organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,3R,8R,11S)-2,2-Di­chloro-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]dodec-9-en-11-ol

aLaboratoire de Chimie Biomoléculaires, Substances Naturelles et Réactivité, URAC16, Faculté des Sciences, Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bUniversité Blaise Pascal, Laboratoire des Matériaux Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France
*Correspondence e-mail: elassaba@gmail.com

(Received 30 January 2011; accepted 8 February 2011; online 12 February 2011)

The title compound, C16H24Cl2O, was synthesized from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzocyclo­heptene), which was isolated from essential oil of the Atlas cedar (Cedrus atlantica). The two fused rings exhibit different conformations: the six-membered ring has a screw-boat conformation, while the seven-membered ring displays a boat conformation. The dihedral angle between the two rings is 56.56 (18)°. In the crystal, mol­ecules aggregate into supra­molecular chains along the c axis mediated by O—H⋯O hydrogen bonds.

Related literature

For the isolation of β-himachalene, see: Joseph & Dev (1968[Joseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841-3859.]); Plattier & Teisseire (1974[Plattier, M. & Teisseire, P. (1974). Recherche, 19, 131-144.]). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998[Lassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641-2651.]); Chekroun et al. (2000[Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431-4434.]); El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Sbai et al. (2002[Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518-o520.]); Dakir et al. (2004[Dakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001-2008.]). For its biological activity, see: Daoubi et al. (2004[Daoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez -Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927-932.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24Cl2O

  • Mr = 303.25

  • Trigonal, P 32

  • a = 13.2323 (13) Å

  • c = 7.9807 (8) Å

  • V = 1210.2 (2) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 298 K

  • 0.41 × 0.33 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 8123 measured reflections

  • 3135 independent reflections

  • 2995 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.09

  • 3135 reflections

  • 180 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1940 Friedel pairs

  • Flack parameter: −0.11 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.82 2.10 2.853 (4) 153
Symmetry code: (i) [-y+2, x-y, z-{\script{1\over 3}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The bicyclic sesquiterpene β-himachalene is the main constituent of the essential oil of the Atlas cedar (Cedrus atlantica) (Joseph & Dev, 1968; Plattier & Teisseire, 1974). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Lassaba et al., 1998; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004).

The action of one equivalent of dichlorocarbene, generated in situ from chloroform in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, on β-himachalene produces only (1S,3R,8R)-2,2-dichloro-3,7,7,10- tetramethyltricyclo[6.4.0.01,3]dodec-9-ene (El Jamili et al., 2002). Treatment of the latter compound with two equivalents of N-bromosuccinimide gives (1S, 3R, 8R, 11S)-2,2-dichloro -3,7,7,10-tetralethyltricyclo[6.4.0.01,3]dodec-9-en-11-ol in a very low yield (5%), along with other products. The structure of this new product was determined by NMR (1H & 13C) spectral analysis and mass spectroscopy, and confirmed by a crystallographic study, reported herein.

The molecule is built up from two fused six-membered and seven-membered rings (Fig. 1). The six-membered ring has a screw boat conformation, as indicated by the total puckering amplitude QT = 0.480 (3) Å and spherical polar angle θ = 130.6 (4) ° with ϕ = 151.5 (5) °, whereas the seven-membered ring displays a boat conformation with QT = 1.1449 (30) Å, θ2 = 88.29 (15) °, ϕ2 = -47.13 (14) ° and ϕ3 =-144.24 (5) ° (Cremer & Pople, 1975). In the crystal structure, molecules are linked into supramolecular chains (Fig. 2) running along the c axis by O—H···O hydrogen bonds (Table 1). Owing to the presence of Cl atoms, the absolute configuration could be fully confirmed, as C1(S), C3(R), C8(R) and C11(S).

Related literature top

For the isolation of β-himachalene, see: Joseph & Dev (1968); Plattier & Teisseire (1974). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998); Chekroun et al. (2000); El Jamili et al. (2002); Sbai et al. (2002); Dakir et al. (2004). For its biological activity, see: Daoubi et al. (2004). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

In a reactor containing a solution of (1S, 3R, 8R)-2,2-dichloro-3,7,7,10 tetramethyltricyclo [6.4.0.01,3] dodec-9-ene (1 g, 3.48 mmol) in 50 ml of tetrahydrofuran and water (THF/H2O) (4:1) cooled to 273 K and kept in the dark, was added in small portions 1.23 g (6.96 mmol) of N-bromosccinimide. The reaction mixture was left stirring for 1 h, after which 20 ml of a saturated solution of NaHCO3 was added. Subsequently, the extraction was performed three times with diethyl ether (3 x 20 ml). The organic extracts were dried over Na2SO4, filtered, concentrated, and chromatographed. The title compound, (1S, 3R, 8R, 11S,)-2,2-dichloro-3,7,7,10-tetralethyltricyclo [6.4.0.01,3] dodec-9-by-11-ol was obtained with in a yield of 5% and was recrystallized its pentane solution.

Refinement top

All H atoms were fixed geometrically and treated as riding with O—H = 0.82 Å and C—H = 0.93 (ethylene), 0.96 Å (methyl), 0.97 Å (methylene) and 0.98Å (methine), and with Uiso(H) = 1.2Ueq (ethylene, methylene, methine) or Uiso(H) = 1.5Ueq (O, methyl).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing diagram showing the O—H···O interactions (dashed lines) and the formation of supramolecular chains parallel to the c axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
(1S,3R,8R,11S)-2,2-Dichloro-3,7,7,10- tetramethyltricyclo[6.4.0.01,3]dodec-9-en-11-ol top
Crystal data top
C16H24Cl2ODx = 1.244 Mg m3
Mr = 303.25Mo Kα radiation, λ = 0.71073 Å
Trigonal, P32Cell parameters from 8123 reflections
Hall symbol: P 32θ = 4–26.4°
a = 13.2323 (13) ŵ = 0.39 mm1
c = 7.9807 (8) ÅT = 298 K
V = 1210.2 (2) Å3Prism, colourless
Z = 30.41 × 0.33 × 0.26 mm
F(000) = 486
Data collection top
Bruker APEXII CCD
diffractometer
2995 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 26.4°, θmin = 4.0°
ω and ϕ scansh = 1516
8123 measured reflectionsk = 1416
3135 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0761P)2 + 0.4405P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3135 reflectionsΔρmax = 0.52 e Å3
180 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack & Bernardinelli (2000), 1940 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (7)
Crystal data top
C16H24Cl2OZ = 3
Mr = 303.25Mo Kα radiation
Trigonal, P32µ = 0.39 mm1
a = 13.2323 (13) ÅT = 298 K
c = 7.9807 (8) Å0.41 × 0.33 × 0.26 mm
V = 1210.2 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2995 reflections with I > 2σ(I)
8123 measured reflectionsRint = 0.019
3135 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.126Δρmax = 0.52 e Å3
S = 1.09Δρmin = 0.33 e Å3
3135 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 1940 Friedel pairs
180 parametersAbsolute structure parameter: 0.11 (7)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0043 (2)0.6432 (2)0.5388 (3)0.0304 (5)
C20.9057 (2)0.5880 (2)0.4113 (4)0.0370 (5)
C30.8790 (2)0.5564 (2)0.5938 (4)0.0392 (6)
C40.8143 (3)0.6069 (3)0.6915 (4)0.0464 (7)
H4A0.82280.67490.63290.056*
H4B0.73190.54930.69550.056*
C50.8600 (3)0.6411 (3)0.8682 (5)0.0541 (8)
H5A0.82340.57200.93840.065*
H5B0.83700.69530.91060.065*
C60.9973 (3)0.6991 (4)0.8854 (5)0.0591 (9)
H6A1.01780.72321.00100.071*
H6B1.01750.63940.86330.071*
C71.0733 (2)0.8032 (3)0.7746 (4)0.0426 (6)
C81.0545 (2)0.7728 (2)0.5810 (3)0.0308 (5)
H80.99660.79330.54260.041 (8)*
C91.1625 (2)0.8449 (2)0.4781 (4)0.0394 (6)
H91.18950.92460.47210.039 (8)*
C101.2228 (2)0.8058 (2)0.3951 (4)0.0367 (5)
C111.1869 (2)0.6778 (2)0.3958 (3)0.0333 (5)
H111.15230.64430.28670.029 (7)*
C121.0980 (2)0.6089 (2)0.5320 (4)0.0364 (5)
H12A1.06240.52600.50900.044*
H12B1.13710.62420.63960.044*
C131.3285 (3)0.8828 (3)0.2905 (5)0.0549 (8)
H13A1.34070.96070.28930.082*
H13B1.31640.85320.17800.082*
H13C1.39570.88370.33730.082*
C140.8465 (3)0.4338 (3)0.6503 (6)0.0633 (10)
H14A0.76530.39130.67960.095*
H14B0.89270.43860.74590.095*
H14C0.86110.39430.56080.095*
C151.0481 (4)0.9031 (4)0.8042 (6)0.0718 (11)
H15A0.97190.88110.76210.108*
H15B1.10550.97180.74690.108*
H15C1.05120.91880.92210.108*
C161.2019 (4)0.8507 (4)0.8255 (6)0.0730 (11)
H16A1.21220.87400.94100.109*
H16B1.25150.91680.75680.109*
H16C1.22190.79090.81020.109*
O11.28683 (18)0.6633 (2)0.4212 (3)0.0453 (5)
H11.32110.67270.33190.068*
Cl10.85533 (6)0.67322 (7)0.30875 (9)0.0497 (2)
Cl20.90015 (7)0.48357 (7)0.26866 (11)0.0605 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0314 (11)0.0304 (11)0.0315 (12)0.0170 (10)0.0015 (9)0.0018 (9)
C20.0353 (12)0.0343 (12)0.0391 (14)0.0157 (10)0.0032 (10)0.0049 (10)
C30.0350 (13)0.0374 (13)0.0431 (15)0.0164 (11)0.0042 (11)0.0079 (11)
C40.0365 (14)0.0604 (18)0.0436 (16)0.0253 (13)0.0107 (11)0.0114 (13)
C50.0556 (19)0.069 (2)0.0418 (16)0.0344 (17)0.0144 (14)0.0117 (15)
C60.065 (2)0.079 (2)0.0401 (17)0.0407 (19)0.0012 (14)0.0047 (16)
C70.0435 (14)0.0539 (16)0.0364 (14)0.0289 (13)0.0053 (11)0.0123 (12)
C80.0306 (11)0.0319 (12)0.0351 (12)0.0197 (10)0.0012 (9)0.0015 (9)
C90.0409 (14)0.0287 (12)0.0461 (16)0.0155 (10)0.0048 (11)0.0006 (10)
C100.0320 (12)0.0339 (13)0.0409 (14)0.0141 (10)0.0025 (10)0.0003 (10)
C110.0327 (12)0.0367 (12)0.0365 (14)0.0218 (10)0.0017 (9)0.0045 (10)
C120.0369 (12)0.0343 (12)0.0451 (14)0.0230 (11)0.0031 (10)0.0023 (10)
C130.0452 (16)0.0493 (17)0.064 (2)0.0190 (14)0.0200 (15)0.0072 (14)
C140.0562 (19)0.0404 (16)0.082 (3)0.0158 (15)0.0123 (17)0.0191 (16)
C150.078 (3)0.071 (2)0.078 (3)0.046 (2)0.002 (2)0.023 (2)
C160.058 (2)0.087 (3)0.069 (3)0.033 (2)0.0150 (19)0.023 (2)
O10.0410 (10)0.0614 (13)0.0479 (12)0.0365 (10)0.0009 (8)0.0025 (9)
Cl10.0471 (4)0.0680 (5)0.0384 (3)0.0321 (4)0.0065 (3)0.0047 (3)
Cl20.0541 (4)0.0536 (4)0.0643 (5)0.0199 (4)0.0071 (4)0.0266 (4)
Geometric parameters (Å, º) top
C1—C121.521 (3)C9—C101.326 (4)
C1—C21.522 (3)C9—H90.9300
C1—C31.534 (3)C10—C131.506 (4)
C1—C81.535 (3)C10—C111.513 (4)
C2—C31.507 (4)C11—O11.442 (3)
C2—Cl21.764 (3)C11—C121.524 (4)
C2—Cl11.771 (3)C11—H110.9800
C3—C141.524 (4)C12—H12A0.9700
C3—C41.535 (4)C12—H12B0.9700
C4—C51.512 (5)C13—H13A0.9600
C4—H4A0.9700C13—H13B0.9600
C4—H4B0.9700C13—H13C0.9600
C5—C61.584 (5)C14—H14A0.9600
C5—H5A0.9700C14—H14B0.9600
C5—H5B0.9700C14—H14C0.9600
C6—C71.518 (5)C15—H15A0.9600
C6—H6A0.9700C15—H15B0.9600
C6—H6B0.9700C15—H15C0.9600
C7—C151.534 (5)C16—H16A0.9600
C7—C161.545 (5)C16—H16B0.9600
C7—C81.585 (4)C16—H16C0.9600
C8—C91.505 (3)O1—H10.8200
C8—H80.9800
C12—C1—C2117.7 (2)C1—C8—H8106.2
C12—C1—C3121.6 (2)C7—C8—H8106.2
C2—C1—C359.08 (17)C10—C9—C8126.2 (2)
C12—C1—C8112.3 (2)C10—C9—H9116.9
C2—C1—C8118.1 (2)C8—C9—H9116.9
C3—C1—C8118.4 (2)C9—C10—C13123.3 (3)
C3—C2—C160.86 (17)C9—C10—C11121.5 (2)
C3—C2—Cl2119.6 (2)C13—C10—C11115.2 (2)
C1—C2—Cl2119.77 (19)O1—C11—C10110.7 (2)
C3—C2—Cl1120.9 (2)O1—C11—C12107.7 (2)
C1—C2—Cl1120.59 (18)C10—C11—C12112.9 (2)
Cl2—C2—Cl1108.61 (15)O1—C11—H11108.5
C2—C3—C14118.9 (3)C10—C11—H11108.5
C2—C3—C160.06 (16)C12—C11—H11108.5
C14—C3—C1120.3 (3)C1—C12—C11110.3 (2)
C2—C3—C4118.3 (2)C1—C12—H12A109.6
C14—C3—C4113.0 (3)C11—C12—H12A109.6
C1—C3—C4116.7 (2)C1—C12—H12B109.6
C5—C4—C3112.2 (3)C11—C12—H12B109.6
C5—C4—H4A109.2H12A—C12—H12B108.1
C3—C4—H4A109.2C10—C13—H13A109.5
C5—C4—H4B109.2C10—C13—H13B109.5
C3—C4—H4B109.2H13A—C13—H13B109.5
H4A—C4—H4B107.9C10—C13—H13C109.5
C4—C5—C6114.6 (3)H13A—C13—H13C109.5
C4—C5—H5A108.6H13B—C13—H13C109.5
C6—C5—H5A108.6C3—C14—H14A109.5
C4—C5—H5B108.6C3—C14—H14B109.5
C6—C5—H5B108.6H14A—C14—H14B109.5
H5A—C5—H5B107.6C3—C14—H14C109.5
C7—C6—C5118.0 (3)H14A—C14—H14C109.5
C7—C6—H6A107.8H14B—C14—H14C109.5
C5—C6—H6A107.8C7—C15—H15A109.5
C7—C6—H6B107.8C7—C15—H15B109.5
C5—C6—H6B107.8H15A—C15—H15B109.5
H6A—C6—H6B107.2C7—C15—H15C109.5
C6—C7—C15111.2 (3)H15A—C15—H15C109.5
C6—C7—C16108.2 (3)H15B—C15—H15C109.5
C15—C7—C16106.2 (3)C7—C16—H16A109.5
C6—C7—C8112.8 (2)C7—C16—H16B109.5
C15—C7—C8107.1 (3)H16A—C16—H16B109.5
C16—C7—C8111.1 (3)C7—C16—H16C109.5
C9—C8—C1109.4 (2)H16A—C16—H16C109.5
C9—C8—C7113.1 (2)H16B—C16—H16C109.5
C1—C8—C7115.0 (2)C11—O1—H1109.5
C9—C8—H8106.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.822.102.853 (4)153
Symmetry code: (i) y+2, xy, z1/3.

Experimental details

Crystal data
Chemical formulaC16H24Cl2O
Mr303.25
Crystal system, space groupTrigonal, P32
Temperature (K)298
a, c (Å)13.2323 (13), 7.9807 (8)
V3)1210.2 (2)
Z3
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.41 × 0.33 × 0.26
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8123, 3135, 2995
Rint0.019
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.09
No. of reflections3135
No. of parameters180
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.33
Absolute structureFlack & Bernardinelli (2000), 1940 Friedel pairs
Absolute structure parameter0.11 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.8202.102.853 (4)153
Symmetry code: (i) y+2, xy, z1/3.
 

Acknowledgements

We thank the National Center of Scientific and Technological Research (CNRST) which supports our scientific research.

References

First citationBruker (2009). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008.  Web of Science CrossRef CAS Google Scholar
First citationDaoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez -Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJoseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841–3859.  CrossRef CAS Web of Science Google Scholar
First citationLassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641–2651.  Web of Science CrossRef CAS Google Scholar
First citationPlattier, M. & Teisseire, P. (1974). Recherche, 19, 131–144.  CAS Google Scholar
First citationSbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds