organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o715-o716

2-(2-Hy­dr­oxy-3-meth­­oxy­phen­yl)-6H-perimidin-6-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 14 February 2011; accepted 20 February 2011; online 26 February 2011)

The mol­ecule of the title perimidine derivative, C18H12N2O3, is essentially planar, the dihedral angle between the benzene and perimidine rings being 3.25 (5)°. The hy­droxy and meth­oxy groups lie in the plane of the benzene ring to which they are bound [O—C—C—C = 179.96 (11)° and C—O—C—C = −177.96 (12)°]. An intra­molecular O—H⋯N inter­action generates an S(6) ring motif. In the crystal, mol­ecules are linked by pairs of C—H⋯O inter­actions into dimers, which generate S(16) ring motifs. These dimers are arranged into sheets parallel to the ac plane and further stacked down the b axis by ππ inter­actions, with centroid–centroid distances in the range 3.5066 (8)–3.7241 (7) Å.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to perimidines and their applications, see: Claramunt et al. (1995[Claramunt, R. M., Dotor, J. & Elguero, J. (1995). Ann. Quim. 91, 151-183.]); del Valle et al. (1997[Valle, J. C. del, Catalán, J., Faces-Foces, C., Llamas-Saiz, A. L., Elguero, J., Sanz, D., Dotor, J. & Claramunt, R. M. (1997). J. Lumin. 75, 17-26.]); Herbert et al. (1987[Herbert, J. M., Woodgate, P. D. & Denny, W. A. (1987). J. Med. Chem. 30, 2081-2086.]); Llamas-Saiz et al. (1995[Llamas-Saiz, A. L., Foces-Foces, C., Sanz, D., Claramunt, R. M., Dotor, J., Elguero, J., Catalán, J. & del Valle, J. C. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1389-1398.]); Pozharskii & Dalnikovskaya (1981[Pozharskii, A. F. & Dalnikovskaya, V. V. (1981). Russ. Chem. Rev. 50, 816-835.]); Varsha et al. (2010[Varsha, G., Arun, V., Robinson, P. P., Sebastian, M., Varghese, D., Leeju, P., Jayachandran, V. P. & Yusuff, K. K. M. (2010). Tetrahedron Lett.. 51, 2174-2177.]). For related structures, see: Llamas-Saiz et al. (1995[Llamas-Saiz, A. L., Foces-Foces, C., Sanz, D., Claramunt, R. M., Dotor, J., Elguero, J., Catalán, J. & del Valle, J. C. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1389-1398.]); Varsha et al. (2010[Varsha, G., Arun, V., Robinson, P. P., Sebastian, M., Varghese, D., Leeju, P., Jayachandran, V. P. & Yusuff, K. K. M. (2010). Tetrahedron Lett.. 51, 2174-2177.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12N2O3

  • Mr = 304.30

  • Monoclinic, C 2/c

  • a = 25.4718 (17) Å

  • b = 7.0666 (3) Å

  • c = 15.0815 (6) Å

  • β = 94.373 (3)°

  • V = 2706.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.67 × 0.11 × 0.05 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.933, Tmax = 0.994

  • 42939 measured reflections

  • 6529 independent reflections

  • 3471 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.210

  • S = 1.02

  • 6529 reflections

  • 255 parameters

  • All H-atom parameters refined

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N2 0.91 (2) 1.73 (2) 2.5583 (15) 151 (2)
C15—H15⋯O2i 0.970 (18) 2.437 (18) 3.3686 (17) 160.8 (12)
Symmetry code: (i) [-x+2, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Perimidines (peri-naphtho-fused perimidine ring systems) have received wide interests due to their applications in photophysics (del Valle et al., 1997), usage as coloring materials for polyester fibers (Claramunt et al., 1995) and fluorescent materials (Varsha et al., 2010). They are also noted for their biological activity displaying antiulcer, antifungal, antimicrobial and antitumor properties (Claramunt et al., 1995; Herbert et al., 1987; Pozharskii & Dalnikovskaya, 1981). In an attempt to synthesize a Co(II) Schiff base complex by the reaction of o-vanillin, 1,8-diaminonaphthalene and CoCl2.6H2O, the unexpected product was the perimidine derivative, (I), reported here, Fig 1.

In the molecule of the title perimidine derivative (I), C18H12N2O3, the perimidine ring system (N1–N2/C7–C17) is planar with an r.m.s deviation 0.0126 (11)Å. The whole molecule is essentially planar with the dihedral angle between the perimidine and phenyl rings being 3.25 (5)°. Both the hydroxy and methoxy groups are co-planar with the attached benzene ring with torsion angles O2–C2–C3–C4 = 179.96 (11)° and C18–O3–C3–C2 = -177.96 (12)°. An intramolecular O—H···N interaction generates an S(6) ring motif (Bernstein et al., 1995) and helps to stabilize the planarity of the molecule (Fig. 1). Bond distances are normal (Allen et al., 1987) and are comparable to those found in related structures (Llamas-Saiz et al., 1995; Varsha et al., 2010).

In the crystal structure (Fig. 2), the molecules are linked by two C—H···O interactions (Table 1) into dimers which generate S(16) ring motifs. These dimers are arranged into sheets parallel to the ac plane and further stacked down the b axis by ππ interactions with centroid to centroid distances Cg1···Cg2 ii= 3.7241 (7) Å; Cg2···Cg3 ii= 3.5066 (8) Å; Cg2···Cg4 ii= 3.7055 (8) Å and Cg2···Cg4 iii= 3.5988 (8) Å (symmetry codes (ii) = 2 - x, 1 - y, 1 - z and (iii) = 2 - x, 2 - y, 2 - z). Cg1, Cg2, Cg3, and Cg4 are the centroids of the N1–N2/C7–C8/C6–C17, C1–C6, C8–C12/C17, and C12–C17 rings, respectively.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For background to perimidines and their applications, see: Claramunt et al. (1995); del Valle et al. (1997); Herbert et al. (1987); Llamas-Saiz et al. (1995); Pozharskii & Dalnikovskaya (1981); Varsha et al. (2010). For related structures, see: Llamas-Saiz et al. (1995); Varsha et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by adding a solution of 1,8-diaminonaphthalene (0.50 g, 3.16 mmol) in ethanol (20 ml) dropwise to a solution of o-vanillin (0.96 g, 6.32 mmol) in ethanol (10 ml). The reaction mixture was stirred for 0.5 h at room temperature and a pale-orange precipitate was obtained. After filtration, the pale-orange solid was washed with diethyl ether. A solution of the pale-orange solid (0.20 g, 0.47 mmol) in ethanol (20 ml) was slowly added to a solution of CoCl2.6H2O (0.11 g, 0.47 mmol) in 10 ml of ethanol followed by triethylamine (0.06 ml, 0.47 mmol). The mixture was refluxed for 3 h. The title compound was obtained as a purple solid and washed with diethyl ether. The purple needle-shaped single crystals of the unexpected perimidine derivative of the title compound suitable for x-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature over several days, Mp. 507–508 K.

Refinement top

All H atoms (except H13) were located in difference maps and refined isotropically. H13 was refined with Uiso constrained to be 1.2Ueq (C13). The highest residual electron density peak is located at 0.68 Å from C16 and the deepest hole is located at 0.48 Å from C16.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. An intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis. Hydrogen bonds were drawn as dashed lines.
2-(2-Hydroxy-3-methoxyphenyl)-6H-perimidin-6-one top
Crystal data top
C18H12N2O3F(000) = 1264
Mr = 304.30Dx = 1.493 Mg m3
Monoclinic, C2/cMelting point = 507–508 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 25.4718 (17) ÅCell parameters from 6529 reflections
b = 7.0666 (3) Åθ = 1.6–36.3°
c = 15.0815 (6) ŵ = 0.10 mm1
β = 94.373 (3)°T = 100 K
V = 2706.8 (2) Å3Needle, purple
Z = 80.67 × 0.11 × 0.05 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
6529 independent reflections
Radiation source: sealed tube3471 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 36.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 4234
Tmin = 0.933, Tmax = 0.994k = 1111
42939 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.110P)2]
where P = (Fo2 + 2Fc2)/3
6529 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C18H12N2O3V = 2706.8 (2) Å3
Mr = 304.30Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.4718 (17) ŵ = 0.10 mm1
b = 7.0666 (3) ÅT = 100 K
c = 15.0815 (6) Å0.67 × 0.11 × 0.05 mm
β = 94.373 (3)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
6529 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3471 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.994Rint = 0.072
42939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.210All H-atom parameters refined
S = 1.02Δρmax = 0.57 e Å3
6529 reflectionsΔρmin = 0.29 e Å3
255 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.20986 (4)0.86652 (17)0.36853 (7)0.0390 (3)
O20.93604 (4)0.76137 (15)0.66009 (7)0.0305 (2)
H1O20.9692 (9)0.784 (3)0.6441 (15)0.068 (7)*
O30.83728 (4)0.69274 (15)0.67439 (7)0.0307 (2)
N11.00314 (4)0.71962 (15)0.40931 (7)0.0230 (2)
N21.01534 (4)0.77988 (14)0.56606 (7)0.0217 (2)
C10.92971 (5)0.68964 (16)0.50224 (9)0.0213 (2)
C20.90819 (5)0.70778 (17)0.58472 (9)0.0229 (3)
C30.85404 (5)0.66982 (18)0.59105 (9)0.0245 (3)
C40.82297 (5)0.61425 (18)0.51641 (10)0.0269 (3)
H40.7846 (8)0.588 (3)0.5190 (13)0.053 (5)*
C50.84470 (5)0.59241 (19)0.43503 (9)0.0271 (3)
H50.8242 (6)0.542 (2)0.3839 (11)0.032 (4)*
C60.89730 (5)0.62922 (18)0.42762 (9)0.0242 (3)
H60.9121 (6)0.608 (3)0.3716 (12)0.039 (5)*
C70.98576 (5)0.73220 (16)0.49261 (9)0.0208 (2)
C81.05351 (5)0.75829 (17)0.40160 (9)0.0222 (2)
C91.07449 (5)0.7429 (2)0.31468 (9)0.0271 (3)
H91.0495 (6)0.696 (2)0.2625 (11)0.027 (4)*
C101.12551 (5)0.7780 (2)0.30472 (9)0.0281 (3)
H101.1420 (6)0.761 (2)0.2446 (11)0.031 (4)*
C111.16293 (5)0.83502 (19)0.37912 (9)0.0269 (3)
C121.14203 (5)0.84961 (17)0.46741 (9)0.0233 (3)
C131.17405 (5)0.89476 (19)0.54295 (9)0.0268 (3)
H131.2155 (6)0.916 (2)0.5341 (11)0.032*
C141.15283 (5)0.90293 (19)0.62651 (10)0.0284 (3)
H141.1753 (6)0.931 (2)0.6784 (10)0.029 (4)*
C151.10056 (5)0.86583 (18)0.63559 (9)0.0257 (3)
H151.0859 (6)0.865 (2)0.6931 (12)0.036 (4)*
C161.06736 (5)0.81935 (16)0.55893 (9)0.0218 (2)
C171.08818 (5)0.81121 (16)0.47560 (8)0.0206 (2)
C180.78320 (6)0.6497 (2)0.68447 (12)0.0338 (3)
H18A0.7621 (7)0.737 (3)0.6464 (12)0.039 (5)*
H18B0.7746 (6)0.521 (3)0.6683 (10)0.032 (4)*
H18C0.7805 (7)0.666 (2)0.7467 (12)0.035 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0255 (5)0.0525 (7)0.0408 (6)0.0050 (5)0.0157 (4)0.0022 (5)
O20.0225 (5)0.0393 (6)0.0313 (5)0.0060 (4)0.0121 (4)0.0095 (4)
O30.0201 (4)0.0387 (6)0.0353 (5)0.0036 (4)0.0158 (4)0.0050 (4)
N10.0213 (5)0.0227 (5)0.0261 (6)0.0006 (4)0.0090 (4)0.0043 (4)
N20.0189 (5)0.0195 (5)0.0278 (6)0.0018 (4)0.0099 (4)0.0012 (4)
C10.0201 (5)0.0168 (5)0.0282 (6)0.0001 (4)0.0088 (5)0.0031 (4)
C20.0204 (6)0.0202 (5)0.0290 (7)0.0007 (4)0.0089 (5)0.0003 (4)
C30.0222 (6)0.0220 (5)0.0309 (7)0.0002 (4)0.0112 (5)0.0011 (5)
C40.0186 (6)0.0244 (6)0.0383 (8)0.0017 (5)0.0073 (5)0.0059 (5)
C50.0235 (6)0.0268 (6)0.0313 (7)0.0019 (5)0.0036 (5)0.0066 (5)
C60.0245 (6)0.0234 (6)0.0254 (6)0.0002 (4)0.0066 (5)0.0054 (5)
C70.0213 (5)0.0171 (5)0.0253 (6)0.0013 (4)0.0092 (5)0.0019 (4)
C80.0212 (5)0.0196 (5)0.0266 (6)0.0013 (4)0.0079 (5)0.0041 (4)
C90.0265 (6)0.0316 (6)0.0244 (6)0.0006 (5)0.0096 (5)0.0042 (5)
C100.0273 (6)0.0330 (7)0.0254 (7)0.0006 (5)0.0118 (5)0.0051 (5)
C110.0249 (6)0.0271 (6)0.0304 (7)0.0000 (5)0.0127 (5)0.0043 (5)
C120.0204 (5)0.0213 (5)0.0297 (6)0.0008 (4)0.0109 (5)0.0026 (5)
C130.0219 (6)0.0261 (6)0.0336 (7)0.0046 (5)0.0090 (5)0.0000 (5)
C140.0248 (6)0.0295 (6)0.0319 (7)0.0057 (5)0.0077 (5)0.0041 (5)
C150.0245 (6)0.0263 (6)0.0273 (7)0.0051 (5)0.0100 (5)0.0033 (5)
C160.0211 (5)0.0175 (5)0.0281 (6)0.0020 (4)0.0104 (4)0.0016 (4)
C170.0210 (5)0.0168 (5)0.0253 (6)0.0000 (4)0.0094 (4)0.0024 (4)
C180.0192 (6)0.0437 (9)0.0405 (9)0.0047 (6)0.0145 (6)0.0017 (7)
Geometric parameters (Å, º) top
O1—C111.2384 (16)C8—C171.4196 (18)
O2—C21.3474 (16)C8—C91.4568 (19)
O2—H1O20.91 (2)C9—C101.3427 (19)
O3—C31.3676 (16)C9—H91.028 (16)
O3—C181.4301 (16)C10—C111.472 (2)
N1—C81.3256 (16)C10—H101.035 (17)
N1—C71.3663 (17)C11—C121.4747 (18)
N2—C71.3345 (17)C12—C131.3868 (19)
N2—C161.3664 (16)C12—C171.4127 (17)
C1—C21.4030 (18)C13—C141.4098 (19)
C1—C61.4102 (19)C13—H131.085 (16)
C1—C71.4769 (17)C14—C151.3739 (18)
C2—C31.4155 (17)C14—H140.955 (15)
C3—C41.3827 (19)C15—C161.4179 (18)
C4—C51.393 (2)C15—H150.970 (17)
C4—H41.000 (19)C16—C171.4019 (18)
C5—C61.3777 (18)C18—H18A0.976 (18)
C5—H50.966 (16)C18—H18B0.963 (17)
C6—H60.963 (18)C18—H18C0.954 (18)
C2—O2—H1O2105.4 (14)C9—C10—C11122.77 (12)
C3—O3—C18116.32 (11)C9—C10—H10122.6 (9)
C8—N1—C7116.80 (11)C11—C10—H10114.6 (9)
C7—N2—C16118.40 (11)O1—C11—C10121.75 (12)
C2—C1—C6119.38 (11)O1—C11—C12121.49 (13)
C2—C1—C7120.97 (11)C10—C11—C12116.75 (11)
C6—C1—C7119.65 (11)C13—C12—C17119.11 (12)
O2—C2—C1123.88 (11)C13—C12—C11121.84 (12)
O2—C2—C3116.70 (11)C17—C12—C11119.03 (12)
C1—C2—C3119.41 (12)C12—C13—C14120.14 (12)
O3—C3—C4125.62 (12)C12—C13—H13116.6 (8)
O3—C3—C2114.43 (12)C14—C13—H13123.2 (8)
C4—C3—C2119.95 (12)C15—C14—C13121.45 (13)
C3—C4—C5120.50 (12)C15—C14—H14118.9 (9)
C3—C4—H4121.5 (11)C13—C14—H14119.6 (9)
C5—C4—H4118.0 (11)C14—C15—C16119.02 (12)
C6—C5—C4120.32 (13)C14—C15—H15122.2 (10)
C6—C5—H5118.3 (9)C16—C15—H15118.7 (10)
C4—C5—H5121.2 (9)N2—C16—C17119.84 (11)
C5—C6—C1120.42 (12)N2—C16—C15120.32 (11)
C5—C6—H6119.3 (10)C17—C16—C15119.84 (11)
C1—C6—H6120.2 (10)C16—C17—C12120.44 (12)
N2—C7—N1125.29 (11)C16—C17—C8117.41 (11)
N2—C7—C1117.29 (11)C12—C17—C8122.12 (11)
N1—C7—C1117.42 (11)O3—C18—H18A107.1 (10)
N1—C8—C17122.25 (12)O3—C18—H18B112.2 (9)
N1—C8—C9119.17 (12)H18A—C18—H18B110.1 (14)
C17—C8—C9118.57 (11)O3—C18—H18C102.7 (10)
C10—C9—C8120.76 (13)H18A—C18—H18C115.0 (15)
C10—C9—H9121.4 (9)H18B—C18—H18C109.5 (14)
C8—C9—H9117.7 (9)
C6—C1—C2—O2178.87 (11)C8—C9—C10—C110.6 (2)
C7—C1—C2—O20.90 (19)C9—C10—C11—O1179.92 (13)
C6—C1—C2—C31.62 (18)C9—C10—C11—C121.0 (2)
C7—C1—C2—C3178.60 (10)O1—C11—C12—C131.6 (2)
C18—O3—C3—C41.88 (19)C10—C11—C12—C13177.40 (12)
C18—O3—C3—C2177.96 (12)O1—C11—C12—C17179.71 (12)
O2—C2—C3—O30.19 (17)C10—C11—C12—C170.76 (17)
C1—C2—C3—O3179.73 (10)C17—C12—C13—C140.32 (19)
O2—C2—C3—C4179.96 (11)C11—C12—C13—C14178.48 (12)
C1—C2—C3—C40.42 (18)C12—C13—C14—C150.4 (2)
O3—C3—C4—C5178.86 (12)C13—C14—C15—C160.3 (2)
C2—C3—C4—C50.98 (19)C7—N2—C16—C170.73 (17)
C3—C4—C5—C61.1 (2)C7—N2—C16—C15178.36 (11)
C4—C5—C6—C10.1 (2)C14—C15—C16—N2179.33 (12)
C2—C1—C6—C51.47 (18)C14—C15—C16—C170.24 (19)
C7—C1—C6—C5178.75 (11)N2—C16—C17—C12179.29 (10)
C16—N2—C7—N10.21 (18)C15—C16—C17—C120.20 (18)
C16—N2—C7—C1179.80 (10)N2—C16—C17—C80.99 (17)
C8—N1—C7—N20.03 (18)C15—C16—C17—C8178.10 (11)
C8—N1—C7—C1179.96 (10)C13—C12—C17—C160.24 (18)
C2—C1—C7—N22.97 (17)C11—C12—C17—C16178.45 (10)
C6—C1—C7—N2176.80 (11)C13—C12—C17—C8177.98 (11)
C2—C1—C7—N1177.02 (10)C11—C12—C17—C80.23 (18)
C6—C1—C7—N13.21 (16)N1—C8—C17—C160.77 (17)
C7—N1—C8—C170.26 (17)C9—C8—C17—C16178.10 (11)
C7—N1—C8—C9178.60 (11)N1—C8—C17—C12179.04 (11)
N1—C8—C9—C10178.90 (12)C9—C8—C17—C120.17 (17)
C17—C8—C9—C100.01 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.91 (2)1.73 (2)2.5583 (15)151 (2)
C15—H15···O2i0.970 (18)2.437 (18)3.3686 (17)160.8 (12)
Symmetry code: (i) x+2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H12N2O3
Mr304.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)25.4718 (17), 7.0666 (3), 15.0815 (6)
β (°) 94.373 (3)
V3)2706.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.67 × 0.11 × 0.05
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.933, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
42939, 6529, 3471
Rint0.072
(sin θ/λ)max1)0.833
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.210, 1.02
No. of reflections6529
No. of parameters255
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.57, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.91 (2)1.73 (2)2.5583 (15)151 (2)
C15—H15···O2i0.970 (18)2.437 (18)3.3686 (17)160.8 (12)
Symmetry code: (i) x+2, y, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

KC thanks the Crystal Materials Research Unit (CMRU), Prince of Songkla University, for a research assistance fellowship. Generous support by the Prince of Songkla University is gratefully acknowledged. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClaramunt, R. M., Dotor, J. & Elguero, J. (1995). Ann. Quim. 91, 151–183.  CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerbert, J. M., Woodgate, P. D. & Denny, W. A. (1987). J. Med. Chem. 30, 2081–2086.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLlamas-Saiz, A. L., Foces-Foces, C., Sanz, D., Claramunt, R. M., Dotor, J., Elguero, J., Catalán, J. & del Valle, J. C. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1389–1398.  Google Scholar
First citationPozharskii, A. F. & Dalnikovskaya, V. V. (1981). Russ. Chem. Rev. 50, 816–835.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValle, J. C. del, Catalán, J., Faces-Foces, C., Llamas-Saiz, A. L., Elguero, J., Sanz, D., Dotor, J. & Claramunt, R. M. (1997). J. Lumin. 75, 17–26.  Google Scholar
First citationVarsha, G., Arun, V., Robinson, P. P., Sebastian, M., Varghese, D., Leeju, P., Jayachandran, V. P. & Yusuff, K. K. M. (2010). Tetrahedron Lett.. 51, 2174–2177.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o715-o716
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds