organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-9-(2-nitro­phenyl­sulfon­yl)-9H-purine

aState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: yuluot@scu.edu.cn

(Received 5 January 2011; accepted 24 January 2011; online 23 February 2011)

The title compound, C11H6ClN5O4S, crystallized with two independent mol­ecules in the asymmetric unit. The benzene ring makes dihedral angles of 66.46 (8) and 85.77 (9)° with the mean plane of the purine ring in the two mol­ecules. In the crystal, inter­molecular ππ stacking inter­actions [centroid–centroid distance = 3.8968 (12) Å], C—Cl⋯π inter­actions [Cl⋯centroid = 3.2505 (10) Å, C—Cl⋯centroid = 161.56 (18)°] and non-classical C—H⋯O and C—H⋯N hydrogen bonds link the molecules.

Related literature

For general background to the chemistry, biological activity and applications of purine derivatives, see: Scozzafava et al. (2001[Scozzafava, A., Mastrolorenzo, A. & Supurana, C. T. (2001). Bioorg. Med. Chem. Lett. 45, 1675-1678.]); Bakkestuen et al. (2005[Bakkestuen, A. K., Gundersen, L. L. & Utenova, B. T. (2005). J. Med. Chem. 45, 2710-2723.]).

[Scheme 1]

Experimental

Crystal data
  • C11H6ClN5O4S

  • Mr = 339.72

  • Triclinic, [P \overline 1]

  • a = 10.0055 (3) Å

  • b = 10.6931 (5) Å

  • c = 12.5378 (5) Å

  • α = 93.692 (3)°

  • β = 97.136 (3)°

  • γ = 93.995 (3)°

  • V = 1324.16 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 293 K

  • 0.42 × 0.40 × 0.35 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.992, Tmax = 1.0

  • 10984 measured reflections

  • 5403 independent reflections

  • 4389 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 1.02

  • 5403 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O6 0.93 2.60 3.222 (3) 125
C24—H24⋯O7i 0.93 2.41 3.327 (3) 170
C28—H28⋯O2ii 0.93 2.56 3.469 (3) 165
C30—H30⋯N23iii 0.93 2.62 3.489 (3) 155
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y-1, z-1; (iii) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Purine derivatives are of great importance owing to their wide-ranging biological properties (Scozzafava et al., 2001; Bakkestuen et al., 2005). As there are several kinds of tautomers in purine derivatives, it is difficult to determine their structures by NMR, MS or IR sepctroscopy. The title compound is one of the key intermediates in our synthetic investigations of antimicrobial agents. Here we determined the accurate structure of the title compound by X-ray analysis.

As shown in Fig. 1, the title compound crystallized with two independent molecules (A and B) in the asymmetric unit. The conformation of the molecules is different. The benzene ring makes a dihedral angle of 66.46 (8)° with the mean plane of the purine ring in molecule A, while in molecule B this same angle is 85.77 (9)°.

In the crystal, the two molecules and symmetry related molecules, are linked into a three-dimensional network by intermolecular π···π stacking interactions involving ring (C10-C15) and a symmetry related ring (code: 1-x, 2-x, 1-z)], with a centroid-to-centroid distance of 3.8968 (12) Å, and nonclassical C—H···O and C—H···N hydrogen bonds (Table 1 and Fig. 2). There are also C-Cl···π interactions involving chlorine Cl2 and ring (C10-C15 = Cg), with a Cl···centroid distance of 3.2505 (10) Å, angle C17-Cl2···Cgi being 161.56 (18)° [symmetry code: (i) -x, -y+1, -z+1] - see Fig. 1.

Related literature top

For general background to the chemistry, biological activity and applications of purine derivatives, see: Scozzafava et al. (2001); Bakkestuen et al. (2005).

Experimental top

A mixture of 6-chloropurine (0.463 g, 3 mmol), 2-nitrobenzenesulfonyl chloride (1.33 g, 6 mmol), Triethylamine (0.607 g, 6 mmol), DMAP (0.037 g, 0.3 mmol), THF (10 ml) and DCM (10 ml) was stirred for 12 h at room temperiture. The solvent was removed under vacuum. The residue was extracted with ethyl acetate (50 ml) and water (50 ml). The organic layer was washed three times with 30 ml ammonia solution (5 N) and 30 ml brine, and then dried with anhydrous sodium sulfate. The product was isolated by column chromatography on silica gel. Yield 0.712 g (69.8%). Crystals, suitable for X-ray analysis, were obtained by slow evaporation from a solution of ethyl acetate.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). As the centroid of the benzene ring holds partial positive charge and the chlorine atom at the purine ring holds partial negative charge, the chlorine atom in one molecular is likely to be close to the benzene ring of another molecular (see Comment section), leading to the nitro groups of two neighbouring molecules approaching one another. Hence, a short O3···O3i distances [2.835 (2) Å] was observed in the crystal [symmetry code: (i) = -x, -y+2, -z+1)].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, with the C-Cl···π, C-H···O and C-H···N interactions shown as dotted red lines [the centroid of ring (C10-C15) is shown as a red dot].
6-Chloro-9-(2-nitrophenylsulfonyl)-9H-purine top
Crystal data top
C11H6ClN5O4SZ = 4
Mr = 339.72F(000) = 688
Triclinic, P1Dx = 1.704 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 10.0055 (3) ÅCell parameters from 5646 reflections
b = 10.6931 (5) Åθ = 3.1–29.1°
c = 12.5378 (5) ŵ = 0.47 mm1
α = 93.692 (3)°T = 293 K
β = 97.136 (3)°Block, colourless
γ = 93.995 (3)°0.42 × 0.40 × 0.35 mm
V = 1324.16 (9) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
5403 independent reflections
Radiation source: fine-focus sealed tube4389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 1313
Tmin = 0.992, Tmax = 1.0l = 1512
10984 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.4744P]
where P = (Fo2 + 2Fc2)/3
5403 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C11H6ClN5O4Sγ = 93.995 (3)°
Mr = 339.72V = 1324.16 (9) Å3
Triclinic, P1Z = 4
a = 10.0055 (3) ÅMo Kα radiation
b = 10.6931 (5) ŵ = 0.47 mm1
c = 12.5378 (5) ÅT = 293 K
α = 93.692 (3)°0.42 × 0.40 × 0.35 mm
β = 97.136 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
5403 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
4389 reflections with I > 2σ(I)
Tmin = 0.992, Tmax = 1.0Rint = 0.018
10984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
5403 reflectionsΔρmin = 0.38 e Å3
397 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28373 (6)1.01998 (7)0.86805 (5)0.05386 (18)
Cl20.10359 (6)0.30928 (6)0.45966 (6)0.05239 (17)
S10.31769 (5)1.10135 (5)0.71476 (4)0.02990 (13)
S20.29292 (5)0.60128 (5)0.16093 (4)0.03061 (13)
O10.33387 (14)1.21495 (14)0.66297 (12)0.0373 (3)
O20.39441 (14)1.08250 (15)0.81453 (11)0.0403 (4)
O30.11604 (15)1.08355 (17)0.49868 (14)0.0495 (4)
O40.25354 (19)1.11017 (18)0.38100 (14)0.0578 (5)
O50.22219 (15)0.63512 (15)0.06322 (11)0.0405 (4)
O60.37133 (15)0.69221 (15)0.23407 (12)0.0446 (4)
O70.13521 (15)0.38259 (17)0.02911 (13)0.0468 (4)
O80.2366 (2)0.3163 (2)0.10209 (14)0.0737 (6)
N20.0813 (2)0.8795 (2)0.90380 (17)0.0505 (5)
N40.13616 (18)0.90598 (18)0.84106 (15)0.0419 (5)
N70.05280 (17)1.15618 (18)0.74289 (14)0.0375 (4)
N90.15488 (16)1.08978 (16)0.73571 (13)0.0308 (4)
N160.21920 (18)1.06359 (17)0.46067 (14)0.0369 (4)
N180.15591 (18)0.36990 (18)0.50525 (15)0.0402 (4)
N200.30089 (16)0.47424 (17)0.39320 (13)0.0335 (4)
N230.03515 (17)0.4610 (2)0.25421 (15)0.0409 (5)
N250.17329 (15)0.53615 (17)0.22797 (13)0.0303 (4)
N320.23641 (18)0.35675 (18)0.00913 (14)0.0387 (4)
C10.1216 (2)0.9794 (2)0.85674 (18)0.0391 (5)
C30.0440 (2)0.8481 (2)0.8933 (2)0.0517 (6)
H30.07020.77690.92670.062*
C50.0901 (2)1.0062 (2)0.79701 (16)0.0315 (4)
C60.0380 (2)1.0496 (2)0.79999 (16)0.0331 (5)
C80.0617 (2)1.1767 (2)0.70684 (17)0.0358 (5)
H80.08021.24340.66540.043*
C100.33847 (18)0.97337 (19)0.62325 (15)0.0287 (4)
C110.30456 (19)0.9715 (2)0.51123 (16)0.0310 (4)
C120.3430 (2)0.8782 (2)0.44359 (17)0.0372 (5)
H120.32140.87900.36930.045*
C130.4141 (2)0.7834 (2)0.48677 (19)0.0406 (5)
H130.43980.71960.44140.049*
C140.4473 (2)0.7827 (2)0.59658 (19)0.0413 (5)
H140.49400.71770.62510.050*
C150.4114 (2)0.8783 (2)0.66493 (18)0.0361 (5)
H150.43640.87850.73890.043*
C170.0491 (2)0.3758 (2)0.43304 (18)0.0356 (5)
C190.2746 (2)0.4186 (2)0.48183 (18)0.0396 (5)
H190.34840.41320.53380.047*
C210.18924 (19)0.48116 (19)0.32559 (15)0.0282 (4)
C220.05870 (19)0.4349 (2)0.33929 (17)0.0326 (5)
C240.0355 (2)0.5197 (2)0.19095 (17)0.0393 (5)
H240.00210.54840.12630.047*
C260.39753 (18)0.4774 (2)0.13725 (15)0.0290 (4)
C270.3671 (2)0.3761 (2)0.05959 (16)0.0322 (5)
C280.4589 (2)0.2887 (2)0.04330 (18)0.0429 (5)
H280.43710.22240.00900.051*
C290.5839 (2)0.3008 (3)0.1056 (2)0.0478 (6)
H290.64550.24100.09650.057*
C300.6173 (2)0.4008 (3)0.1809 (2)0.0495 (6)
H300.70220.40930.22150.059*
C310.5248 (2)0.4892 (2)0.19642 (17)0.0398 (5)
H310.54860.55700.24710.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0334 (3)0.0680 (4)0.0641 (4)0.0061 (3)0.0164 (3)0.0127 (3)
Cl20.0409 (3)0.0498 (4)0.0706 (4)0.0040 (3)0.0228 (3)0.0140 (3)
S10.0250 (2)0.0325 (3)0.0309 (3)0.0005 (2)0.00197 (19)0.0021 (2)
S20.0309 (3)0.0314 (3)0.0304 (3)0.0021 (2)0.0060 (2)0.0050 (2)
O10.0349 (8)0.0312 (8)0.0451 (9)0.0042 (6)0.0067 (6)0.0009 (7)
O20.0343 (8)0.0509 (10)0.0332 (8)0.0074 (7)0.0038 (6)0.0041 (7)
O30.0367 (8)0.0559 (11)0.0569 (10)0.0116 (8)0.0042 (8)0.0077 (9)
O40.0723 (12)0.0616 (12)0.0418 (10)0.0071 (10)0.0082 (9)0.0178 (9)
O50.0444 (8)0.0444 (9)0.0360 (8)0.0108 (7)0.0079 (7)0.0159 (7)
O60.0454 (9)0.0379 (9)0.0480 (9)0.0064 (7)0.0069 (7)0.0073 (7)
O70.0319 (8)0.0582 (11)0.0482 (9)0.0036 (8)0.0018 (7)0.0009 (8)
O80.0699 (13)0.1006 (17)0.0438 (11)0.0237 (12)0.0109 (9)0.0293 (11)
N20.0436 (11)0.0514 (13)0.0603 (13)0.0045 (10)0.0126 (10)0.0212 (11)
N40.0382 (10)0.0404 (11)0.0492 (11)0.0080 (9)0.0064 (8)0.0125 (9)
N70.0316 (9)0.0404 (11)0.0415 (10)0.0076 (8)0.0038 (8)0.0086 (8)
N90.0275 (8)0.0324 (10)0.0333 (9)0.0040 (7)0.0050 (7)0.0040 (7)
N160.0384 (10)0.0354 (10)0.0334 (10)0.0020 (8)0.0039 (8)0.0018 (8)
N180.0408 (10)0.0407 (11)0.0416 (11)0.0053 (9)0.0089 (8)0.0131 (9)
N200.0270 (8)0.0409 (11)0.0328 (9)0.0050 (8)0.0018 (7)0.0070 (8)
N230.0255 (9)0.0576 (13)0.0402 (11)0.0048 (8)0.0030 (8)0.0080 (9)
N250.0247 (8)0.0407 (10)0.0267 (8)0.0062 (7)0.0036 (7)0.0072 (7)
N320.0416 (10)0.0380 (11)0.0344 (10)0.0059 (9)0.0034 (8)0.0013 (8)
C10.0314 (11)0.0464 (14)0.0392 (12)0.0017 (10)0.0040 (9)0.0042 (10)
C30.0484 (14)0.0478 (15)0.0629 (17)0.0086 (12)0.0090 (12)0.0244 (13)
C50.0313 (10)0.0326 (11)0.0300 (11)0.0010 (9)0.0025 (8)0.0017 (9)
C60.0290 (10)0.0370 (12)0.0328 (11)0.0028 (9)0.0018 (8)0.0038 (9)
C80.0333 (11)0.0370 (12)0.0380 (12)0.0063 (9)0.0034 (9)0.0087 (10)
C100.0252 (9)0.0301 (11)0.0303 (10)0.0019 (8)0.0056 (8)0.0009 (8)
C110.0254 (10)0.0315 (11)0.0349 (11)0.0024 (8)0.0016 (8)0.0019 (9)
C120.0353 (11)0.0427 (13)0.0323 (11)0.0029 (10)0.0060 (9)0.0043 (10)
C130.0382 (11)0.0382 (13)0.0465 (13)0.0031 (10)0.0136 (10)0.0057 (10)
C140.0368 (11)0.0366 (13)0.0531 (14)0.0093 (10)0.0109 (10)0.0058 (11)
C150.0347 (11)0.0385 (12)0.0360 (12)0.0053 (9)0.0056 (9)0.0051 (10)
C170.0337 (11)0.0309 (12)0.0449 (13)0.0022 (9)0.0140 (10)0.0067 (10)
C190.0353 (11)0.0474 (14)0.0367 (12)0.0079 (10)0.0009 (9)0.0114 (10)
C210.0276 (10)0.0286 (11)0.0292 (10)0.0050 (8)0.0061 (8)0.0012 (8)
C220.0266 (10)0.0347 (12)0.0374 (11)0.0025 (9)0.0068 (8)0.0040 (9)
C240.0275 (10)0.0553 (15)0.0357 (12)0.0113 (10)0.0001 (9)0.0076 (11)
C260.0259 (9)0.0358 (11)0.0268 (10)0.0029 (8)0.0062 (8)0.0083 (9)
C270.0313 (10)0.0375 (12)0.0288 (10)0.0054 (9)0.0034 (8)0.0084 (9)
C280.0493 (13)0.0434 (14)0.0397 (13)0.0146 (11)0.0122 (10)0.0063 (10)
C290.0393 (12)0.0632 (17)0.0484 (14)0.0233 (12)0.0163 (11)0.0208 (13)
C300.0276 (11)0.0752 (19)0.0481 (14)0.0081 (12)0.0040 (10)0.0210 (14)
C310.0281 (10)0.0561 (15)0.0346 (12)0.0015 (10)0.0026 (9)0.0070 (11)
Geometric parameters (Å, º) top
Cl1—C11.728 (2)N25—C241.394 (3)
Cl2—C171.720 (2)N32—C271.468 (3)
S1—O11.4226 (15)C1—C61.378 (3)
S1—O21.4178 (15)C3—H30.9300
S1—N91.6794 (16)C5—C61.397 (3)
S1—C101.769 (2)C8—H80.9300
S2—O51.4177 (15)C10—C111.402 (3)
S2—O61.4150 (16)C10—C151.385 (3)
S2—N251.6833 (16)C11—C121.374 (3)
S2—C261.777 (2)C12—H120.9300
O3—N161.216 (2)C12—C131.379 (3)
O4—N161.221 (2)C13—H130.9300
O7—N321.214 (2)C13—C141.376 (3)
O8—N321.217 (2)C14—H140.9300
N2—C11.317 (3)C14—C151.387 (3)
N2—C31.340 (3)C15—H150.9300
N4—C31.336 (3)C17—C221.380 (3)
N4—C51.322 (3)C19—H190.9300
N7—C61.391 (3)C21—C221.399 (3)
N7—C81.293 (3)C24—H240.9300
N9—C51.393 (3)C26—C271.400 (3)
N9—C81.395 (3)C26—C311.385 (3)
N16—C111.471 (3)C27—C281.379 (3)
N18—C171.320 (3)C28—H280.9300
N18—C191.337 (3)C28—C291.382 (3)
N20—C191.339 (3)C29—H290.9300
N20—C211.325 (2)C29—C301.374 (4)
N23—C221.387 (3)C30—H300.9300
N23—C241.290 (3)C30—C311.390 (3)
N25—C211.388 (2)C31—H310.9300
O1—S1—N9104.73 (9)C6—C1—Cl1120.78 (17)
O1—S1—C10108.86 (9)C8—N7—C6104.56 (17)
O2—S1—O1121.88 (10)C8—N9—S1125.05 (14)
O2—S1—N9106.39 (9)C10—C11—N16122.06 (18)
O2—S1—C10107.43 (9)C10—C15—C14120.1 (2)
O3—N16—O4124.65 (19)C10—C15—H15119.9
O3—N16—C11117.33 (18)C11—C10—S1124.35 (16)
O4—N16—C11117.93 (18)C11—C12—H12120.3
O5—S2—N25105.10 (8)C11—C12—C13119.4 (2)
O5—S2—C26111.24 (9)C12—C11—N16116.63 (19)
O6—S2—O5121.33 (10)C12—C11—C10121.2 (2)
O6—S2—N25106.67 (9)C12—C13—H13119.8
O6—S2—C26106.90 (10)C13—C12—H12120.3
O7—N32—O8123.88 (19)C13—C14—H14119.8
O7—N32—C27118.70 (17)C13—C14—C15120.4 (2)
O8—N32—C27117.42 (18)C14—C13—C12120.3 (2)
N2—C1—Cl1117.83 (17)C14—C13—H13119.8
N2—C1—C6121.4 (2)C14—C15—H15119.9
N2—C3—H3115.9C15—C10—S1116.41 (15)
N4—C3—N2128.3 (2)C15—C10—C11118.50 (19)
N4—C3—H3115.9C15—C14—H14119.8
N4—C5—N9128.60 (18)C17—N18—C19117.34 (18)
N4—C5—C6126.78 (19)C17—C22—N23133.58 (18)
N7—C6—C5111.24 (17)C17—C22—C21115.02 (18)
N7—C8—N9113.85 (19)C21—N20—C19111.42 (17)
N7—C8—H8123.1C21—N25—S2128.61 (13)
N9—S1—C10106.61 (9)C21—N25—C24105.71 (16)
N9—C5—C6104.60 (17)C22—C17—Cl2120.68 (17)
N9—C8—H8123.1C24—N23—C22104.34 (17)
N18—C17—Cl2118.10 (16)C24—N25—S2125.56 (14)
N18—C17—C22121.22 (18)C26—C27—N32122.17 (18)
N18—C19—N20128.4 (2)C26—C31—C30120.7 (2)
N18—C19—H19115.8C26—C31—H31119.7
N20—C19—H19115.8C27—C26—S2126.17 (15)
N20—C21—N25128.98 (17)C27—C28—H28120.3
N20—C21—C22126.52 (18)C27—C28—C29119.3 (2)
N23—C22—C21111.38 (17)C28—C27—N32116.2 (2)
N23—C24—N25114.08 (18)C28—C27—C26121.6 (2)
N23—C24—H24123.0C28—C29—H29119.9
N25—S2—C26104.22 (9)C29—C28—H28120.3
N25—C21—C22104.48 (16)C29—C30—H30119.9
N25—C24—H24123.0C29—C30—C31120.3 (2)
C1—N2—C3117.3 (2)C30—C29—C28120.2 (2)
C1—C6—N7133.91 (19)C30—C29—H29119.9
C1—C6—C5114.85 (19)C30—C31—H31119.7
C5—N4—C3111.40 (19)C31—C26—S2115.78 (17)
C5—N9—S1128.59 (14)C31—C26—C27117.84 (19)
C5—N9—C8105.75 (16)C31—C30—H30119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O60.932.603.222 (3)125
C15—H15···O20.932.412.814 (3)106
C24—H24···O7i0.932.413.327 (3)170
C28—H28···O2ii0.932.563.469 (3)165
C30—H30···N23iii0.932.623.489 (3)155
C31—H31···O60.932.362.794 (3)108
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H6ClN5O4S
Mr339.72
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.0055 (3), 10.6931 (5), 12.5378 (5)
α, β, γ (°)93.692 (3), 97.136 (3), 93.995 (3)
V3)1324.16 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.42 × 0.40 × 0.35
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.992, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
10984, 5403, 4389
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.02
No. of reflections5403
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.38

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O60.932.603.222 (3)125
C24—H24···O7i0.932.413.327 (3)170
C28—H28···O2ii0.932.563.469 (3)165
C30—H30···N23iii0.932.623.489 (3)155
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z1; (iii) x+1, y, z.
 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationBakkestuen, A. K., Gundersen, L. L. & Utenova, B. T. (2005). J. Med. Chem. 45, 2710–2723.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationScozzafava, A., Mastrolorenzo, A. & Supurana, C. T. (2001). Bioorg. Med. Chem. Lett. 45, 1675–1678.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds