metal-organic compounds
Bis(cyanato-κN)bis(5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine-κN3)zinc
aDepartamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, c/ Severo Ochoa s/n, 18071 Granada, Spain
*Correspondence e-mail: acaballero@ugr.es
In the title complex, [Zn(NCO)2(C7H8N4)2], the ZnII ion exhibits a distorted tetrahedral coordination geometry. The coordination environment is formed by two 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp) ligands, coordinated through the N atom in position 3, and two cyanate anions interacting by their N atoms. Supramolecular dimers are generated by stacking interactions between the pyrimidine rings of two ligands related by an inversion center [centroid–centroid distance = 3.5444 (18) Å].
Related literature
For similar structures, see: Adriaanse et al. (2009); Salas et al. (1999); Caballero et al. (2010). For a description of the geometry of tetrahedrally coordinated metal atoms, see: Yang et al. (2007).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Xtal_GX (Hall et al., 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811005769/su2253sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811005769/su2253Isup2.hkl
A 10 ml volume of an aqueous solution containing 1 mmol of NaNCO (0.068 g) was slowly added to a 10 ml aqueous solution containing 0.5 mmol of Zn(NO)3.4H2O (0.131 g) and 1 mmol of dmtp ligand (0.148 g). Immediately after adding NaNCO, a yellow turbidity gradually appeared. The mixture was stirred at 353 K for 15 min. and the precipitate was then filtered off. The resulting clear yellow solution was left to stand for a week at room temperature and yellow crystals of the title compound were collected and used for X-ray diffraction studies.
The pyrimidine H atoms were positioned geometrically and treated as riding with C—H = 0.93 Å (methine) and 0.96 Å (methyl), and with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Xtal_GX (Hall et al., 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Zn(NCO)2(C7H8N4)2] | Z = 2 |
Mr = 445.76 | F(000) = 456 |
Triclinic, P1 | Dx = 1.531 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 10.0023 (15) Å | Cell parameters from 3345 reflections |
b = 10.8168 (16) Å | θ = 2.2–23.4° |
c = 11.1094 (16) Å | µ = 1.31 mm−1 |
α = 116.772 (2)° | T = 293 K |
β = 107.226 (2)° | Prismatic, colourless |
γ = 98.557 (2)° | 0.25 × 0.14 × 0.10 mm |
V = 967.2 (2) Å3 |
Bruker SMART APEX CCD system diffractometer | 4403 independent reflections |
Radiation source: fine-focus sealed tube | 3580 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 8.26 pixels mm-1 | θmax = 28.4°, θmin = 2.2° |
ϕ and ω scans | h = −13→12 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −13→14 |
Tmin = 0.773, Tmax = 0.881 | l = −14→14 |
11387 measured reflections |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.060P)2 + 0.060P] where P = (Fo2 + 2Fc2)/3 |
4403 reflections | (Δ/σ)max = 0.001 |
266 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
[Zn(NCO)2(C7H8N4)2] | γ = 98.557 (2)° |
Mr = 445.76 | V = 967.2 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.0023 (15) Å | Mo Kα radiation |
b = 10.8168 (16) Å | µ = 1.31 mm−1 |
c = 11.1094 (16) Å | T = 293 K |
α = 116.772 (2)° | 0.25 × 0.14 × 0.10 mm |
β = 107.226 (2)° |
Bruker SMART APEX CCD system diffractometer | 4403 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3580 reflections with I > 2σ(I) |
Tmin = 0.773, Tmax = 0.881 | Rint = 0.025 |
11387 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.37 e Å−3 |
4403 reflections | Δρmin = −0.22 e Å−3 |
266 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.36171 (3) | 0.27490 (3) | 0.25442 (3) | 0.04810 (12) | |
N1A | 0.7252 (2) | 0.5596 (2) | 0.2847 (2) | 0.0566 (5) | |
C2A | 0.6371 (3) | 0.5067 (3) | 0.3287 (3) | 0.0552 (6) | |
H2A | 0.6552 | 0.5497 | 0.4282 | 0.066* | |
N3A | 0.5182 (2) | 0.3860 (2) | 0.2224 (2) | 0.0477 (4) | |
C3AA | 0.5321 (2) | 0.3589 (2) | 0.0970 (2) | 0.0429 (5) | |
N4A | 0.4440 (2) | 0.2520 (2) | −0.0413 (2) | 0.0485 (5) | |
C5A | 0.4853 (3) | 0.2523 (3) | −0.1441 (3) | 0.0528 (6) | |
C51A | 0.3895 (4) | 0.1323 (3) | −0.3011 (3) | 0.0776 (9) | |
H51A | 0.4437 | 0.0690 | −0.3384 | 0.093* | |
H52A | 0.3611 | 0.1745 | −0.3605 | 0.093* | |
H53A | 0.3022 | 0.0766 | −0.3053 | 0.093* | |
C6A | 0.6140 (3) | 0.3580 (3) | −0.1100 (3) | 0.0578 (6) | |
H6A | 0.6388 | 0.3529 | −0.1861 | 0.069* | |
C7A | 0.7020 (3) | 0.4665 (3) | 0.0310 (3) | 0.0514 (6) | |
C71A | 0.8386 (3) | 0.5868 (3) | 0.0821 (4) | 0.0715 (8) | |
H71A | 0.8597 | 0.5736 | −0.0010 | 0.086* | |
H72A | 0.9207 | 0.5851 | 0.1522 | 0.086* | |
H73A | 0.8231 | 0.6795 | 0.1281 | 0.086* | |
N8A | 0.6577 (2) | 0.4640 (2) | 0.1343 (2) | 0.0455 (4) | |
N1B | 0.2927 (2) | −0.1274 (2) | −0.1076 (3) | 0.0627 (6) | |
C2B | 0.3459 (3) | −0.0230 (3) | 0.0314 (3) | 0.0560 (6) | |
H2B | 0.4302 | −0.0160 | 0.1018 | 0.067* | |
N3B | 0.2735 (2) | 0.0740 (2) | 0.0676 (2) | 0.0463 (4) | |
C3AB | 0.1626 (2) | 0.0281 (2) | −0.0619 (2) | 0.0436 (5) | |
N4B | 0.0575 (2) | 0.0863 (2) | −0.0882 (2) | 0.0522 (5) | |
C5B | −0.0380 (3) | 0.0186 (3) | −0.2292 (3) | 0.0580 (6) | |
C51B | −0.1560 (3) | 0.0829 (4) | −0.2625 (4) | 0.0837 (10) | |
H51B | −0.1447 | 0.1672 | −0.1727 | 0.100* | |
H52B | −0.2519 | 0.0113 | −0.3059 | 0.100* | |
H53B | −0.1470 | 0.1118 | −0.3305 | 0.100* | |
C6B | −0.0299 (3) | −0.1076 (3) | −0.3424 (3) | 0.0645 (7) | |
H6B | −0.0992 | −0.1512 | −0.4393 | 0.077* | |
C7B | 0.0770 (3) | −0.1662 (3) | −0.3123 (3) | 0.0598 (7) | |
C71B | 0.0991 (4) | −0.2982 (3) | −0.4201 (3) | 0.0881 (10) | |
H71B | 0.1921 | −0.2690 | −0.4245 | 0.106* | |
H72B | 0.0200 | −0.3420 | −0.5161 | 0.106* | |
H73B | 0.0995 | −0.3682 | −0.3894 | 0.106* | |
N8B | 0.1732 (2) | −0.0941 (2) | −0.1680 (2) | 0.0484 (4) | |
N1C | 0.2232 (3) | 0.3742 (3) | 0.2904 (3) | 0.0697 (6) | |
C1C | 0.1135 (4) | 0.3882 (3) | 0.2404 (4) | 0.0699 (8) | |
O1C | −0.0024 (3) | 0.4026 (4) | 0.1929 (4) | 0.1284 (11) | |
N1D | 0.4708 (3) | 0.2496 (3) | 0.4110 (3) | 0.0750 (7) | |
C1D | 0.5648 (3) | 0.2391 (3) | 0.4912 (3) | 0.0589 (6) | |
O1D | 0.6598 (3) | 0.2288 (3) | 0.5767 (3) | 0.0985 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.05173 (19) | 0.05143 (19) | 0.03623 (16) | 0.01493 (13) | 0.01566 (13) | 0.02134 (13) |
N1A | 0.0559 (12) | 0.0492 (12) | 0.0424 (11) | 0.0070 (9) | 0.0145 (10) | 0.0137 (9) |
C2A | 0.0582 (15) | 0.0539 (14) | 0.0382 (12) | 0.0137 (12) | 0.0182 (11) | 0.0150 (11) |
N3A | 0.0519 (11) | 0.0467 (11) | 0.0359 (10) | 0.0134 (9) | 0.0181 (9) | 0.0159 (9) |
C3AA | 0.0468 (12) | 0.0404 (11) | 0.0395 (11) | 0.0166 (10) | 0.0168 (10) | 0.0195 (10) |
N4A | 0.0568 (12) | 0.0427 (10) | 0.0376 (10) | 0.0131 (9) | 0.0154 (9) | 0.0182 (9) |
C5A | 0.0708 (16) | 0.0491 (14) | 0.0399 (13) | 0.0256 (12) | 0.0209 (12) | 0.0238 (11) |
C51A | 0.102 (2) | 0.0684 (19) | 0.0408 (15) | 0.0189 (17) | 0.0195 (15) | 0.0212 (14) |
C6A | 0.0741 (17) | 0.0644 (16) | 0.0534 (15) | 0.0314 (14) | 0.0354 (14) | 0.0368 (14) |
C7A | 0.0539 (14) | 0.0562 (14) | 0.0579 (15) | 0.0245 (12) | 0.0265 (12) | 0.0362 (13) |
C71A | 0.0649 (18) | 0.0762 (19) | 0.083 (2) | 0.0181 (15) | 0.0344 (16) | 0.0484 (18) |
N8A | 0.0488 (11) | 0.0420 (10) | 0.0424 (10) | 0.0163 (9) | 0.0177 (9) | 0.0198 (9) |
N1B | 0.0521 (12) | 0.0550 (13) | 0.0588 (14) | 0.0194 (10) | 0.0156 (11) | 0.0169 (11) |
C2B | 0.0480 (13) | 0.0550 (15) | 0.0550 (15) | 0.0175 (11) | 0.0122 (12) | 0.0266 (13) |
N3B | 0.0467 (10) | 0.0454 (10) | 0.0398 (10) | 0.0134 (8) | 0.0117 (8) | 0.0213 (9) |
C3AB | 0.0428 (12) | 0.0406 (12) | 0.0401 (12) | 0.0076 (9) | 0.0123 (9) | 0.0204 (10) |
N4B | 0.0487 (11) | 0.0485 (11) | 0.0544 (12) | 0.0142 (9) | 0.0135 (10) | 0.0285 (10) |
C5B | 0.0471 (14) | 0.0557 (15) | 0.0606 (16) | 0.0056 (11) | 0.0058 (12) | 0.0359 (14) |
C51B | 0.0582 (18) | 0.083 (2) | 0.090 (2) | 0.0150 (16) | −0.0003 (16) | 0.0516 (19) |
C6B | 0.0555 (16) | 0.0666 (17) | 0.0458 (14) | −0.0007 (13) | 0.0016 (12) | 0.0281 (13) |
C7B | 0.0543 (15) | 0.0522 (14) | 0.0448 (14) | −0.0028 (12) | 0.0137 (12) | 0.0143 (12) |
C71B | 0.081 (2) | 0.074 (2) | 0.0547 (18) | 0.0086 (17) | 0.0222 (16) | 0.0010 (15) |
N8B | 0.0459 (11) | 0.0431 (10) | 0.0429 (11) | 0.0093 (8) | 0.0131 (9) | 0.0173 (9) |
N1C | 0.0721 (16) | 0.0717 (15) | 0.0620 (15) | 0.0335 (13) | 0.0318 (13) | 0.0272 (13) |
C1C | 0.077 (2) | 0.0734 (19) | 0.073 (2) | 0.0326 (17) | 0.0411 (18) | 0.0403 (17) |
O1C | 0.100 (2) | 0.172 (3) | 0.157 (3) | 0.085 (2) | 0.059 (2) | 0.103 (3) |
N1D | 0.0783 (17) | 0.0876 (18) | 0.0526 (14) | 0.0202 (14) | 0.0111 (13) | 0.0437 (14) |
C1D | 0.0783 (19) | 0.0609 (16) | 0.0416 (13) | 0.0249 (14) | 0.0291 (14) | 0.0266 (12) |
O1D | 0.115 (2) | 0.136 (2) | 0.0756 (15) | 0.0763 (18) | 0.0359 (14) | 0.0712 (16) |
Zn—N1C | 1.902 (2) | N1B—C2B | 1.306 (3) |
Zn—N1D | 1.919 (2) | N1B—N8B | 1.370 (3) |
Zn—N3B | 2.0223 (19) | C2B—N3B | 1.344 (3) |
Zn—N3A | 2.0430 (19) | C2B—H2B | 0.9300 |
N1A—C2A | 1.304 (3) | N3B—C3AB | 1.339 (3) |
N1A—N8A | 1.372 (3) | C3AB—N4B | 1.329 (3) |
C2A—N3A | 1.353 (3) | C3AB—N8B | 1.365 (3) |
C2A—H2A | 0.9300 | N4B—C5B | 1.332 (3) |
N3A—C3AA | 1.344 (3) | C5B—C6B | 1.414 (4) |
C3AA—N4A | 1.330 (3) | C5B—C51B | 1.494 (4) |
C3AA—N8A | 1.373 (3) | C51B—H51B | 0.9600 |
N4A—C5A | 1.326 (3) | C51B—H52B | 0.9600 |
C5A—C6A | 1.411 (4) | C51B—H53B | 0.9601 |
C5A—C51A | 1.498 (4) | C6B—C7B | 1.356 (4) |
C51A—H51A | 0.9603 | C6B—H6B | 0.9300 |
C51A—H52A | 0.9604 | C7B—N8B | 1.357 (3) |
C51A—H53A | 0.9604 | C7B—C71B | 1.494 (4) |
C6A—C7A | 1.351 (4) | C71B—H71B | 0.9602 |
C6A—H6A | 0.9300 | C71B—H72B | 0.9602 |
C7A—N8A | 1.357 (3) | C71B—H73B | 0.9602 |
C7A—C71A | 1.493 (4) | N1C—C1C | 1.140 (4) |
C71A—H71A | 0.9601 | C1C—O1C | 1.188 (4) |
C71A—H72A | 0.9601 | N1D—C1D | 1.148 (3) |
C71A—H73A | 0.9601 | C1D—O1D | 1.188 (3) |
N1C—Zn—N1D | 115.09 (11) | N1A—N8A—C3AA | 110.40 (18) |
N1C—Zn—N3B | 114.59 (9) | C2B—N1B—N8B | 101.30 (19) |
N1D—Zn—N3B | 106.30 (9) | N1B—C2B—N3B | 116.8 (2) |
N1C—Zn—N3A | 111.07 (9) | N1B—C2B—H2B | 121.5 |
N1D—Zn—N3A | 105.50 (10) | N3B—C2B—H2B | 121.6 |
N3B—Zn—N3A | 103.25 (8) | C3AB—N3B—C2B | 103.40 (19) |
C2A—N1A—N8A | 101.70 (19) | C3AB—N3B—Zn | 128.57 (15) |
N1A—C2A—N3A | 116.7 (2) | C2B—N3B—Zn | 124.47 (16) |
N1A—C2A—H2A | 121.6 | N4B—C3AB—N3B | 128.1 (2) |
N3A—C2A—H2A | 121.6 | N4B—C3AB—N8B | 124.0 (2) |
C3AA—N3A—C2A | 103.34 (19) | N3B—C3AB—N8B | 107.9 (2) |
C3AA—N3A—Zn | 130.18 (16) | C3AB—N4B—C5B | 115.2 (2) |
C2A—N3A—Zn | 126.47 (16) | N4B—C5B—C6B | 122.5 (2) |
N4A—C3AA—N3A | 128.6 (2) | N4B—C5B—C51B | 116.4 (3) |
N4A—C3AA—N8A | 123.6 (2) | C6B—C5B—C51B | 121.1 (3) |
N3A—C3AA—N8A | 107.82 (19) | C5B—C51B—H51B | 109.6 |
C5A—N4A—C3AA | 115.4 (2) | C5B—C51B—H52B | 109.7 |
N4A—C5A—C6A | 122.6 (2) | H51B—C51B—H52B | 109.5 |
N4A—C5A—C51A | 116.8 (2) | C5B—C51B—H53B | 109.2 |
C6A—C5A—C51A | 120.5 (2) | H51B—C51B—H53B | 109.5 |
C5A—C51A—H51A | 109.6 | H52B—C51B—H53B | 109.5 |
C5A—C51A—H52A | 109.5 | C7B—C6B—C5B | 121.2 (2) |
H51A—C51A—H52A | 109.4 | C7B—C6B—H6B | 119.4 |
C5A—C51A—H53A | 109.5 | C5B—C6B—H6B | 119.4 |
H51A—C51A—H53A | 109.4 | C6B—C7B—N8B | 114.9 (2) |
H52A—C51A—H53A | 109.4 | C6B—C7B—C71B | 127.0 (3) |
C7A—C6A—C5A | 121.3 (2) | N8B—C7B—C71B | 118.1 (3) |
C7A—C6A—H6A | 119.3 | C7B—C71B—H71B | 109.2 |
C5A—C6A—H6A | 119.3 | C7B—C71B—H72B | 109.3 |
C6A—C7A—N8A | 115.0 (2) | H71B—C71B—H72B | 109.5 |
C6A—C7A—C71A | 126.8 (2) | C7B—C71B—H73B | 109.9 |
N8A—C7A—C71A | 118.1 (2) | H71B—C71B—H73B | 109.5 |
C7A—C71A—H71A | 109.7 | H72B—C71B—H73B | 109.4 |
C7A—C71A—H72A | 109.5 | C7B—N8B—C3AB | 122.2 (2) |
H71A—C71A—H72A | 109.5 | C7B—N8B—N1B | 127.2 (2) |
C7A—C71A—H73A | 109.3 | C3AB—N8B—N1B | 110.57 (19) |
H71A—C71A—H73A | 109.5 | C1C—N1C—Zn | 146.6 (2) |
H72A—C71A—H73A | 109.5 | N1C—C1C—O1C | 177.2 (4) |
C7A—N8A—N1A | 127.6 (2) | C1D—N1D—Zn | 161.5 (3) |
C7A—N8A—C3AA | 122.0 (2) | N1D—C1D—O1D | 178.1 (3) |
Experimental details
Crystal data | |
Chemical formula | [Zn(NCO)2(C7H8N4)2] |
Mr | 445.76 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 10.0023 (15), 10.8168 (16), 11.1094 (16) |
α, β, γ (°) | 116.772 (2), 107.226 (2), 98.557 (2) |
V (Å3) | 967.2 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.31 |
Crystal size (mm) | 0.25 × 0.14 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD system diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.773, 0.881 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11387, 4403, 3580 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.106, 1.01 |
No. of reflections | 4403 |
No. of parameters | 266 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.22 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Xtal_GX (Hall et al., 1999).
Acknowledgements
Financial support from the Junta de Andalucia (FQM-3705 and FQM-4228) and the Spanish Ministry of Education (FPU fellowship of Ana B. Caballero) is gratefully acknowledged.
References
Adriaanse, J. H., Askes, S. H. C., van Bree, I., van Oudheusden, S., van den Bos, E. D., Gunay, E., Mutikainen, I., Turpeinen, U., van Albada, G. A., Haasnoot, J. G. & Reedijk, J. (2009). Polyhedron, 28, 3143–3149. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Caballero, A. B., Rodríguez-Diéguez, A., Barea, E., Quirós, M. & Salas, J. M. (2010). CrystEngComm, 12, 3038–3045. Web of Science CSD CrossRef CAS Google Scholar
Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. Xtal Reference Manual. University of Western Australia: Lamb, Perth. Google Scholar
Salas, J. M., Romero, M. A., Sánchez, M. P. & Quirós, M. (1999). Coord. Chem. Rev. 193–195, 1119–1142. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of 1,2,4-triazolo[1,5-a]pyrimidine derivatives displays great versatility, binding metal ions in several different ways, either in a monodentate (usually through the N atom in position 3) or in a bidentate fashion, bridging metal atoms and leading to dinuclear or polynuclear species with interesting metal-metal interactions (Salas et al., 1999). Some zinc(II) complexes containing these derivatives together with secondary bridging ligands have been described, for example with the thiocyanate anion (Salas et al., 1999; Adriaanse et al., 2009). In most of these metal complexes, both ligands display monodentate binding leading to mononuclear species with either octahedral or tetrahedral coordination geometries.
The title compound continues our studies on a series of triazolopyrimidine and pseudohalide-based metal complexes (Caballero et al., 2010). This zinc(II) complex, together with the analogous complex with the unsubstituted triazolopyrimidine ligand (Caballero et al., 2010), are the only ones that have been obtained with the cyanate anion.
The title compound exhibits a distorted tetrahedral coordination geometry (τ4 = 0.924, Yang et al., 2007) made of two dmtp ligands (dmtp = 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine) interacting through their more usual coordination position, N3, and two cyanate anions bound through their N atom (Fig. 1). The Zn—N3 bond distances, 2.022 (2) and 2.043 (2) Å, are in the typical range for triazolopyrimidine ligands.
In the crystal the stacking interactions between the pyrimidine ring of two triazolopyrimidine aromatic systems leads to the formation of supramolecular centrosymmetric dimers (Fig. 2); the centroid-to-centroid distance, involving ring (N4A,C3A,N8A,C7A,C6A,C5A) and that related by an inversion center [symmetry code: 1-x, -y, -z], is 3.5444 (18) Å.