organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o593-o594

(E)-2-[4-(Di­ethyl­amino)­styr­yl]-1-methyl­pyridinium benzene­sulfonate mono­hydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 31 January 2011; accepted 3 February 2011; online 9 February 2011)

The asymmetric unit of the title compound, C18H23N2+·C6H5O3S·H2O, comprises a 2-[4-(diethyl­amino)­styr­yl]-1-methyl­pyridinium cation, a benzene­sulfonate anion and a solvent water mol­ecule. One ethyl substituent of the diethyl­amino group of the cation is disordered over two positions in a 0.73789 (9):0.26211 (9) ratio. The cation exists in the E configuration with respect to the C=C bond and the π-conjugated system is essentially planar with a dihedral angle of 0.82 (10)° between the pyridinium and benzene rings. The cation and anion are almost orthogonal with a dihedral angle of 86.71 (10)° between the π-conjugated system of the cation and benzene ring of the anion. In the crystal, mol­ecules are arranged into chains along [001] and adjacent chains are linked by weak C—H⋯O inter­actions. The crystal is further stablilized by O—H⋯O hydrogen bonds and weak C—H⋯π inter­actions.

Related literature

For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to and applications of quaternary ammonium compounds, see: Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]); Fun et al. (2010[Fun, H.-K., Chanawanno, K., Kobkeatthawin, T. & Chantrapromma, S. (2010). Acta Cryst. E66, o938-o939.]); Massi et al. (2003[Massi, L., Guitard, F., Geribaldi, S., Levy, R. & Duccini, Y. (2003). Int. J. Antimicrob. Agents, 21, 20-26.]); Soprey & Maxcy (1968[Soprey, P. R. & Maxcy, R. B. (1968). J. Food Sci. 33, 536-540.]); Yabuhara et al. (2004[Yabuhara, T., Maeda, T., Nagamune, H. & Kourai, H. (2004). Biocontrol Sci. 9, 95-103.]). For related structures, see: Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]); Kaewmanee et al. (2010[Kaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639-o2640.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23N2+·C6H5O3S·H2O

  • Mr = 442.57

  • Monoclinic, P 21 /c

  • a = 9.9393 (5) Å

  • b = 17.9047 (9) Å

  • c = 13.2532 (7) Å

  • β = 100.715 (1)°

  • V = 2317.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 297 K

  • 0.47 × 0.28 × 0.27 mm

Data collection
  • Bruker SMART APEXII CCD area-detector. diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.924, Tmax = 0.955

  • 23078 measured reflections

  • 6105 independent reflections

  • 3770 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.173

  • S = 1.04

  • 6105 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C19–C24 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2i 0.97 1.91 2.821 (3) 156
O1W—H2W1⋯O1ii 1.07 1.88 2.933 (3) 170
C1—H1A⋯O3iii 0.93 2.26 3.151 (3) 160
C3—H3A⋯O2ii 0.93 2.41 3.335 (4) 178
C4—H4A⋯O1W 0.93 2.50 3.338 (3) 149
C18—H18B⋯O3 0.96 2.45 3.371 (3) 162
C10—H10ACg1i 0.93 2.95 3.741 (2) 144
Symmetry codes: (i) x+1, y, z; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quaternary ammonium compounds (QACs) are relatively low toxicity and wide-ranging antimicrobial agents that are commonly used for water treatment, food industry additives and hygienic care for both medical and domestic purposes (Yabuhara et al., 2004). However, due to the long-term usage of common QACs such as benzalkonium chloride and cetylpridinium chloride, QAC resistant microorganisms have appeared. It was reported that some Staphylococcus spp. contain genes conveying resistance to this type of disinfectant (Massi et al., 2003; Soprey et al., 1968; Yabuhara et al., 2004). Therefore, we have developed the novel pyridinium QACs which can overcome this Staphylococcus-resistant phenomenon by exhibiting strong anti-methicillin-resistant Staphylococcus aureus activity and reported this discovery in our previous work (Chanawanno et al., 2010; Fun et al., 2010). The title compound was the one among many pyridinium QACs which was synthesized in our laboratory hoping for a new antibacterial drug candidate. The antibacterial activity of this compound is under investigation and its crystal structure is reported here.

Fig. 1 shows the asymmetric unit of the title compound (I) which consists of the C18H23N2+ cation, C6H5O3S- anion and one H2O molecule. The cation exists in the E configuration with respect to the C6C7 double bond [1.337 (2) Å]. The π-conjugated system of cation (N1/C1–C13) is planar with an r.m.s deviation of 0.0215 (2) Å and the dihedral angle between the C1–C5/N1 pyridinium and the C8–C13 benzene rings is 0.82 (10)° with the torsion angle C5–C6–C7–C8 = -179.19 (17)°. One ethyl unit of the diethylamino moiety is disordered over two positions; the major component A and the minor component B (Fig. 1), with a refined site-occupancy ratio of 0.73789 (9)/0.26211 (9). The diethylamino group deviates from the attached C8–C13 ring and its conformation can be indicated by the torsion angles C11–N2–C14–C15 = 83.8 (4)°, C11–N2–C16–C17 = -95.3 (4)° for the major component A and 106.1 (7)° for the minor component B. The cation and anion are inclined to each other as indicated by the dihedral angle between the π-conjugated system of cation (N1/C1–C13) and the C19–C24 benzene ring of anion being 86.71 (10)°. The bond lengths (Allen et al., 1987) and angles in (I) are in normal ranges and comparable with those for related structures (Chanawanno et al., 2010; Kaewmanee et al., 2010).

In the crystal packing, the cations, anions and water molecules are arranged into individual chains along the [001] direction (Fig. 2). The cations are linked to the anions and water molecules in neighboring chains by C—H···O weak interactions (Table 1 and Fig. 2) whereas the anions are linked to water molecule by O—H···O hydrogen bonds (Table 1). A C—H···π interaction involving the benzenesulfonate anion was observed (Table 1).

Related literature top

For standard bond lengths, see Allen et al. (1987). For background to and applications of quarternary ammonium compounds, see: Chanawanno et al. (2010); Fun et al. (2010); Massi et al. (2003); Soprey et al. (1968); Yabuhara et al. (2004). For related structures, see: Chanawanno et al. (2010); Kaewmanee et al. (2010).

Experimental top

(E)-2-(4-(diethylamino)styryl)-1-methylpyridinium iodide (compound A, 0.14 g, 0.37 mmol) was prepared by a literature method (Kaewmanee et al., 2010) and then was mixed with silver (I) benzenesulfonate (Chanawanno et al., 2010) (0.10 g, 0.37 mmol) in methanol (100 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated yielding the title compound as an orange solid. Orange block-shaped single crystals of the title compound suitable for x-ray structure determination was recrystallized from methanol by slow evaporation of the solvent at room temperature after a few weeks, Mp. 466–468 K.

Refinement top

All H atoms were placed in calculated positions to ride on their parent atoms, with d(O—H) = 0.97 and 1.07 Å, d(C—H) = 0.93 Å for aromatic and CH, 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.09 Å from H14B and the deepest hole is located at 0.72 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing 40% probability displacement ellipsoids and the atom-numbering scheme. Atoms of the minor disorder component are linked by open bonds.
[Figure 2] Fig. 2. The crystal packing of the major component viewed along the b axis. The O—H···O hydrogen bonds and weak C—H···O interactions are drawn as dashed lines. Only the major component is shown.
(E)-2-[4-(Diethylamino)styryl]-1-methylpyridinium benzenesulfonate monohydrate top
Crystal data top
C18H23N2+·C6H5O3S·H2OF(000) = 944
Mr = 442.57Dx = 1.268 Mg m3
Monoclinic, P21/cMelting point = 566–468 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.9393 (5) ÅCell parameters from 6105 reflections
b = 17.9047 (9) Åθ = 1.9–29.0°
c = 13.2532 (7) ŵ = 0.17 mm1
β = 100.715 (1)°T = 297 K
V = 2317.4 (2) Å3Block, orange
Z = 40.47 × 0.28 × 0.27 mm
Data collection top
Bruker SMART APEXII CCD area-detector.
diffractometer
6105 independent reflections
Radiation source: sealed tube3770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.924, Tmax = 0.955k = 2424
23078 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0718P)2 + 0.6034P]
where P = (Fo2 + 2Fc2)/3
6105 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C18H23N2+·C6H5O3S·H2OV = 2317.4 (2) Å3
Mr = 442.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9393 (5) ŵ = 0.17 mm1
b = 17.9047 (9) ÅT = 297 K
c = 13.2532 (7) Å0.47 × 0.28 × 0.27 mm
β = 100.715 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector.
diffractometer
6105 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3770 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.955Rint = 0.030
23078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
6105 reflectionsΔρmin = 0.34 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.37923 (17)0.19719 (9)0.60635 (12)0.0544 (4)
N20.5404 (2)0.11253 (14)0.11672 (19)0.0943 (7)
C10.3917 (3)0.24752 (13)0.68435 (19)0.0749 (7)
H1A0.31340.26360.70700.090*
C20.5133 (3)0.27431 (15)0.7291 (2)0.0861 (8)
H2A0.51930.30850.78260.103*
C30.6310 (3)0.25112 (14)0.69564 (19)0.0779 (7)
H3A0.71630.26970.72600.093*
C40.6188 (2)0.20033 (12)0.61701 (16)0.0601 (5)
H4A0.69700.18430.59430.072*
C50.49121 (19)0.17222 (10)0.57031 (14)0.0466 (4)
C60.47237 (18)0.12106 (10)0.48520 (14)0.0478 (4)
H6A0.38370.10550.45830.057*
C70.57404 (18)0.09435 (10)0.44222 (14)0.0470 (4)
H7A0.66210.11000.47080.056*
C80.56174 (17)0.04385 (9)0.35634 (14)0.0447 (4)
C90.67804 (19)0.02127 (12)0.31950 (16)0.0602 (5)
H9A0.76270.04070.34980.072*
C100.6720 (2)0.02858 (13)0.24028 (17)0.0677 (6)
H10A0.75240.04210.21850.081*
C110.5480 (2)0.05947 (12)0.19157 (16)0.0602 (5)
C120.4306 (2)0.03423 (12)0.22563 (17)0.0630 (5)
H12A0.34530.05160.19320.076*
C130.43791 (19)0.01503 (11)0.30494 (16)0.0568 (5)
H13A0.35740.02980.32530.068*
C140.4085 (3)0.14535 (16)0.0674 (2)0.0988 (10)
H14A0.42470.19450.04120.119*
H14B0.35090.15140.11840.119*
C150.3368 (4)0.09968 (19)0.0164 (3)0.1244 (12)
H15A0.25330.12410.04750.187*
H15B0.39380.09290.06670.187*
H15C0.31590.05190.00980.187*
C16A0.6609 (5)0.1534 (2)0.0964 (3)0.0785 (14)0.738 (9)
H16A0.63500.20450.07770.094*0.738 (9)
H16B0.73020.15460.15850.094*0.738 (9)
C17A0.7198 (5)0.1177 (2)0.0113 (4)0.0975 (17)0.738 (9)
H17A0.79390.14770.00330.146*0.738 (9)
H17B0.75300.06870.03210.146*0.738 (9)
H17C0.64990.11400.04920.146*0.738 (9)
C16B0.6536 (13)0.1042 (7)0.0426 (10)0.080 (4)*0.262 (9)
H16C0.61420.11160.02930.096*0.262 (9)
H16D0.70130.05670.05180.096*0.262 (9)
C17B0.7432 (15)0.1684 (7)0.0869 (10)0.090 (4)*0.262 (9)
H17D0.80440.18110.04140.135*0.262 (9)
H17E0.68700.21080.09490.135*0.262 (9)
H17F0.79530.15440.15260.135*0.262 (9)
S10.04707 (5)0.15726 (4)0.24744 (4)0.0654 (2)
O10.0265 (2)0.18007 (11)0.14137 (14)0.0980 (6)
O20.0623 (2)0.18000 (11)0.29822 (16)0.0985 (6)
O30.18028 (17)0.17776 (11)0.30344 (15)0.0916 (6)
C190.0540 (2)0.02197 (16)0.3415 (2)0.0776 (7)
H19A0.05600.04950.40130.093*
C200.0584 (3)0.0546 (2)0.3458 (3)0.1078 (11)
H20A0.06380.07870.40850.129*
C210.0549 (3)0.0958 (2)0.2577 (5)0.1239 (16)
H21A0.05780.14770.26080.149*
C220.0472 (3)0.0597 (2)0.1643 (3)0.1092 (11)
H22A0.04460.08740.10470.131*
C230.0431 (2)0.01794 (17)0.1597 (2)0.0815 (7)
H23A0.03810.04230.09720.098*
C240.04664 (18)0.05846 (14)0.24854 (17)0.0618 (5)
C180.2404 (2)0.17099 (14)0.56214 (19)0.0718 (6)
H18A0.23650.11760.56820.108*
H18B0.21850.18480.49100.108*
H18C0.17570.19340.59840.108*
O1W0.8847 (2)0.20924 (15)0.49628 (17)0.1225 (8)
H1W10.92460.20800.43490.147*
H2W10.94070.25220.54170.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0629 (10)0.0548 (9)0.0489 (9)0.0076 (7)0.0193 (8)0.0020 (7)
N20.0730 (13)0.1111 (17)0.0977 (17)0.0068 (12)0.0129 (12)0.0540 (14)
C10.1001 (19)0.0667 (14)0.0643 (14)0.0145 (13)0.0324 (14)0.0063 (12)
C20.126 (2)0.0707 (15)0.0626 (15)0.0013 (16)0.0201 (16)0.0207 (13)
C30.0946 (18)0.0713 (15)0.0622 (14)0.0176 (13)0.0001 (13)0.0076 (12)
C40.0608 (12)0.0635 (12)0.0542 (12)0.0035 (9)0.0060 (9)0.0027 (10)
C50.0511 (10)0.0446 (9)0.0452 (10)0.0039 (7)0.0121 (8)0.0037 (8)
C60.0438 (9)0.0507 (10)0.0494 (10)0.0008 (7)0.0096 (8)0.0008 (8)
C70.0417 (9)0.0503 (10)0.0479 (10)0.0036 (7)0.0053 (7)0.0022 (8)
C80.0415 (9)0.0446 (9)0.0478 (10)0.0047 (7)0.0082 (7)0.0028 (8)
C90.0391 (9)0.0771 (13)0.0641 (13)0.0035 (9)0.0083 (9)0.0135 (11)
C100.0471 (11)0.0884 (15)0.0693 (14)0.0122 (10)0.0149 (10)0.0182 (12)
C110.0587 (12)0.0614 (12)0.0602 (12)0.0083 (9)0.0099 (10)0.0118 (10)
C120.0474 (11)0.0695 (13)0.0704 (14)0.0030 (9)0.0066 (9)0.0172 (11)
C130.0429 (10)0.0630 (12)0.0660 (13)0.0021 (8)0.0139 (9)0.0100 (10)
C140.116 (2)0.0828 (18)0.088 (2)0.0180 (16)0.0052 (17)0.0326 (16)
C150.157 (3)0.102 (2)0.104 (3)0.030 (2)0.003 (2)0.008 (2)
C16A0.083 (3)0.065 (2)0.091 (3)0.0100 (17)0.027 (2)0.0236 (19)
C17A0.106 (3)0.096 (3)0.100 (3)0.007 (2)0.042 (3)0.022 (2)
S10.0521 (3)0.0842 (4)0.0600 (4)0.0066 (3)0.0107 (2)0.0051 (3)
O10.1207 (16)0.1058 (14)0.0630 (11)0.0042 (12)0.0051 (10)0.0237 (10)
O20.0845 (13)0.1046 (14)0.1157 (16)0.0043 (10)0.0427 (12)0.0098 (12)
O30.0688 (11)0.1090 (14)0.0908 (13)0.0309 (10)0.0008 (9)0.0101 (11)
C190.0459 (11)0.1011 (19)0.0840 (17)0.0052 (11)0.0073 (11)0.0224 (15)
C200.0568 (16)0.111 (3)0.151 (3)0.0014 (16)0.0091 (18)0.052 (2)
C210.0538 (16)0.085 (2)0.229 (5)0.0030 (14)0.016 (2)0.023 (3)
C220.0698 (18)0.098 (2)0.161 (3)0.0011 (16)0.022 (2)0.028 (2)
C230.0588 (14)0.100 (2)0.0860 (18)0.0017 (13)0.0138 (12)0.0064 (15)
C240.0338 (9)0.0847 (15)0.0659 (13)0.0028 (9)0.0066 (8)0.0094 (12)
C180.0523 (12)0.0903 (17)0.0775 (16)0.0081 (11)0.0242 (11)0.0007 (13)
O1W0.1150 (17)0.157 (2)0.1059 (16)0.0526 (15)0.0468 (13)0.0250 (15)
Geometric parameters (Å, º) top
N1—C11.360 (3)C15—H15B0.9600
N1—C51.365 (2)C15—H15C0.9600
N1—C181.472 (3)C16A—C17A1.506 (7)
N2—C111.365 (3)C16A—H16A0.9700
N2—C16A1.471 (4)C16A—H16B0.9700
N2—C141.474 (4)C17A—H17A0.9600
N2—C16B1.632 (14)C17A—H17B0.9600
C1—C21.333 (4)C17A—H17C0.9600
C1—H1A0.9300C16B—C17B1.51 (2)
C2—C31.389 (4)C16B—H16C0.9700
C2—H2A0.9300C16B—H16D0.9700
C3—C41.371 (3)C17B—H17D0.9600
C3—H3A0.9300C17B—H17E0.9600
C4—C51.397 (3)C17B—H17F0.9600
C4—H4A0.9300S1—O21.4395 (18)
C5—C61.438 (3)S1—O31.4398 (17)
C6—C71.337 (2)S1—O11.4414 (18)
C6—H6A0.9300S1—C241.769 (2)
C7—C81.441 (2)C19—C201.372 (4)
C7—H7A0.9300C19—C241.384 (3)
C8—C131.390 (3)C19—H19A0.9300
C8—C91.396 (2)C20—C211.376 (5)
C9—C101.371 (3)C20—H20A0.9300
C9—H9A0.9300C21—C221.385 (5)
C10—C111.396 (3)C21—H21A0.9300
C10—H10A0.9300C22—C231.391 (4)
C11—C121.401 (3)C22—H22A0.9300
C12—C131.364 (3)C23—C241.377 (3)
C12—H12A0.9300C23—H23A0.9300
C13—H13A0.9300C18—H18A0.9600
C14—C151.454 (4)C18—H18B0.9600
C14—H14A0.9700C18—H18C0.9600
C14—H14B0.9700O1W—H1W10.9693
C15—H15A0.9600O1W—H2W11.0669
C1—N1—C5121.22 (19)C14—C15—H15B109.5
C1—N1—C18117.38 (19)H15A—C15—H15B109.5
C5—N1—C18121.40 (17)C14—C15—H15C109.5
C11—N2—C16A122.8 (2)H15A—C15—H15C109.5
C11—N2—C14121.6 (2)H15B—C15—H15C109.5
C16A—N2—C14114.1 (2)N2—C16A—C17A111.7 (4)
C11—N2—C16B115.0 (5)N2—C16A—H16A109.3
C14—N2—C16B115.2 (5)C17A—C16A—H16A109.3
C2—C1—N1121.5 (2)N2—C16A—H16B109.3
C2—C1—H1A119.2C17A—C16A—H16B109.3
N1—C1—H1A119.2H16A—C16A—H16B108.0
C1—C2—C3119.9 (2)C17B—C16B—N296.9 (10)
C1—C2—H2A120.0C17B—C16B—H16C112.4
C3—C2—H2A120.0N2—C16B—H16C112.4
C4—C3—C2118.7 (2)C17B—C16B—H16D112.4
C4—C3—H3A120.7N2—C16B—H16D112.4
C2—C3—H3A120.7H16C—C16B—H16D109.9
C3—C4—C5121.3 (2)C16B—C17B—H17D109.5
C3—C4—H4A119.3C16B—C17B—H17E109.5
C5—C4—H4A119.3H17D—C17B—H17E109.5
N1—C5—C4117.31 (17)C16B—C17B—H17F109.5
N1—C5—C6119.16 (17)H17D—C17B—H17F109.5
C4—C5—C6123.50 (17)H17E—C17B—H17F109.5
C7—C6—C5124.29 (17)O2—S1—O3112.89 (13)
C7—C6—H6A117.9O2—S1—O1113.17 (13)
C5—C6—H6A117.9O3—S1—O1112.36 (12)
C6—C7—C8126.94 (17)O2—S1—C24106.01 (11)
C6—C7—H7A116.5O3—S1—C24104.71 (11)
C8—C7—H7A116.5O1—S1—C24106.92 (12)
C13—C8—C9115.87 (17)C20—C19—C24120.3 (3)
C13—C8—C7123.87 (16)C20—C19—H19A119.9
C9—C8—C7120.26 (16)C24—C19—H19A119.9
C10—C9—C8122.39 (18)C19—C20—C21120.3 (3)
C10—C9—H9A118.8C19—C20—H20A119.8
C8—C9—H9A118.8C21—C20—H20A119.8
C9—C10—C11121.40 (18)C20—C21—C22119.7 (4)
C9—C10—H10A119.3C20—C21—H21A120.1
C11—C10—H10A119.3C22—C21—H21A120.1
N2—C11—C10122.44 (19)C21—C22—C23120.1 (4)
N2—C11—C12121.4 (2)C21—C22—H22A119.9
C10—C11—C12116.11 (19)C23—C22—H22A119.9
C13—C12—C11121.91 (19)C24—C23—C22119.5 (3)
C13—C12—H12A119.0C24—C23—H23A120.2
C11—C12—H12A119.0C22—C23—H23A120.2
C12—C13—C8122.21 (17)C23—C24—C19120.0 (3)
C12—C13—H13A118.9C23—C24—S1121.29 (19)
C8—C13—H13A118.9C19—C24—S1118.6 (2)
C15—C14—N2112.6 (3)N1—C18—H18A109.5
C15—C14—H14A109.1N1—C18—H18B109.5
N2—C14—H14A109.1H18A—C18—H18B109.5
C15—C14—H14B109.1N1—C18—H18C109.5
N2—C14—H14B109.1H18A—C18—H18C109.5
H14A—C14—H14B107.8H18B—C18—H18C109.5
C14—C15—H15A109.5H1W1—O1W—H2W1103.8
C5—N1—C1—C20.3 (3)C10—C11—C12—C132.9 (4)
C18—N1—C1—C2180.0 (2)C11—C12—C13—C80.6 (4)
N1—C1—C2—C30.4 (4)C9—C8—C13—C122.1 (3)
C1—C2—C3—C40.4 (4)C7—C8—C13—C12178.2 (2)
C2—C3—C4—C50.3 (3)C11—N2—C14—C1583.8 (4)
C1—N1—C5—C40.2 (3)C16A—N2—C14—C15109.7 (3)
C18—N1—C5—C4179.92 (18)C16B—N2—C14—C1563.0 (6)
C1—N1—C5—C6177.75 (18)C11—N2—C16A—C17A95.3 (4)
C18—N1—C5—C62.0 (3)C14—N2—C16A—C17A98.4 (4)
C3—C4—C5—N10.2 (3)C16B—N2—C16A—C17A3.2 (7)
C3—C4—C5—C6177.6 (2)C11—N2—C16B—C17B106.1 (7)
N1—C5—C6—C7178.44 (17)C16A—N2—C16B—C17B6.1 (5)
C4—C5—C6—C70.7 (3)C14—N2—C16B—C17B104.8 (7)
C5—C6—C7—C8179.19 (17)C24—C19—C20—C210.3 (4)
C6—C7—C8—C130.1 (3)C19—C20—C21—C220.1 (4)
C6—C7—C8—C9179.54 (19)C20—C21—C22—C230.1 (4)
C13—C8—C9—C102.6 (3)C21—C22—C23—C240.1 (4)
C7—C8—C9—C10177.8 (2)C22—C23—C24—C190.0 (3)
C8—C9—C10—C110.2 (4)C22—C23—C24—S1178.04 (19)
C16A—N2—C11—C1013.7 (4)C20—C19—C24—C230.3 (3)
C14—N2—C11—C10179.0 (3)C20—C19—C24—S1177.88 (18)
C16B—N2—C11—C1034.1 (6)O2—S1—C24—C23127.83 (19)
C16A—N2—C11—C12164.7 (3)O3—S1—C24—C23112.59 (18)
C14—N2—C11—C120.6 (4)O1—S1—C24—C236.8 (2)
C16B—N2—C11—C12147.5 (5)O2—S1—C24—C1954.06 (19)
C9—C10—C11—N2176.0 (2)O3—S1—C24—C1965.52 (19)
C9—C10—C11—C122.5 (4)O1—S1—C24—C19175.08 (17)
N2—C11—C12—C13175.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C19–C24 ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2i0.971.912.821 (3)156
O1W—H2W1···O1ii1.071.882.933 (3)170
C1—H1A···O3iii0.932.263.151 (3)160
C3—H3A···O2ii0.932.413.335 (4)178
C4—H4A···O1W0.932.503.338 (3)149
C18—H18B···O30.962.453.371 (3)162
C10—H10A···Cg1i0.932.953.741 (2)144
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H23N2+·C6H5O3S·H2O
Mr442.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)9.9393 (5), 17.9047 (9), 13.2532 (7)
β (°) 100.715 (1)
V3)2317.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.47 × 0.28 × 0.27
Data collection
DiffractometerBruker SMART APEXII CCD area-detector.
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.924, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
23078, 6105, 3770
Rint0.030
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.173, 1.04
No. of reflections6105
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C19–C24 ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2i0.971.912.821 (3)156
O1W—H2W1···O1ii1.071.882.933 (3)170
C1—H1A···O3iii0.932.263.151 (3)160
C3—H3A···O2ii0.932.413.335 (4)178
C4—H4A···O1W0.932.503.338 (3)149
C18—H18B···O30.962.453.371 (3)162
C10—H10A···Cg1i0.932.953.741 (2)144
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

Financial support by the Prince of Songkla University is gratefully acknowledged. KC thanks the Crystal Materials Research Unit (CMRU), Prince of Songkla University, for the research assistance fellowship. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Chanawanno, K., Kobkeatthawin, T. & Chantrapromma, S. (2010). Acta Cryst. E66, o938–o939.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639–o2640.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMassi, L., Guitard, F., Geribaldi, S., Levy, R. & Duccini, Y. (2003). Int. J. Antimicrob. Agents, 21, 20–26.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoprey, P. R. & Maxcy, R. B. (1968). J. Food Sci. 33, 536–540.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYabuhara, T., Maeda, T., Nagamune, H. & Kourai, H. (2004). Biocontrol Sci. 9, 95–103.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o593-o594
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds