metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m382-m383

Bis(4-ethyl­benzoato-κO)bis­­(nicotin­amide-κN1)zinc(II)

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Karabük University, 78050, Karabük, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 14 February 2011; accepted 22 February 2011; online 26 February 2011)

The title ZnII complex, [Zn(C9H9O2)2(C6H6N2O)2], contains two 4-ethyl­benzoate and two nicotinamide monodentate ligands, leading to a distorted tetrahedral coordination of the ZnII ion. The dihedral angles between the carboxyl­ate groups and the adjacent benzene rings are 10.33 (13) and 2.38 (11)°, while opposite pyridine and benzene rings are oriented at dihedral angles of 68.46 (5) and 81.09 (6)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional network. C—H⋯O inter­actions also occur as well as two weak C—H⋯π inter­actions involving the benzene rings.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1996[Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470-2473.], 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607-m608.]); Hökelek & Necefoğlu (1998[Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.], 2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H9O2)2(C6H6N2O)2]

  • Mr = 607.97

  • Monoclinic, P 21 /c

  • a = 8.0601 (2) Å

  • b = 15.9736 (3) Å

  • c = 21.2568 (3) Å

  • β = 94.384 (3)°

  • V = 2728.78 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 100 K

  • 0.31 × 0.30 × 0.27 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.752, Tmax = 0.763

  • 26561 measured reflections

  • 6812 independent reflections

  • 5761 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.03

  • 6812 reflections

  • 388 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H32⋯O4i 0.86 (2) 1.99 (2) 2.833 (2) 165 (2)
N4—H41⋯O5ii 0.89 (2) 2.07 (2) 2.947 (2) 169 (2)
N4—H42⋯O6iii 0.84 (2) 2.06 (2) 2.901 (2) 177 (2)
C6—H6⋯O2ii 0.95 2.59 3.412 (2) 145
C19—H19⋯O5ii 0.95 2.29 3.2277 (19) 168
C21—H21⋯O2i 0.95 2.58 3.497 (2) 161
C23—H23⋯O3 0.95 2.49 3.085 (2) 121
C29—H29⋯O5ii 0.95 2.45 3.299 (2) 149
C17—H17ACg1iv 0.99 2.63 3.436 (2) 139
C20—H20⋯Cg1v 0.95 2.77 3.603 (2) 147
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z; (iii) -x+3, -y+2, -z+2; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is on reported herein.

The title complex, (Fig. 1), is a mononuclear ZnIIcomplex, consisting of two nicotinamide (NA) and two 4-ethylbenzoate (PEB) ligands, all ligandscoordinating in a monodentate manner. The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2] (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2] (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), [Mn(C9H10NO2)2(H2O)4]2H2O] (Hökelek & Necefoğlu, 2007) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009b) have also been reported. In the copper(II) complex mentioned above the two benzoate ions coordinate to the CuII atom as bidentate ligands, while in the other structures all the ligands coordinate in a monodentate manner.

In the title complex the near equality of the C1—O1 [1.282 (2) Å], C1—O2 [1.238 (2) Å] and C10—O3 [1.283 (2) Å], C1—O2 [1.243 (2) Å] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The Zn—O bond lengths are 1.9321 (12) and 1.9470 (11) Å, and the Zn—N bond lengths are 2.0525 (13) and 2.0767 (14) Å, close to standard values (Allen et al., 1987). The Zn atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C10/O4) by -0.1444 (2) and -0.1364 (2) Å, respectively. The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C11—C16) are 10.33 (13) and 2.38 (11) °, respectively. The benzene A (C2—C7) and B (C11—C16) rings and the pyridine C (N1/C19—C23) and D (N2/C25—C29) rings are oriented at dihedral angles of A/B = 81.09 (6), A/C = 80.79 (5), A/D = 31.68 (5), B/C = 12.68 (5), B/D = 70.61 (6) and C/D = 68.46 (5) °.

In the crystal intermolecular N—H···O link the molecules to form a three-dimensional network (Table 1 and Fig. 2). There also C-H···O interactions, and two weak C—H···π interactions involving the benzene ring A (C2-C7) (Table 1).

Footnote for Table 1: Cg1 is the centroid of ring A (C2-C7.)

Related literature top

For niacin, see: Krishnamachari (1974). For the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b); Hökelek & Necefoğlu (1998, 2007). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of ZnSO4.H2O (0.89 g, 5 mmol) in H2O (100 ml) and NA (1.22 g, 10 mmol) in H2O (50 ml) with sodium 4-ethylbenzoate (1.72 g, 10 mmol) in H2O (100 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for two weeks, giving colourless single crystals.

Refinement top

Atoms H31, H32, H41 and H42 (for the NH2 groups) were located in a difference Fourier map and were freely refined. The C-bound H-atoms were positioned geometrically with C—H = 0.95, 0.99 and 0.98 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular C-H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A view along the a-axis of the crystal packing of the title compound. The N-H···O hydrogen bonds are shown as dashed cyan lines [H-atoms not involved in hydrogen bonding have been omitted for clarity].
Bis(4-ethylbenzoato-κO)bis(nicotinamide-κN1)zinc(II) top
Crystal data top
[Zn(C9H9O2)2(C6H6N2O)2]F(000) = 1264
Mr = 607.97Dx = 1.480 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9453 reflections
a = 8.0601 (2) Åθ = 2.3–28.3°
b = 15.9736 (3) ŵ = 0.95 mm1
c = 21.2568 (3) ÅT = 100 K
β = 94.384 (3)°Block, colourless
V = 2728.78 (9) Å30.31 × 0.30 × 0.27 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6812 independent reflections
Radiation source: fine-focus sealed tube5761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.752, Tmax = 0.763k = 1821
26561 measured reflectionsl = 2528
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0293P)2 + 1.6476P]
where P = (Fo2 + 2Fc2)/3
6812 reflections(Δ/σ)max = 0.002
388 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Zn(C9H9O2)2(C6H6N2O)2]V = 2728.78 (9) Å3
Mr = 607.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0601 (2) ŵ = 0.95 mm1
b = 15.9736 (3) ÅT = 100 K
c = 21.2568 (3) Å0.31 × 0.30 × 0.27 mm
β = 94.384 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6812 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5761 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.763Rint = 0.045
26561 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
6812 reflectionsΔρmin = 0.44 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.71491 (2)0.888748 (11)0.825485 (9)0.01161 (6)
O10.91423 (14)0.87417 (7)0.78163 (6)0.0171 (2)
O20.73308 (14)0.85419 (8)0.69894 (6)0.0209 (3)
O61.35846 (16)0.92561 (8)1.03534 (6)0.0241 (3)
O30.50224 (14)0.83456 (7)0.83563 (6)0.0172 (2)
O40.66060 (14)0.72104 (8)0.84067 (6)0.0187 (3)
O50.13462 (14)1.06652 (8)0.83268 (6)0.0199 (3)
N10.63168 (16)1.00911 (8)0.81069 (6)0.0120 (3)
N20.84101 (17)0.88825 (8)0.91441 (7)0.0133 (3)
N30.14554 (18)1.16536 (9)0.75686 (7)0.0168 (3)
H310.047 (3)1.1708 (14)0.7533 (11)0.030 (6)*
H320.203 (3)1.1909 (14)0.7303 (11)0.028 (6)*
N41.32842 (19)0.98657 (10)0.93949 (7)0.0185 (3)
H411.260 (3)1.0050 (14)0.9080 (11)0.028 (6)*
H421.421 (3)1.0104 (14)0.9461 (11)0.030 (6)*
C10.87746 (19)0.86154 (10)0.72266 (8)0.0136 (3)
C21.02295 (19)0.85648 (10)0.68257 (8)0.0130 (3)
C31.0005 (2)0.83375 (10)0.61948 (8)0.0164 (3)
H30.89320.81770.60200.020*
C41.1337 (2)0.83427 (11)0.58184 (8)0.0192 (3)
H41.11730.81700.53910.023*
C51.2923 (2)0.86004 (10)0.60619 (9)0.0189 (3)
C61.3143 (2)0.88062 (10)0.66957 (8)0.0178 (3)
H61.42160.89630.68730.021*
C71.1815 (2)0.87866 (10)0.70766 (8)0.0148 (3)
H71.19920.89250.75110.018*
C81.4347 (2)0.86644 (12)0.56405 (10)0.0290 (4)
H8A1.40250.90570.52920.035*
H8B1.53210.89070.58880.035*
C91.4854 (3)0.78609 (14)0.53652 (14)0.0498 (7)
H9A1.57440.79630.50850.075*
H9B1.38970.76090.51240.075*
H9C1.52570.74800.57050.075*
C100.52318 (19)0.75551 (10)0.84359 (7)0.0137 (3)
C110.37299 (19)0.70554 (10)0.85754 (8)0.0134 (3)
C120.22077 (19)0.74497 (10)0.86294 (8)0.0141 (3)
H120.21220.80390.85780.017*
C130.0817 (2)0.69897 (10)0.87579 (8)0.0158 (3)
H130.02070.72700.88020.019*
C140.0898 (2)0.61218 (10)0.88240 (8)0.0156 (3)
C150.2425 (2)0.57307 (10)0.87673 (9)0.0193 (3)
H150.25060.51400.88100.023*
C160.3833 (2)0.61926 (10)0.86493 (9)0.0184 (3)
H160.48680.59170.86190.022*
C170.0651 (2)0.56207 (11)0.89316 (9)0.0196 (4)
H17A0.03530.50190.89500.024*
H17B0.14680.57010.85650.024*
C180.1475 (2)0.58478 (12)0.95274 (9)0.0268 (4)
H18A0.24830.55110.95530.040*
H18B0.17700.64430.95170.040*
H18C0.07030.57360.98970.040*
C190.73450 (19)1.07550 (10)0.80977 (8)0.0141 (3)
H190.85121.06610.81270.017*
C200.6764 (2)1.15687 (10)0.80474 (8)0.0152 (3)
H200.75251.20230.80500.018*
C210.50608 (19)1.17165 (10)0.79933 (7)0.0132 (3)
H210.46331.22700.79520.016*
C220.39986 (18)1.10297 (10)0.80012 (7)0.0118 (3)
C230.46747 (18)1.02318 (10)0.80640 (7)0.0122 (3)
H230.39430.97670.80770.015*
C240.21397 (19)1.11059 (10)0.79769 (8)0.0138 (3)
C250.7753 (2)0.85405 (10)0.96462 (8)0.0169 (3)
H250.66250.83620.96060.020*
C260.8661 (2)0.84391 (11)1.02190 (8)0.0210 (4)
H260.81690.81871.05640.025*
C271.0297 (2)0.87093 (10)1.02831 (8)0.0192 (3)
H271.09460.86391.06720.023*
C281.0980 (2)0.90846 (10)0.97729 (8)0.0142 (3)
C290.9994 (2)0.91520 (10)0.92118 (8)0.0137 (3)
H291.04580.94000.88590.016*
C301.2733 (2)0.94122 (10)0.98604 (8)0.0155 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00833 (9)0.01253 (10)0.01407 (10)0.00004 (6)0.00148 (6)0.00079 (7)
O10.0135 (5)0.0229 (6)0.0154 (6)0.0017 (4)0.0041 (4)0.0004 (5)
O20.0100 (5)0.0268 (7)0.0258 (7)0.0015 (5)0.0014 (5)0.0005 (5)
O60.0236 (7)0.0271 (7)0.0201 (7)0.0052 (5)0.0084 (5)0.0055 (5)
O30.0125 (5)0.0151 (6)0.0243 (7)0.0024 (4)0.0033 (5)0.0017 (5)
O40.0113 (5)0.0216 (6)0.0237 (7)0.0008 (5)0.0034 (5)0.0034 (5)
O50.0098 (5)0.0289 (7)0.0211 (6)0.0008 (5)0.0016 (5)0.0101 (5)
N10.0091 (6)0.0147 (6)0.0121 (6)0.0001 (5)0.0010 (5)0.0004 (5)
N20.0139 (6)0.0112 (6)0.0151 (7)0.0005 (5)0.0024 (5)0.0002 (5)
N30.0089 (7)0.0203 (7)0.0214 (8)0.0024 (5)0.0017 (6)0.0070 (6)
N40.0127 (7)0.0249 (8)0.0173 (8)0.0021 (6)0.0033 (6)0.0027 (6)
C10.0135 (7)0.0091 (7)0.0185 (8)0.0007 (6)0.0036 (6)0.0012 (6)
C20.0117 (7)0.0115 (7)0.0161 (8)0.0008 (6)0.0028 (6)0.0012 (6)
C30.0137 (7)0.0166 (8)0.0189 (8)0.0002 (6)0.0005 (6)0.0017 (6)
C40.0238 (9)0.0188 (8)0.0154 (8)0.0030 (7)0.0047 (7)0.0017 (7)
C50.0189 (8)0.0148 (8)0.0244 (9)0.0032 (6)0.0102 (7)0.0003 (7)
C60.0115 (7)0.0169 (8)0.0252 (9)0.0003 (6)0.0035 (6)0.0001 (7)
C70.0136 (7)0.0149 (8)0.0160 (8)0.0001 (6)0.0010 (6)0.0002 (6)
C80.0267 (10)0.0268 (10)0.0360 (12)0.0003 (8)0.0190 (8)0.0021 (8)
C90.0552 (15)0.0309 (12)0.0703 (18)0.0036 (11)0.0491 (14)0.0030 (11)
C100.0114 (7)0.0171 (8)0.0125 (8)0.0016 (6)0.0016 (6)0.0020 (6)
C110.0111 (7)0.0151 (8)0.0142 (8)0.0016 (6)0.0016 (6)0.0016 (6)
C120.0132 (7)0.0116 (7)0.0178 (8)0.0000 (6)0.0021 (6)0.0010 (6)
C130.0112 (7)0.0159 (8)0.0205 (9)0.0001 (6)0.0027 (6)0.0018 (6)
C140.0153 (8)0.0156 (8)0.0161 (8)0.0035 (6)0.0019 (6)0.0010 (6)
C150.0204 (8)0.0122 (8)0.0255 (9)0.0002 (6)0.0033 (7)0.0012 (7)
C160.0126 (7)0.0174 (8)0.0253 (9)0.0032 (6)0.0028 (6)0.0004 (7)
C170.0186 (8)0.0163 (8)0.0244 (9)0.0080 (6)0.0042 (7)0.0004 (7)
C180.0251 (9)0.0271 (10)0.0292 (10)0.0082 (8)0.0091 (8)0.0000 (8)
C190.0078 (7)0.0183 (8)0.0160 (8)0.0011 (6)0.0001 (6)0.0015 (6)
C200.0121 (7)0.0155 (8)0.0180 (8)0.0040 (6)0.0011 (6)0.0003 (6)
C210.0126 (7)0.0131 (7)0.0139 (8)0.0001 (6)0.0003 (6)0.0005 (6)
C220.0085 (7)0.0157 (8)0.0113 (7)0.0008 (6)0.0006 (5)0.0004 (6)
C230.0091 (7)0.0147 (7)0.0128 (8)0.0023 (6)0.0006 (6)0.0002 (6)
C240.0102 (7)0.0157 (8)0.0155 (8)0.0003 (6)0.0005 (6)0.0018 (6)
C250.0184 (8)0.0156 (8)0.0171 (8)0.0011 (6)0.0045 (6)0.0002 (6)
C260.0274 (9)0.0199 (9)0.0163 (9)0.0031 (7)0.0046 (7)0.0033 (7)
C270.0246 (9)0.0179 (8)0.0145 (8)0.0000 (7)0.0022 (7)0.0011 (6)
C280.0165 (8)0.0110 (7)0.0150 (8)0.0019 (6)0.0009 (6)0.0012 (6)
C290.0151 (7)0.0121 (7)0.0140 (8)0.0017 (6)0.0030 (6)0.0002 (6)
C300.0165 (8)0.0144 (8)0.0152 (8)0.0020 (6)0.0012 (6)0.0029 (6)
Geometric parameters (Å, º) top
Zn1—O11.9321 (12)C9—H9C0.9800
Zn1—O31.9470 (11)C10—C111.498 (2)
Zn1—N12.0525 (13)C11—C121.392 (2)
Zn1—N22.0767 (14)C11—C161.389 (2)
O1—C11.282 (2)C12—H120.9500
O2—C11.2380 (19)C13—C121.385 (2)
O6—C301.233 (2)C13—H130.9500
O3—C101.283 (2)C14—C131.394 (2)
O4—C101.2427 (19)C14—C171.515 (2)
O5—C241.237 (2)C15—C141.394 (2)
N1—C191.347 (2)C15—H150.9500
N1—C231.3387 (19)C16—C151.392 (2)
N2—C251.343 (2)C16—H160.9500
N2—C291.344 (2)C17—C181.518 (3)
N3—C241.323 (2)C17—H17A0.9900
N3—H310.80 (2)C17—H17B0.9900
N3—H320.86 (2)C18—H18A0.9800
N4—C301.330 (2)C18—H18B0.9800
N4—H410.88 (2)C18—H18C0.9800
N4—H420.84 (2)C19—C201.383 (2)
C1—C21.504 (2)C19—H190.9500
C2—C31.388 (2)C20—C211.389 (2)
C2—C71.393 (2)C20—H200.9500
C3—C41.387 (2)C21—C221.392 (2)
C3—H30.9500C21—H210.9500
C4—C51.404 (2)C22—C231.389 (2)
C4—H40.9500C22—C241.500 (2)
C5—C61.385 (3)C23—H230.9500
C5—C81.512 (2)C25—C261.381 (2)
C6—C71.391 (2)C25—H250.9500
C6—H60.9500C26—C271.385 (3)
C7—H70.9500C26—H260.9500
C8—C91.481 (3)C27—C281.389 (2)
C8—H8A0.9900C27—H270.9500
C8—H8B0.9900C28—C291.386 (2)
C9—H9A0.9800C28—C301.505 (2)
C9—H9B0.9800C29—H290.9500
O1—Zn1—O3140.48 (5)C13—C12—H12119.7
O1—Zn1—N1108.24 (5)C12—C13—C14121.02 (15)
O1—Zn1—N294.11 (5)C12—C13—H13119.5
O3—Zn1—N198.81 (5)C14—C13—H13119.5
O3—Zn1—N2105.74 (5)C13—C14—C17120.53 (15)
N1—Zn1—N2105.93 (5)C15—C14—C13118.14 (15)
C1—O1—Zn1110.62 (10)C15—C14—C17121.30 (15)
C10—O3—Zn1110.12 (10)C14—C15—H15119.5
C19—N1—Zn1123.05 (10)C16—C15—C14121.02 (15)
C23—N1—Zn1118.53 (10)C16—C15—H15119.5
C23—N1—C19118.23 (14)C11—C16—C15120.25 (15)
C25—N2—Zn1121.96 (11)C11—C16—H16119.9
C25—N2—C29118.31 (14)C15—C16—H16119.9
C29—N2—Zn1119.39 (11)C14—C17—C18114.69 (15)
C24—N3—H31119.8 (17)C14—C17—H17A108.6
C24—N3—H32121.6 (15)C14—C17—H17B108.6
H32—N3—H31118 (2)C18—C17—H17A108.6
C30—N4—H41121.4 (15)C18—C17—H17B108.6
C30—N4—H42117.8 (16)H17A—C17—H17B107.6
H41—N4—H42118 (2)C17—C18—H18A109.5
O1—C1—C2115.52 (14)C17—C18—H18B109.5
O2—C1—O1123.58 (15)C17—C18—H18C109.5
O2—C1—C2120.90 (15)H18A—C18—H18B109.5
C3—C2—C1120.81 (14)H18A—C18—H18C109.5
C3—C2—C7118.99 (15)H18B—C18—H18C109.5
C7—C2—C1120.13 (15)N1—C19—C20122.43 (14)
C2—C3—H3119.8N1—C19—H19118.8
C4—C3—C2120.44 (15)C20—C19—H19118.8
C4—C3—H3119.8C19—C20—C21119.51 (15)
C3—C4—C5120.81 (16)C19—C20—H20120.2
C3—C4—H4119.6C21—C20—H20120.2
C5—C4—H4119.6C20—C21—C22118.03 (15)
C4—C5—C8120.82 (17)C20—C21—H21121.0
C6—C5—C4118.24 (15)C22—C21—H21121.0
C6—C5—C8120.93 (16)C21—C22—C24123.30 (14)
C5—C6—C7120.96 (16)C23—C22—C21119.15 (14)
C5—C6—H6119.5C23—C22—C24117.48 (14)
C7—C6—H6119.5N1—C23—C22122.64 (14)
C2—C7—H7119.8N1—C23—H23118.7
C6—C7—C2120.48 (16)C22—C23—H23118.7
C6—C7—H7119.8O5—C24—N3124.20 (15)
C5—C8—H8A108.6O5—C24—C22119.60 (14)
C5—C8—H8B108.6N3—C24—C22116.20 (14)
C9—C8—C5114.85 (17)N2—C25—C26122.23 (16)
C9—C8—H8A108.6N2—C25—H25118.9
C9—C8—H8B108.6C26—C25—H25118.9
H8A—C8—H8B107.5C25—C26—C27119.13 (16)
C8—C9—H9A109.5C25—C26—H26120.4
C8—C9—H9B109.5C27—C26—H26120.4
C8—C9—H9C109.5C26—C27—C28119.27 (16)
H9A—C9—H9B109.5C26—C27—H27120.4
H9A—C9—H9C109.5C28—C27—H27120.4
H9B—C9—H9C109.5C27—C28—C30118.54 (15)
O3—C10—C11116.75 (14)C29—C28—C27118.02 (15)
O4—C10—O3122.55 (15)C29—C28—C30123.43 (15)
O4—C10—C11120.70 (15)N2—C29—C28123.00 (15)
C12—C11—C10120.39 (14)N2—C29—H29118.5
C16—C11—C10120.58 (14)C28—C29—H29118.5
C16—C11—C12119.03 (15)O6—C30—N4123.13 (16)
C11—C12—H12119.7O6—C30—C28119.41 (15)
C13—C12—C11120.53 (15)N4—C30—C28117.46 (15)
O3—Zn1—O1—C151.21 (14)C4—C5—C6—C72.2 (2)
N1—Zn1—O1—C179.56 (11)C8—C5—C6—C7176.85 (16)
N2—Zn1—O1—C1172.17 (11)C4—C5—C8—C963.8 (3)
O1—Zn1—O3—C1044.51 (14)C6—C5—C8—C9117.2 (2)
N1—Zn1—O3—C10177.80 (11)C5—C6—C7—C20.5 (2)
N2—Zn1—O3—C1072.79 (11)O4—C10—C11—C162.6 (2)
O1—Zn1—N1—C1939.06 (14)O3—C10—C11—C16178.05 (15)
O1—Zn1—N1—C23146.03 (11)O4—C10—C11—C12177.73 (15)
O3—Zn1—N1—C19170.13 (12)O3—C10—C11—C121.6 (2)
O3—Zn1—N1—C234.78 (13)C10—C11—C12—C13179.96 (15)
N2—Zn1—N1—C1960.87 (13)C16—C11—C12—C130.3 (2)
N2—Zn1—N1—C23114.03 (12)C10—C11—C16—C15178.82 (16)
O1—Zn1—N2—C25144.56 (13)C12—C11—C16—C150.8 (3)
O1—Zn1—N2—C2928.65 (12)C14—C13—C12—C111.3 (3)
O3—Zn1—N2—C250.90 (13)C15—C14—C13—C121.0 (3)
O3—Zn1—N2—C29174.12 (11)C17—C14—C13—C12176.88 (16)
N1—Zn1—N2—C25105.14 (13)C13—C14—C17—C1860.5 (2)
N1—Zn1—N2—C2981.64 (12)C15—C14—C17—C18121.68 (19)
Zn1—O1—C1—O24.6 (2)C16—C15—C14—C130.1 (3)
Zn1—O1—C1—C2175.06 (10)C16—C15—C14—C17178.02 (16)
Zn1—O3—C10—O44.28 (19)C11—C16—C15—C141.1 (3)
Zn1—O3—C10—C11175.04 (11)N1—C19—C20—C211.1 (2)
Zn1—N1—C19—C20174.76 (12)C19—C20—C21—C220.9 (2)
C23—N1—C19—C200.2 (2)C20—C21—C22—C230.2 (2)
Zn1—N1—C23—C22176.15 (12)C20—C21—C22—C24177.08 (15)
C19—N1—C23—C221.0 (2)C21—C22—C23—N11.2 (2)
Zn1—N2—C25—C26171.57 (13)C24—C22—C23—N1178.25 (14)
C29—N2—C25—C261.7 (2)C21—C22—C24—O5136.93 (17)
Zn1—N2—C29—C28172.75 (12)C21—C22—C24—N343.3 (2)
C25—N2—C29—C280.7 (2)C23—C22—C24—O540.0 (2)
O1—C1—C2—C3172.72 (14)C23—C22—C24—N3139.73 (16)
O1—C1—C2—C710.4 (2)N2—C25—C26—C271.0 (3)
O2—C1—C2—C37.6 (2)C25—C26—C27—C280.8 (3)
O2—C1—C2—C7169.20 (15)C26—C27—C28—C291.7 (2)
C1—C2—C3—C4175.97 (15)C26—C27—C28—C30177.07 (15)
C7—C2—C3—C40.9 (2)C27—C28—C29—N21.0 (2)
C1—C2—C7—C6174.81 (15)C30—C28—C29—N2177.71 (15)
C3—C2—C7—C62.1 (2)C27—C28—C30—O68.4 (2)
C2—C3—C4—C51.9 (3)C27—C28—C30—N4171.28 (15)
C3—C4—C5—C63.4 (3)C29—C28—C30—O6172.96 (16)
C3—C4—C5—C8175.67 (16)C29—C28—C30—N47.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H32···O4i0.86 (2)1.99 (2)2.833 (2)165 (2)
N4—H41···O5ii0.89 (2)2.07 (2)2.947 (2)169 (2)
N4—H42···O6iii0.84 (2)2.06 (2)2.901 (2)177 (2)
C6—H6···O2ii0.952.593.412 (2)145
C19—H19···O5ii0.952.293.2277 (19)168
C21—H21···O2i0.952.583.497 (2)161
C23—H23···O30.952.493.085 (2)121
C29—H29···O5ii0.952.453.299 (2)149
C17—H17A···Cg1iv0.992.633.436 (2)139
C20—H20···Cg1v0.952.773.603 (2)147
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z; (iii) x+3, y+2, z+2; (iv) x+1, y+1/2, z+1/2; (v) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C9H9O2)2(C6H6N2O)2]
Mr607.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.0601 (2), 15.9736 (3), 21.2568 (3)
β (°) 94.384 (3)
V3)2728.78 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.31 × 0.30 × 0.27
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.752, 0.763
No. of measured, independent and
observed [I > 2σ(I)] reflections
26561, 6812, 5761
Rint0.045
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.03
No. of reflections6812
No. of parameters388
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.44

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H32···O4i0.86 (2)1.99 (2)2.833 (2)165 (2)
N4—H41···O5ii0.89 (2)2.07 (2)2.947 (2)169 (2)
N4—H42···O6iii0.84 (2)2.06 (2)2.901 (2)177 (2)
C6—H6···O2ii0.952.593.412 (2)145
C19—H19···O5ii0.952.293.2277 (19)168
C21—H21···O2i0.952.583.497 (2)161
C23—H23···O30.952.493.085 (2)121
C29—H29···O5ii0.952.453.299 (2)149
C17—H17A···Cg1iv0.992.633.436 (2)139
C20—H20···Cg1v0.952.773.603 (2)147
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z; (iii) x+3, y+2, z+2; (iv) x+1, y+1/2, z+1/2; (v) x, y1/2, z+1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 108 T657).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m382-m383
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds