic carbenes, see: Tryg et al. (2005[Tryg, R., Chris, J. P., Marc, S. A., William, H. & Tolman, B. (2005). J. Organomet. Chem. 690, 5881-5891.]); Herrmann (2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.]); Tominaga et al. (2004[Tominaga, S., Oi, Y., Kato, T., An, D. K. & Okamoto, S. (2004). Tetrahedron Lett. 45, 5585-5588.]); Magill et al. (2001[Magill, A. M., McGuinness, D. S., Cavell, K. J., Britovsek, G. J. P., Gibson, V. C., White, A. J. P., Williams, D. J., White, A. H. & Skelton, B. W. (2001). J. Organomet. Chem. 617, 546-560.]); Arduengo et al. (1991[Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]); Herrmann & Kocher (1997[Herrmann, W. A. & Kocher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162-2187.]); Herrmann et al. (1998[Herrmann, W. A., Goossen, L. J. & Spiegler, M. (1998). Organometallics, 17, 2162-2168.]); McGuinness et al. (1999[McGuinness, D. S., Cavell, K. J., Skelton, B. W. & White, A. H. (1999). Organometallics, 18, 1596-1605.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C25H38N42+·2PF6

  • Mr = 684.53

  • Monoclinic, P 21 /n

  • a = 12.3851 (2) Å

  • b = 19.6516 (3) Å

  • c = 12.7586 (2) Å

  • β = 104.698 (1)°

  • V = 3003.66 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.39 × 0.17 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.911, Tmax = 0.971

  • 34854 measured reflections

  • 8766 independent reflections

  • 5113 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.135

  • S = 1.03

  • 8766 reflections

  • 453 parameters

  • 177 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F5i 0.97 2.45 3.312 (3) 149
C5—H5A⋯F9Aii 0.93 2.35 3.235 (9) 159
C6—H6A⋯F6ii 0.93 2.51 3.248 (3) 136
C6—H6A⋯F12ii 0.93 2.54 3.145 (3) 123
C7—H7A⋯F4iii 0.93 2.32 3.140 (3) 146
C15—H15A⋯F10Aiv 0.97 2.54 3.103 (9) 117
C15—H15A⋯F11iv 0.97 2.50 3.353 (3) 147
C19—H19B⋯F6iii 0.97 2.54 3.327 (3) 138
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-heterocyclic carbenes (NHCs) are now ubiquitous in their usage as ligands for transition metals (Tryg et al., 2005; Herrmann, 2002). These complexes with different metals such as Pd and Ru have been used as catalysts for many reactions; for example C-C coupling reactions and reactions involving olefin metathesis (Tominaga et al., 2004; Magill et al., 2001). This has become an important area of research after the isolation of the first stable crystalline carbene (Arduengo et al., 1991). NHCs are neutral 2-electron donors, with an ability to bond to both hard and soft metals making them more versatile ligands than phosphines (Herrmann & Kocher, 1997). They are easier to synthesise and functionalise and form stronger bonds to metals leading to more stable metal complexes than metal phosphine complexes (Herrmann et al., 1998). The coordination chemistry of NHCs and their metal complexes continues to be actively studied, particularly for catalytic applications (McGuinness et al., 1999).

The asymmetric unit of the title compound, (Fig. 1), consists of a 1,3-bis(3-butylimidazolium-1-ylmethyl)mesitylene cation and two hexafluorophosphate anions. One of the butyl groups and four F atoms in the basal plane of one of the PF6- octahedra are disordered over two sets of sites, with occupancy ratios of 0.704 (5):0.296 (5) and 0.71 (3):0.29 (3) respectively. The central benzene (C9–C14) ring makes dihedral angles of 85.17 (12)° and 81.97 (12)° with the terminal imidazole (N1/N2/C5–C7)/(N3/N4/C16–C18) rings.

In the crystal structure (Fig. 2), the cations and anions are linked together via intermolecular C2—H2A···F5, C5—H5A···F9A, C6—H6A···F6, C6—H6A···F12, C7—H7A···F4, C15—H15A···F10A, C15—H15A···F11 and C19—H19B···F6 (Table 1) hydrogen bonds forming a three-dimensional network.

Related literature top

For applications of N-heterocyclic carbenes, see: Tryg et al. (2005); Herrmann (2002); Tominaga et al. (2004); Magill et al. (2001); Arduengo et al. (1991); Herrmann & Kocher (1997); Herrmann et al. (1998); McGuinness et al. (1999). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 1,3-bis(bromomethyl)mesitylene (0.9 g, 3.0 mmol) and 1-butylimidazole (0.75 g, 6.0 mmol) in 25 ml of 1,4-dioxane was refluxed at 373 K for 24 h. The resulting slurry was isolated by decantation and washed with fresh 1,4-dioxane (2 x 5 ml) and diethyl ether (2 x 3 ml). The bromide salt was converted directly to its corresponding hexafluorophosphate by a metathesis reaction with methanolic KPF6 (1.2 g, 6.5 mmol). The resulting yellowish solid was washed with distilled water and recrystallised from acetonitrile to give pale-yellow crystals. (yield 1.4 g, 88.26 %). Crystals suitable for X-ray diffraction studies were obtained by slow evaporation of the salt solution in acetonitrile at ambient temperature.

Refinement top

All the H atoms were positioned geometrically [ C–H = 0.93–0.97 Å ] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). One of the butyl groups and the F7, F8, F9 and F10 fluorine atoms in the one of the phosphate anions are disordered over two sets of sites, with occupancy ratios of 0.704 (5):0.296 (5) and 0.71 (3):0.29 (3) respectively.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Open bonds represents the minor disorder components [H atoms are omitted for clarity].
[Figure 2] Fig. 2. The crystal packing of the title compound, showing a hydrogen-bonded (dashed lines) network. Only atoms of the major disorder components are shown for clarity.
2,4-Bis[(3-butylimidazol-3-ium-1-yl)methyl]-1,3,5-trimethylbenzene bis(hexafluorophosphate) top
Crystal data top
C25H38N42+·2PF6F(000) = 1416
Mr = 684.53Dx = 1.514 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5155 reflections
a = 12.3851 (2) Åθ = 2.9–27.3°
b = 19.6516 (3) ŵ = 0.24 mm1
c = 12.7586 (2) ÅT = 100 K
β = 104.698 (1)°Block, pale yellow
V = 3003.66 (8) Å30.39 × 0.17 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8766 independent reflections
Radiation source: fine-focus sealed tube5113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1716
Tmin = 0.911, Tmax = 0.971k = 2527
34854 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.051P)2 + 0.7397P]
where P = (Fo2 + 2Fc2)/3
8766 reflections(Δ/σ)max = 0.001
453 parametersΔρmax = 0.33 e Å3
177 restraintsΔρmin = 0.40 e Å3
Crystal data top
C25H38N42+·2PF6V = 3003.66 (8) Å3
Mr = 684.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.3851 (2) ŵ = 0.24 mm1
b = 19.6516 (3) ÅT = 100 K
c = 12.7586 (2) Å0.39 × 0.17 × 0.12 mm
β = 104.698 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8766 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5113 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.971Rint = 0.064
34854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055177 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
8766 reflectionsΔρmin = 0.40 e Å3
453 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.20895 (5)0.21416 (3)0.70794 (5)0.02528 (14)
F10.27007 (13)0.19236 (8)0.82874 (11)0.0516 (4)
F20.15016 (13)0.23475 (8)0.58707 (12)0.0539 (4)
F30.12414 (12)0.25961 (7)0.75254 (13)0.0506 (4)
F40.29111 (12)0.27811 (7)0.71659 (12)0.0457 (4)
F50.12931 (11)0.14951 (7)0.69934 (12)0.0440 (4)
F60.29625 (11)0.16855 (7)0.66468 (12)0.0411 (4)
P20.10834 (6)0.08585 (3)0.25608 (5)0.03360 (16)
F7A0.1954 (7)0.1328 (5)0.2220 (9)0.086 (2)0.71 (3)
F8A0.0192 (10)0.1437 (7)0.2271 (10)0.095 (3)0.71 (3)
F9A0.0210 (6)0.0378 (6)0.2895 (7)0.067 (2)0.71 (3)
F10A0.1988 (7)0.0260 (4)0.2873 (7)0.0559 (15)0.71 (3)
F7B0.172 (3)0.1469 (16)0.231 (3)0.137 (11)0.29 (3)
F8B0.0055 (14)0.1272 (12)0.227 (2)0.063 (4)0.29 (3)
F9B0.0389 (18)0.0197 (8)0.2790 (14)0.060 (4)0.29 (3)
F10B0.2128 (15)0.0415 (15)0.279 (2)0.088 (7)0.29 (3)
F110.07227 (13)0.05889 (8)0.13307 (11)0.0469 (4)
F120.14197 (13)0.11048 (8)0.37886 (11)0.0539 (4)
N10.85438 (15)0.08695 (9)0.41927 (14)0.0265 (4)
N20.73557 (15)0.01726 (9)0.32089 (14)0.0269 (4)
N30.84666 (14)0.11056 (9)0.07330 (14)0.0259 (4)
N40.94852 (15)0.19703 (9)0.00729 (15)0.0288 (4)
C10.8135 (2)0.22441 (12)0.6905 (2)0.0394 (6)
H1A0.79850.20440.75390.059*
H1B0.74630.24430.64670.059*
H1C0.86950.25900.71170.059*
C20.85494 (19)0.16985 (12)0.62574 (19)0.0333 (5)
H2A0.92620.15270.66790.040*
H2B0.80250.13230.61240.040*
C30.8684 (2)0.19657 (12)0.51876 (18)0.0344 (6)
H3A0.79520.20880.47430.041*
H3B0.91260.23790.53250.041*
C40.92215 (19)0.14853 (12)0.45473 (18)0.0322 (5)
H4A0.93340.17210.39150.039*
H4B0.99480.13510.49900.039*
C50.85966 (19)0.02770 (11)0.47726 (18)0.0306 (5)
H5A0.90560.01930.54590.037*
C60.78581 (19)0.01605 (11)0.41627 (18)0.0301 (5)
H6A0.77140.06030.43490.036*
C70.77865 (18)0.07964 (11)0.32502 (17)0.0272 (5)
H7A0.75910.11250.27110.033*
C80.64688 (19)0.01183 (11)0.23136 (18)0.0307 (5)
H8A0.57880.01660.25510.037*
H8B0.66940.05680.21390.037*
C90.62393 (17)0.03175 (10)0.13126 (17)0.0253 (5)
C100.69484 (17)0.02784 (10)0.06159 (17)0.0247 (5)
C110.67302 (17)0.06873 (11)0.03184 (17)0.0255 (5)
C120.58185 (18)0.11365 (11)0.05516 (18)0.0293 (5)
C130.51248 (18)0.11498 (11)0.0150 (2)0.0320 (5)
H13A0.45050.14350.00120.038*
C140.53172 (18)0.07571 (11)0.10792 (19)0.0295 (5)
C150.74935 (18)0.06444 (12)0.10679 (18)0.0311 (5)
H15A0.77560.01800.10790.037*
H15B0.70770.07610.17970.037*
C160.94168 (18)0.10753 (12)0.11101 (18)0.0304 (5)
H16A0.95880.07430.15620.036*
C171.0046 (2)0.16150 (12)0.07013 (19)0.0328 (5)
H17A1.07350.17280.08200.039*
C180.85343 (18)0.16506 (11)0.01042 (17)0.0266 (5)
H18A0.80030.17860.02540.032*
C190.9808 (2)0.26251 (12)0.0467 (2)0.0404 (6)
H19A1.06140.26620.07010.048*0.704 (5)
H19B0.95090.26660.10970.048*0.704 (5)
H19C1.04610.25480.10470.048*0.296 (5)
H19D0.92220.27620.07900.048*0.296 (5)
C20A0.9304 (4)0.32135 (17)0.0399 (3)0.0387 (9)0.704 (5)
H20A0.96130.31650.10220.046*0.704 (5)
H20B0.85020.31570.06460.046*0.704 (5)
C21A0.9560 (3)0.39198 (18)0.0069 (3)0.0426 (10)0.704 (5)
H21A0.92830.39620.07120.051*0.704 (5)
H21B0.91730.42520.04550.051*0.704 (5)
C22A1.0797 (4)0.4072 (3)0.0360 (5)0.0587 (13)0.704 (5)
H22A1.09200.45330.06090.088*0.704 (5)
H22B1.10810.40100.02670.088*0.704 (5)
H22C1.11760.37680.09240.088*0.704 (5)
C20B1.0049 (9)0.3150 (4)0.0097 (8)0.040 (2)0.296 (5)
H20C0.94050.32450.06930.048*0.296 (5)
H20D1.06570.30190.04070.048*0.296 (5)
C21B1.0374 (10)0.3794 (5)0.0545 (8)0.047 (3)0.296 (5)
H21C1.09870.37020.11710.057*0.296 (5)
H21D0.97470.39570.08010.057*0.296 (5)
C22B1.0725 (10)0.4342 (6)0.0164 (11)0.0587 (13)0.296 (5)
H22D1.11080.47030.02890.088*0.296 (5)
H22E1.00740.45220.06650.088*0.296 (5)
H22F1.12120.41440.05580.088*0.296 (5)
C230.79482 (18)0.01942 (11)0.08577 (19)0.0327 (5)
H23A0.81340.03170.16110.049*
H23B0.85720.00320.06930.049*
H23C0.77720.05970.04230.049*
C240.4549 (2)0.08292 (13)0.1822 (2)0.0422 (6)
H24A0.39530.11370.15040.063*
H24B0.49610.10040.25100.063*
H24C0.42430.03920.19230.063*
C250.5587 (2)0.16090 (13)0.1517 (2)0.0424 (6)
H25A0.49410.18810.15220.064*
H25B0.54510.13460.21720.064*
H25C0.62190.19000.14710.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0270 (3)0.0194 (3)0.0286 (3)0.0011 (2)0.0055 (2)0.0012 (2)
F10.0674 (10)0.0463 (9)0.0311 (8)0.0023 (8)0.0061 (7)0.0005 (7)
F20.0686 (10)0.0479 (9)0.0357 (8)0.0083 (8)0.0042 (7)0.0101 (7)
F30.0523 (9)0.0371 (8)0.0731 (11)0.0098 (7)0.0355 (8)0.0018 (8)
F40.0525 (9)0.0246 (7)0.0672 (11)0.0149 (6)0.0281 (8)0.0157 (7)
F50.0394 (8)0.0342 (8)0.0592 (10)0.0139 (6)0.0142 (7)0.0038 (7)
F60.0426 (8)0.0257 (7)0.0603 (10)0.0008 (6)0.0226 (7)0.0104 (7)
P20.0460 (4)0.0291 (3)0.0283 (3)0.0019 (3)0.0144 (3)0.0021 (3)
F7A0.105 (4)0.094 (5)0.069 (3)0.063 (3)0.041 (3)0.002 (3)
F8A0.166 (8)0.081 (4)0.038 (3)0.087 (5)0.023 (6)0.014 (3)
F9A0.047 (2)0.114 (6)0.041 (2)0.032 (3)0.0124 (16)0.014 (3)
F10A0.081 (4)0.054 (3)0.031 (2)0.0346 (19)0.009 (2)0.0015 (14)
F7B0.26 (3)0.079 (10)0.073 (9)0.093 (14)0.052 (14)0.008 (8)
F8B0.047 (6)0.107 (13)0.033 (5)0.040 (6)0.010 (3)0.001 (8)
F9B0.103 (10)0.036 (6)0.025 (5)0.021 (5)0.014 (6)0.015 (3)
F10B0.030 (5)0.171 (18)0.057 (9)0.036 (8)0.004 (5)0.022 (10)
F110.0660 (10)0.0470 (9)0.0271 (8)0.0099 (8)0.0105 (7)0.0005 (6)
F120.0779 (11)0.0462 (9)0.0348 (8)0.0090 (8)0.0092 (8)0.0085 (7)
N10.0313 (10)0.0241 (10)0.0227 (9)0.0024 (7)0.0045 (7)0.0013 (7)
N20.0347 (10)0.0199 (9)0.0258 (9)0.0025 (8)0.0074 (8)0.0018 (7)
N30.0299 (10)0.0260 (10)0.0221 (9)0.0002 (8)0.0069 (7)0.0023 (8)
N40.0306 (10)0.0254 (10)0.0315 (10)0.0016 (8)0.0094 (8)0.0000 (8)
C10.0413 (14)0.0328 (14)0.0431 (15)0.0032 (11)0.0090 (11)0.0040 (11)
C20.0339 (13)0.0310 (13)0.0361 (13)0.0022 (10)0.0110 (10)0.0014 (10)
C30.0428 (14)0.0264 (12)0.0294 (12)0.0080 (10)0.0009 (10)0.0010 (10)
C40.0363 (13)0.0351 (13)0.0236 (11)0.0125 (10)0.0045 (9)0.0017 (10)
C50.0367 (12)0.0273 (12)0.0269 (12)0.0054 (10)0.0065 (9)0.0063 (9)
C60.0430 (13)0.0198 (11)0.0293 (12)0.0030 (9)0.0125 (10)0.0061 (9)
C70.0339 (12)0.0236 (11)0.0231 (11)0.0044 (9)0.0053 (9)0.0034 (9)
C80.0378 (13)0.0233 (11)0.0305 (12)0.0077 (9)0.0079 (10)0.0031 (9)
C90.0294 (11)0.0184 (10)0.0267 (11)0.0054 (8)0.0045 (9)0.0040 (9)
C100.0257 (11)0.0172 (10)0.0275 (11)0.0017 (8)0.0001 (8)0.0030 (8)
C110.0264 (11)0.0230 (11)0.0239 (11)0.0038 (8)0.0006 (8)0.0026 (9)
C120.0285 (11)0.0214 (11)0.0324 (12)0.0038 (9)0.0026 (9)0.0017 (9)
C130.0246 (11)0.0203 (11)0.0459 (14)0.0006 (9)0.0008 (10)0.0069 (10)
C140.0269 (11)0.0219 (11)0.0390 (13)0.0053 (9)0.0072 (10)0.0117 (10)
C150.0355 (12)0.0308 (12)0.0252 (12)0.0059 (10)0.0044 (9)0.0045 (9)
C160.0361 (13)0.0296 (12)0.0296 (12)0.0058 (10)0.0157 (10)0.0035 (10)
C170.0358 (13)0.0295 (13)0.0367 (13)0.0026 (10)0.0158 (10)0.0038 (10)
C180.0285 (11)0.0268 (11)0.0256 (11)0.0010 (9)0.0089 (9)0.0026 (9)
C190.0357 (13)0.0321 (13)0.0552 (17)0.0076 (11)0.0152 (12)0.0116 (12)
C20A0.048 (2)0.033 (2)0.034 (2)0.0015 (17)0.0102 (18)0.0030 (16)
C21A0.044 (2)0.036 (2)0.049 (2)0.0031 (17)0.0127 (19)0.0075 (17)
C22A0.059 (3)0.040 (3)0.078 (4)0.010 (2)0.020 (3)0.008 (2)
C20B0.045 (6)0.029 (4)0.045 (5)0.009 (4)0.010 (4)0.006 (4)
C21B0.046 (6)0.043 (6)0.053 (6)0.015 (5)0.011 (5)0.005 (4)
C22B0.059 (3)0.040 (3)0.078 (4)0.010 (2)0.020 (3)0.008 (2)
C230.0332 (12)0.0266 (12)0.0359 (13)0.0053 (9)0.0042 (10)0.0014 (10)
C240.0405 (14)0.0383 (15)0.0515 (16)0.0043 (11)0.0184 (12)0.0166 (12)
C250.0394 (14)0.0377 (14)0.0423 (15)0.0002 (11)0.0042 (11)0.0103 (12)
Geometric parameters (Å, º) top
P1—F21.5819 (15)C10—C111.406 (3)
P1—F31.5901 (14)C10—C231.516 (3)
P1—F11.5937 (14)C11—C121.404 (3)
P1—F51.5950 (14)C11—C151.508 (3)
P1—F41.6032 (13)C12—C131.389 (3)
P1—F61.6063 (14)C12—C251.511 (3)
P2—F7B1.515 (18)C13—C141.384 (3)
P2—F10B1.525 (16)C13—H13A0.9300
P2—F8A1.562 (7)C14—C241.510 (3)
P2—F7A1.562 (6)C15—H15A0.9700
P2—F9A1.575 (6)C15—H15B0.9700
P2—F8B1.587 (15)C16—C171.341 (3)
P2—F121.5907 (15)C16—H16A0.9300
P2—F10A1.604 (6)C17—H17A0.9300
P2—F111.6087 (15)C18—H18A0.9300
P2—F9B1.626 (14)C19—C20B1.335 (9)
N1—C71.332 (3)C19—C20A1.611 (4)
N1—C51.372 (3)C19—H19A0.9700
N1—C41.477 (3)C19—H19B0.9700
N2—C71.333 (3)C19—H19C0.9600
N2—C61.383 (3)C19—H19D0.9601
N2—C81.484 (3)C20A—C21A1.512 (5)
N3—C181.328 (3)C20A—H20A0.9700
N3—C161.381 (3)C20A—H20B0.9700
N3—C151.482 (3)C21A—C22A1.512 (5)
N4—C181.326 (3)C21A—H21A0.9700
N4—C171.377 (3)C21A—H21B0.9700
N4—C191.466 (3)C22A—H22A0.9600
C1—C21.520 (3)C22A—H22B0.9600
C1—H1A0.9600C22A—H22C0.9600
C1—H1B0.9600C20B—C21B1.505 (11)
C1—H1C0.9600C20B—H20C0.9700
C2—C31.511 (3)C20B—H20D0.9700
C2—H2A0.9700C21B—C22B1.538 (12)
C2—H2B0.9700C21B—H21C0.9700
C3—C41.510 (3)C21B—H21D0.9700
C3—H3A0.9700C22B—H22D0.9600
C3—H3B0.9700C22B—H22E0.9600
C4—H4A0.9700C22B—H22F0.9600
C4—H4B0.9700C23—H23A0.9600
C5—C61.349 (3)C23—H23B0.9600
C5—H5A0.9300C23—H23C0.9600
C6—H6A0.9300C24—H24A0.9600
C7—H7A0.9300C24—H24B0.9600
C8—C91.504 (3)C24—H24C0.9600
C8—H8A0.9700C25—H25A0.9600
C8—H8B0.9700C25—H25B0.9600
C9—C101.401 (3)C25—H25C0.9600
C9—C141.402 (3)
F2—P1—F391.31 (9)C9—C8—H8A109.2
F2—P1—F1178.71 (9)N2—C8—H8B109.2
F3—P1—F189.98 (9)C9—C8—H8B109.2
F2—P1—F590.75 (8)H8A—C8—H8B107.9
F3—P1—F591.09 (8)C10—C9—C14120.5 (2)
F1—P1—F589.20 (8)C10—C9—C8119.58 (19)
F2—P1—F489.64 (8)C14—C9—C8120.0 (2)
F3—P1—F490.02 (8)C9—C10—C11119.33 (19)
F1—P1—F490.38 (8)C9—C10—C23121.0 (2)
F5—P1—F4178.81 (8)C11—C10—C23119.6 (2)
F2—P1—F689.49 (8)C12—C11—C10120.7 (2)
F3—P1—F6179.03 (9)C12—C11—C15120.0 (2)
F1—P1—F689.22 (8)C10—C11—C15119.28 (19)
F5—P1—F689.44 (7)C13—C12—C11118.1 (2)
F4—P1—F689.44 (7)C13—C12—C25119.5 (2)
F7B—P2—F10B91.8 (11)C11—C12—C25122.4 (2)
F7B—P2—F8A75.5 (12)C14—C13—C12122.8 (2)
F10B—P2—F8A167.3 (10)C14—C13—H13A118.6
F10B—P2—F7A77.3 (12)C12—C13—H13A118.6
F8A—P2—F7A90.0 (5)C13—C14—C9118.6 (2)
F7B—P2—F9A164.5 (13)C13—C14—C24119.1 (2)
F10B—P2—F9A102.2 (10)C9—C14—C24122.2 (2)
F8A—P2—F9A90.5 (4)N3—C15—C11112.20 (17)
F7A—P2—F9A179.3 (6)N3—C15—H15A109.2
F7B—P2—F8B91.5 (12)C11—C15—H15A109.2
F10B—P2—F8B175.6 (12)N3—C15—H15B109.2
F7A—P2—F8B105.5 (9)C11—C15—H15B109.2
F9A—P2—F8B74.9 (9)H15A—C15—H15B107.9
F7B—P2—F1286.9 (13)C17—C16—N3107.0 (2)
F10B—P2—F1289.2 (9)C17—C16—H16A126.5
F8A—P2—F1290.2 (5)N3—C16—H16A126.5
F7A—P2—F1293.9 (4)C16—C17—N4107.3 (2)
F9A—P2—F1286.7 (4)C16—C17—H17A126.3
F8B—P2—F1294.0 (10)N4—C17—H17A126.3
F7B—P2—F10A105.3 (14)N4—C18—N3108.6 (2)
F8A—P2—F10A179.0 (5)N4—C18—H18A125.7
F7A—P2—F10A90.9 (4)N3—C18—H18A125.7
F9A—P2—F10A88.7 (4)C20B—C19—N4119.8 (4)
F8B—P2—F10A163.1 (9)N4—C19—C20A107.2 (2)
F12—P2—F10A89.2 (3)C20B—C19—H19A75.8
F7B—P2—F1195.0 (13)N4—C19—H19A110.3
F10B—P2—F1190.8 (9)C20A—C19—H19A110.3
F8A—P2—F1190.2 (5)C20B—C19—H19B124.6
F7A—P2—F1187.9 (4)N4—C19—H19B110.3
F9A—P2—F1191.5 (4)C20A—C19—H19B110.3
F8B—P2—F1186.0 (10)H19A—C19—H19B108.5
F12—P2—F11178.15 (9)C20B—C19—H19C106.1
F10A—P2—F1190.3 (3)N4—C19—H19C107.4
F7B—P2—F9B178.3 (14)C20A—C19—H19C138.2
F10B—P2—F9B88.2 (10)H19B—C19—H19C78.4
F8A—P2—F9B104.5 (7)C20B—C19—H19D108.2
F7A—P2—F9B163.0 (9)N4—C19—H19D107.7
F8B—P2—F9B88.4 (9)C20A—C19—H19D83.7
F12—P2—F9B94.9 (7)H19A—C19—H19D132.7
F10A—P2—F9B74.7 (8)H19C—C19—H19D107.1
F11—P2—F9B83.3 (7)C21A—C20A—C19112.5 (3)
C7—N1—C5108.76 (18)C21A—C20A—H20A109.1
C7—N1—C4125.47 (18)C19—C20A—H20A109.1
C5—N1—C4125.77 (18)C21A—C20A—H20B109.1
C7—N2—C6108.33 (18)C19—C20A—H20B109.1
C7—N2—C8126.56 (18)H20A—C20A—H20B107.8
C6—N2—C8125.10 (17)C20A—C21A—C22A112.1 (4)
C18—N3—C16108.45 (19)C20A—C21A—H21A109.2
C18—N3—C15126.12 (19)C22A—C21A—H21A109.2
C16—N3—C15125.17 (19)C20A—C21A—H21B109.2
C18—N4—C17108.53 (19)C22A—C21A—H21B109.2
C18—N4—C19124.3 (2)H21A—C21A—H21B107.9
C17—N4—C19126.94 (19)C19—C20B—C21B114.9 (8)
C2—C1—H1A109.5C19—C20B—H20C108.5
C2—C1—H1B109.5C21B—C20B—H20C108.5
H1A—C1—H1B109.5C19—C20B—H20D108.5
C2—C1—H1C109.5C21B—C20B—H20D108.5
H1A—C1—H1C109.5H20C—C20B—H20D107.5
H1B—C1—H1C109.5C20B—C21B—C22B110.2 (9)
C3—C2—C1112.05 (19)C20B—C21B—H21C109.6
C3—C2—H2A109.2C22B—C21B—H21C109.6
C1—C2—H2A109.2C20B—C21B—H21D109.6
C3—C2—H2B109.2C22B—C21B—H21D109.6
C1—C2—H2B109.2H21C—C21B—H21D108.1
H2A—C2—H2B107.9C21B—C22B—H22D109.5
C4—C3—C2115.88 (19)C21B—C22B—H22E109.5
C4—C3—H3A108.3H22D—C22B—H22E109.5
C2—C3—H3A108.3C21B—C22B—H22F109.5
C4—C3—H3B108.3H22D—C22B—H22F109.5
C2—C3—H3B108.3H22E—C22B—H22F109.5
H3A—C3—H3B107.4C10—C23—H23A109.5
N1—C4—C3112.56 (18)C10—C23—H23B109.5
N1—C4—H4A109.1H23A—C23—H23B109.5
C3—C4—H4A109.1C10—C23—H23C109.5
N1—C4—H4B109.1H23A—C23—H23C109.5
C3—C4—H4B109.1H23B—C23—H23C109.5
H4A—C4—H4B107.8C14—C24—H24A109.5
C6—C5—N1107.29 (19)C14—C24—H24B109.5
C6—C5—H5A126.4H24A—C24—H24B109.5
N1—C5—H5A126.4C14—C24—H24C109.5
C5—C6—N2107.08 (19)H24A—C24—H24C109.5
C5—C6—H6A126.5H24B—C24—H24C109.5
N2—C6—H6A126.5C12—C25—H25A109.5
N1—C7—N2108.55 (19)C12—C25—H25B109.5
N1—C7—H7A125.7H25A—C25—H25B109.5
N2—C7—H7A125.7C12—C25—H25C109.5
N2—C8—C9112.20 (17)H25A—C25—H25C109.5
N2—C8—H8A109.2H25B—C25—H25C109.5
C1—C2—C3—C4172.95 (19)C25—C12—C13—C14176.7 (2)
C7—N1—C4—C392.1 (3)C12—C13—C14—C91.3 (3)
C5—N1—C4—C388.6 (3)C12—C13—C14—C24177.1 (2)
C2—C3—C4—N164.3 (3)C10—C9—C14—C130.0 (3)
C7—N1—C5—C60.2 (3)C8—C9—C14—C13179.73 (18)
C4—N1—C5—C6179.2 (2)C10—C9—C14—C24178.4 (2)
N1—C5—C6—N20.1 (3)C8—C9—C14—C241.9 (3)
C7—N2—C6—C50.0 (2)C18—N3—C15—C1121.2 (3)
C8—N2—C6—C5178.6 (2)C16—N3—C15—C11165.40 (19)
C5—N1—C7—N20.2 (3)C12—C11—C15—N392.8 (2)
C4—N1—C7—N2179.2 (2)C10—C11—C15—N386.7 (2)
C6—N2—C7—N10.1 (2)C18—N3—C16—C170.5 (2)
C8—N2—C7—N1178.71 (19)C15—N3—C16—C17173.93 (19)
C7—N2—C8—C911.8 (3)N3—C16—C17—N40.3 (2)
C6—N2—C8—C9169.8 (2)C18—N4—C17—C160.1 (2)
N2—C8—C9—C1080.2 (2)C19—N4—C17—C16174.8 (2)
N2—C8—C9—C14100.1 (2)C17—N4—C18—N30.2 (2)
C14—C9—C10—C110.3 (3)C19—N4—C18—N3174.7 (2)
C8—C9—C10—C11179.96 (18)C16—N3—C18—N40.4 (2)
C14—C9—C10—C23179.98 (18)C15—N3—C18—N4173.91 (18)
C8—C9—C10—C230.3 (3)C18—N4—C19—C20B122.8 (6)
C9—C10—C11—C120.6 (3)C17—N4—C19—C20B51.1 (7)
C23—C10—C11—C12179.06 (19)C18—N4—C19—C20A87.6 (3)
C9—C10—C11—C15179.96 (18)C17—N4—C19—C20A86.3 (3)
C23—C10—C11—C150.4 (3)C20B—C19—C20A—C21A63.4 (7)
C10—C11—C12—C131.8 (3)N4—C19—C20A—C21A178.8 (3)
C15—C11—C12—C13178.77 (19)C19—C20A—C21A—C22A65.0 (5)
C10—C11—C12—C25177.0 (2)N4—C19—C20B—C21B179.7 (7)
C15—C11—C12—C252.4 (3)C20A—C19—C20B—C21B103.6 (12)
C11—C12—C13—C142.2 (3)C19—C20B—C21B—C22B175.3 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F5i0.972.453.312 (3)149
C5—H5A···F9Aii0.932.353.235 (9)159
C6—H6A···F6ii0.932.513.248 (3)136
C6—H6A···F12ii0.932.543.145 (3)123
C7—H7A···F4iii0.932.323.140 (3)146
C15—H15A···F10Aiv0.972.543.103 (9)117
C15—H15A···F11iv0.972.503.353 (3)147
C19—H19B···F6iii0.972.543.327 (3)138
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC25H38N42+·2PF6
Mr684.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.3851 (2), 19.6516 (3), 12.7586 (2)
β (°) 104.698 (1)
V3)3003.66 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.39 × 0.17 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.911, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
34854, 8766, 5113
Rint0.064
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.135, 1.03
No. of reflections8766
No. of parameters453
No. of restraints177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F5i0.972.453.312 (3)149
C5—H5A···F9Aii0.932.353.235 (9)159
C6—H6A···F6ii0.932.513.248 (3)136
C6—H6A···F12ii0.932.543.145 (3)123
C7—H7A···F4iii0.932.323.140 (3)146.3
C15—H15A···F10Aiv0.972.543.103 (9)117
C15—H15A···F11iv0.972.503.353 (3)147
C19—H19B···F6iii0.972.543.327 (3)138
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH thanks Universiti Sains Malaysia for the FRGS fund (203/PKIMIA/671115), short-term grant (304/PKIMIA/639001) and RU grants (1001/PKIMIA/813023 and 1001/PKIMIA/811157). AWS thanks Universiti Sains Malaysia for the RU grant (1001/PKIMIA/843090). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationArduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290–1309.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Goossen, L. J. & Spiegler, M. (1998). Organometallics, 17, 2162–2168.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerrmann, W. A. & Kocher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162–2187.  CrossRef CAS Web of Science Google Scholar
First citationMagill, A. M., McGuinness, D. S., Cavell, K. J., Britovsek, G. J. P., Gibson, V. C., White, A. J. P., Williams, D. J., White, A. H. & Skelton, B. W. (2001). J. Organomet. Chem. 617, 546–560.  Web of Science CSD CrossRef Google Scholar
First citationMcGuinness, D. S., Cavell, K. J., Skelton, B. W. & White, A. H. (1999). Organometallics, 18, 1596–1605.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTominaga, S., Oi, Y., Kato, T., An, D. K. & Okamoto, S. (2004). Tetrahedron Lett. 45, 5585–5588.  Web of Science CrossRef CAS Google Scholar
First citationTryg, R., Chris, J. P., Marc, S. A., William, H. & Tolman, B. (2005). J. Organomet. Chem. 690, 5881–5891.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o562-o563
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds