metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{6,6′-Dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­­idene)]diphenolato}nickel(II) di­methyl­formamide monosolvate

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 31 January 2011; accepted 8 February 2011; online 12 February 2011)

In the title compound, [Ni(C18H18N2O4)]·C3H7NO, the central NiII atom is in a square-planar O2N2 coordination environment. The planar Ni–salen moieties (r.m.s. deviation for the plane through the conjugated part of the Ni–salen group = 0.07 Å) form parallel stacks in the a-axis direction, with alternating Ni⋯Ni separations of 3.5339 (7) and 3.6165 (7) Å. In the crystal, there are weak inter­molecular C—H⋯O inter­actions involving the dimethyl­formamide O and phenolate O atoms.

Related literature

For stacking of Ni–salen units, see: Abe et al. (2006[Abe, Y., Akao, H., Yoshida, Y., Takashima, H., Tanase, T., Mukai, H. & Ohta, K. (2006). Inorg. Chim. Acta, 359, 3147-3155.]); Assey et al. (2010[Assey, G., Gultneh, Y. & Butcher, R. J. (2010). Acta Cryst. E66, m654-m655.]); Feng et al. (2007[Feng, X., Du, Z.-X., Ye, B.-X. & Cui, F.-N. (2007). Chin. J. Struct. Chem. 26, 1033-1038.]); Miyamura et al. (1995[Miyamura, K., Mihara, A., Fujii, T., Gohshi, Y. & Ishii, Y. (1995). J. Am. Chem. Soc. 117, 2377-2378.]); Vasil'eva et al. (2003[Vasil'eva, S. V., Chepurnaya, I. A., Logvinov, S. A., Gaman'kov, P. V. & Timonov, A. M. (2003). Russ. J. Electrochem. 39, 310-313.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C18H18N2O4)]·C3H7NO

  • Mr = 458.15

  • Monoclinic, P 21 /c

  • a = 6.8601 (1) Å

  • b = 15.3432 (3) Å

  • c = 18.9065 (4) Å

  • β = 91.676 (2)°

  • V = 1989.17 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.75 mm−1

  • T = 110 K

  • 0.53 × 0.35 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.750, Tmax = 1.000

  • 7909 measured reflections

  • 3911 independent reflections

  • 3513 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.10

  • 3911 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Ni—N1 1.8503 (17)
Ni—N2 1.8502 (17)
Ni—O1 1.8609 (13)
Ni—O2 1.8594 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1S 0.95 2.62 3.310 (3) 130
C9—H9A⋯O2i 0.99 2.45 3.334 (3) 148
C10—H10A⋯O1ii 0.99 2.45 3.348 (3) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is a composed of one mononuclear nickel salen-type complex and one molecule of dimethylformamide as solvate. The central Ni is in a square planar O2N2 coordination environment (Fig. 1). The Ni—N and Ni—O bond distances, Table 1, are in the normal range for Ni-salen type complexes (Allen, 2002). The planar Ni salen moieties form parallel stacks in the a direction with alternating Ni—Ni separations of 3.5339 (7) and 3.6165 (7) Å as is common for this type of complex (Abe et al., 2006; Assey et al., 2010; Feng et al., 2007; Miyamura et al., 1995; Vasil'eva et al., 2003). There are weak intermolecular C—H···O interactions involving the DMF O and phenolic O atoms (Table 2 and Fig. 2).

Related literature top

For stacking of Ni–salen units, see: Abe et al. (2006); Assey et al. (2010); Feng et al. (2007); Miyamura et al. (1995); Vasil'eva et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The ligand, N,N'-bis(3-methoxysalicylaldehyde)ethylenediimine (H2L1), was synthesized in a conventional way by mixing o-vanillin with ethylenediamine. To 10 g (0.066 mole) of o-vanillin weighed into a 100 ml round-bottom flask, 30 ml of methanol and 3 mL (0.035 mole) of ethylenediamine were added drop-wise while stirring. The resulting mixture was refluxed at a regulated temperature of 313 K overnight. The yellow precipitate was filtered under vacuum, dissolved in methanol and filtered a second time.

To a stirred bright yellow solution of 20 ml methanol containing 0.9 g (2.74 mmol) of H2L1, a 20 ml green methanol solution of 0.65 g NiCl2.6H2O (2.73 mmol) was added drop-wise with continuous stirring. About 2 to 3 drops of triethylamine was added to activate deprotonation of the 2-hydroxyl group on the aldehyde moiety and promote oxygen binding to the metal. The resulting dark brown complex solution was stirred and refluxed overnight at 313 K, rotary-evaporated and washed with ethanol to obtain a brown solid in over 90% yield. The complex (7 mg) was dissolved in 5 ml of N,N'-dimethyl formamide and filtered into a crystallization tube. Sufficient amount of diethyl ether was slowly layered over the dissolved complex yielding red brown crystals after several days.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 to 0.99 Å and Uiso(H) = 1.2Ueq(C) [Uiso(H) = 1.5Ueq(C) for CH3].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of the complex, C18H18N3NiO5, and solvent, C3H7NO, showing the atom numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing for C18H18N3NiO5.C3H7NO, viewed down the a axis showing overlapping Nisalen units.
{6,6'-Dimethoxy-2,2'-[ethane-1,2- diylbis(nitrilomethanylylidene)]diphenolato}nickel(II) dimethylformamide monosolvate top
Crystal data top
[Ni(C18H18N2O4)]·C3H7NOF(000) = 960
Mr = 458.15Dx = 1.530 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 5823 reflections
a = 6.8601 (1) Åθ = 5.5–73.9°
b = 15.3432 (3) ŵ = 1.75 mm1
c = 18.9065 (4) ÅT = 110 K
β = 91.676 (2)°Prism, red brown
V = 1989.17 (6) Å30.53 × 0.35 × 0.28 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Mo) detector
3911 independent reflections
Radiation source: Enhance (Cu) X-ray Source3513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.5081 pixels mm-1θmax = 74.1°, θmin = 5.5°
ω scansh = 86
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1818
Tmin = 0.750, Tmax = 1.000l = 2223
7909 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0443P)2 + 2.5615P]
where P = (Fo2 + 2Fc2)/3
3911 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Ni(C18H18N2O4)]·C3H7NOV = 1989.17 (6) Å3
Mr = 458.15Z = 4
Monoclinic, P21/cCu Kα radiation
a = 6.8601 (1) ŵ = 1.75 mm1
b = 15.3432 (3) ÅT = 110 K
c = 18.9065 (4) Å0.53 × 0.35 × 0.28 mm
β = 91.676 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Mo) detector
3911 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3513 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 1.000Rint = 0.020
7909 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.10Δρmax = 0.34 e Å3
3911 reflectionsΔρmin = 0.31 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.74901 (5)0.498467 (19)0.526650 (16)0.01230 (13)
O10.7304 (2)0.41708 (9)0.59911 (7)0.0156 (3)
O20.7642 (2)0.58041 (9)0.59906 (7)0.0153 (3)
O30.7206 (2)0.32568 (9)0.71759 (7)0.0202 (3)
O40.7569 (2)0.67226 (9)0.71712 (7)0.0219 (3)
O1S0.5907 (2)0.00040 (9)0.71449 (9)0.0270 (4)
N10.7406 (2)0.41614 (11)0.45511 (9)0.0159 (3)
N20.7631 (2)0.57987 (11)0.45478 (9)0.0160 (3)
N1S0.2629 (3)0.00026 (10)0.69058 (10)0.0191 (4)
C10.7385 (3)0.33191 (13)0.59320 (10)0.0143 (4)
C20.7330 (3)0.27939 (13)0.65578 (10)0.0159 (4)
C30.7344 (3)0.27729 (14)0.78197 (11)0.0214 (4)
H3A0.72720.31730.82220.032*
H3B0.85880.24590.78450.032*
H3C0.62660.23550.78340.032*
C40.7376 (3)0.18962 (13)0.65251 (11)0.0198 (4)
H4A0.73040.15640.69480.024*
C50.7531 (3)0.14675 (13)0.58720 (12)0.0257 (5)
H5A0.75770.08490.58530.031*
C60.7613 (3)0.19459 (15)0.52644 (12)0.0251 (5)
H6A0.77350.16570.48230.030*
C70.7518 (3)0.28656 (14)0.52840 (11)0.0191 (4)
C80.7480 (3)0.33263 (14)0.46263 (11)0.0194 (4)
H8A0.75130.29870.42070.023*
C90.7123 (3)0.45208 (15)0.38295 (10)0.0219 (4)
H9A0.57200.45230.36920.026*
H9B0.78240.41590.34860.026*
C100.7908 (3)0.54324 (14)0.38323 (10)0.0215 (4)
H10A0.93100.54290.37220.026*
H10B0.72020.57890.34720.026*
C110.7590 (3)0.66365 (14)0.46181 (11)0.0195 (4)
H11A0.76220.69740.41970.023*
C120.7500 (3)0.71005 (14)0.52714 (11)0.0192 (4)
C130.7388 (3)0.80217 (15)0.52450 (12)0.0252 (5)
H13A0.73550.83080.47990.030*
C140.7328 (3)0.85024 (14)0.58504 (13)0.0268 (5)
H14A0.72540.91200.58270.032*
C150.7376 (3)0.80773 (13)0.65102 (12)0.0203 (4)
H15A0.73180.84110.69330.024*
C160.7506 (3)0.71821 (13)0.65496 (10)0.0164 (4)
C170.7597 (3)0.72153 (15)0.78123 (11)0.0220 (4)
H17A0.76870.68180.82180.033*
H17B0.63970.75590.78360.033*
H17C0.87260.76070.78230.033*
C180.7554 (3)0.66541 (13)0.59253 (10)0.0146 (4)
C1S0.4214 (3)0.00156 (11)0.73382 (12)0.0181 (4)
H1SA0.40110.00350.78330.022*
C2S0.0692 (3)0.00288 (14)0.71929 (14)0.0270 (5)
H2SA0.07950.00170.77110.040*
H2SB0.00290.05640.70380.040*
H2SC0.00570.04780.70240.040*
C3S0.2806 (5)0.00255 (16)0.61430 (13)0.0347 (6)
H3SA0.41730.01200.60280.052*
H3SB0.20090.05030.59480.052*
H3SC0.23550.05280.59380.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0174 (2)0.0113 (2)0.00815 (19)0.00089 (12)0.00040 (13)0.00026 (11)
O10.0232 (7)0.0109 (6)0.0127 (6)0.0014 (5)0.0010 (5)0.0000 (5)
O20.0216 (7)0.0113 (6)0.0131 (6)0.0013 (5)0.0005 (5)0.0001 (5)
O30.0333 (8)0.0145 (7)0.0130 (7)0.0003 (6)0.0024 (6)0.0026 (5)
O40.0373 (9)0.0150 (7)0.0135 (7)0.0009 (6)0.0018 (6)0.0027 (5)
O1S0.0217 (8)0.0249 (9)0.0347 (9)0.0000 (6)0.0039 (7)0.0014 (6)
N10.0175 (8)0.0195 (9)0.0105 (8)0.0004 (7)0.0001 (6)0.0017 (6)
N20.0169 (8)0.0201 (9)0.0110 (8)0.0018 (6)0.0002 (6)0.0023 (6)
N1S0.0239 (9)0.0172 (9)0.0162 (9)0.0004 (7)0.0001 (7)0.0003 (6)
C10.0135 (9)0.0121 (9)0.0173 (9)0.0003 (7)0.0005 (7)0.0002 (7)
C20.0140 (9)0.0163 (10)0.0176 (9)0.0002 (7)0.0012 (7)0.0000 (7)
C30.0244 (11)0.0227 (10)0.0171 (10)0.0001 (8)0.0008 (8)0.0067 (8)
C40.0203 (10)0.0152 (10)0.0238 (11)0.0002 (8)0.0001 (8)0.0035 (8)
C50.0328 (12)0.0108 (9)0.0334 (13)0.0007 (8)0.0017 (10)0.0022 (8)
C60.0339 (12)0.0177 (11)0.0237 (11)0.0002 (9)0.0001 (9)0.0073 (8)
C70.0207 (10)0.0175 (10)0.0190 (10)0.0012 (8)0.0008 (8)0.0036 (8)
C80.0233 (10)0.0202 (10)0.0146 (9)0.0008 (8)0.0001 (8)0.0074 (8)
C90.0272 (11)0.0281 (11)0.0104 (9)0.0022 (9)0.0006 (8)0.0006 (8)
C100.0259 (11)0.0274 (11)0.0114 (9)0.0025 (9)0.0018 (8)0.0014 (8)
C110.0235 (10)0.0194 (10)0.0155 (9)0.0012 (8)0.0005 (8)0.0079 (8)
C120.0205 (10)0.0175 (10)0.0195 (10)0.0008 (8)0.0020 (8)0.0034 (8)
C130.0320 (12)0.0164 (10)0.0272 (12)0.0003 (9)0.0001 (9)0.0087 (8)
C140.0347 (13)0.0111 (10)0.0344 (13)0.0007 (9)0.0005 (10)0.0022 (9)
C150.0192 (10)0.0146 (10)0.0270 (11)0.0005 (8)0.0018 (8)0.0043 (8)
C160.0137 (9)0.0161 (9)0.0192 (10)0.0008 (7)0.0002 (7)0.0000 (8)
C170.0250 (11)0.0232 (11)0.0178 (10)0.0007 (8)0.0010 (8)0.0079 (8)
C180.0135 (9)0.0124 (9)0.0179 (10)0.0008 (7)0.0002 (7)0.0002 (7)
C1S0.0229 (10)0.0114 (9)0.0200 (10)0.0017 (7)0.0006 (8)0.0005 (7)
C2S0.0208 (11)0.0254 (12)0.0347 (13)0.0012 (8)0.0004 (9)0.0028 (9)
C3S0.0537 (17)0.0342 (14)0.0161 (11)0.0016 (11)0.0033 (11)0.0005 (9)
Geometric parameters (Å, º) top
Ni—N11.8503 (17)C6—H6A0.9500
Ni—N21.8502 (17)C7—C81.430 (3)
Ni—O11.8609 (13)C8—H8A0.9500
Ni—O21.8594 (13)C9—C101.499 (3)
O1—C11.313 (2)C9—H9A0.9900
O2—C181.311 (2)C9—H9B0.9900
O3—C21.372 (2)C10—H10A0.9900
O3—C31.427 (2)C10—H10B0.9900
O4—C161.370 (2)C11—C121.429 (3)
O4—C171.428 (2)C11—H11A0.9500
O1S—C1S1.228 (3)C12—C181.413 (3)
N1—C81.290 (3)C12—C131.416 (3)
N1—C91.479 (2)C13—C141.363 (3)
N2—C111.293 (3)C13—H13A0.9500
N2—C101.482 (2)C14—C151.407 (3)
N1S—C1S1.341 (3)C14—H14A0.9500
N1S—C2S1.451 (3)C15—C161.378 (3)
N1S—C3S1.451 (3)C15—H15A0.9500
C1—C71.414 (3)C16—C181.433 (3)
C1—C21.433 (3)C17—H17A0.9800
C2—C41.379 (3)C17—H17B0.9800
C3—H3A0.9800C17—H17C0.9800
C3—H3B0.9800C1S—H1SA0.9500
C3—H3C0.9800C2S—H2SA0.9800
C4—C51.406 (3)C2S—H2SB0.9800
C4—H4A0.9500C2S—H2SC0.9800
C5—C61.366 (3)C3S—H3SA0.9800
C5—H5A0.9500C3S—H3SB0.9800
C6—C71.413 (3)C3S—H3SC0.9800
N2—Ni—N185.71 (8)C10—C9—H9B110.1
N2—Ni—O294.66 (7)H9A—C9—H9B108.4
N1—Ni—O2178.51 (7)N2—C10—C9107.53 (16)
N2—Ni—O1179.01 (7)N2—C10—H10A110.2
N1—Ni—O194.51 (7)C9—C10—H10A110.2
O2—Ni—O185.14 (6)N2—C10—H10B110.2
C1—O1—Ni126.96 (12)C9—C10—H10B110.2
C18—O2—Ni127.00 (12)H10A—C10—H10B108.5
C2—O3—C3116.94 (16)N2—C11—C12125.87 (19)
C16—O4—C17117.06 (16)N2—C11—H11A117.1
C8—N1—C9118.40 (17)C12—C11—H11A117.1
C8—N1—Ni126.67 (15)C18—C12—C13120.97 (19)
C9—N1—Ni114.85 (13)C18—C12—C11120.96 (19)
C11—N2—C10118.33 (17)C13—C12—C11118.07 (19)
C11—N2—Ni126.45 (14)C14—C13—C12120.9 (2)
C10—N2—Ni115.16 (13)C14—C13—H13A119.6
C1S—N1S—C2S120.44 (19)C12—C13—H13A119.6
C1S—N1S—C3S121.1 (2)C13—C14—C15119.53 (19)
C2S—N1S—C3S118.5 (2)C13—C14—H14A120.2
O1—C1—C7124.57 (18)C15—C14—H14A120.2
O1—C1—C2119.16 (17)C16—C15—C14120.6 (2)
C7—C1—C2116.27 (18)C16—C15—H15A119.7
O3—C2—C4123.86 (18)C14—C15—H15A119.7
O3—C2—C1114.57 (17)O4—C16—C15124.02 (19)
C4—C2—C1121.56 (18)O4—C16—C18114.50 (17)
O3—C3—H3A109.5C15—C16—C18121.47 (19)
O3—C3—H3B109.5O4—C17—H17A109.5
H3A—C3—H3B109.5O4—C17—H17B109.5
O3—C3—H3C109.5H17A—C17—H17B109.5
H3A—C3—H3C109.5O4—C17—H17C109.5
H3B—C3—H3C109.5H17A—C17—H17C109.5
C2—C4—C5120.60 (19)H17B—C17—H17C109.5
C2—C4—H4A119.7O2—C18—C12124.36 (18)
C5—C4—H4A119.7O2—C18—C16119.15 (17)
C6—C5—C4119.57 (19)C12—C18—C16116.49 (18)
C6—C5—H5A120.2O1S—C1S—N1S125.1 (2)
C4—C5—H5A120.2O1S—C1S—H1SA117.4
C5—C6—C7120.8 (2)N1S—C1S—H1SA117.4
C5—C6—H6A119.6N1S—C2S—H2SA109.5
C7—C6—H6A119.6N1S—C2S—H2SB109.5
C6—C7—C1121.21 (19)H2SA—C2S—H2SB109.5
C6—C7—C8118.07 (19)N1S—C2S—H2SC109.5
C1—C7—C8120.68 (19)H2SA—C2S—H2SC109.5
N1—C8—C7125.91 (19)H2SB—C2S—H2SC109.5
N1—C8—H8A117.0N1S—C3S—H3SA109.5
C7—C8—H8A117.0N1S—C3S—H3SB109.5
N1—C9—C10107.90 (16)H3SA—C3S—H3SB109.5
N1—C9—H9A110.1N1S—C3S—H3SC109.5
C10—C9—H9A110.1H3SA—C3S—H3SC109.5
N1—C9—H9B110.1H3SB—C3S—H3SC109.5
N2—Ni—O1—C1111 (4)C2—C1—C7—C8176.74 (18)
N1—Ni—O1—C18.14 (16)C9—N1—C8—C7172.29 (19)
O2—Ni—O1—C1170.41 (16)Ni—N1—C8—C74.3 (3)
N2—Ni—O2—C188.98 (16)C6—C7—C8—N1179.6 (2)
N1—Ni—O2—C18113 (3)C1—C7—C8—N12.8 (3)
O1—Ni—O2—C18170.05 (16)C8—N1—C9—C10156.46 (19)
N2—Ni—N1—C8172.71 (18)Ni—N1—C9—C1026.6 (2)
O2—Ni—N1—C868 (3)C11—N2—C10—C9157.70 (19)
O1—Ni—N1—C88.25 (18)Ni—N2—C10—C925.0 (2)
N2—Ni—N1—C910.60 (14)N1—C9—C10—N231.2 (2)
O2—Ni—N1—C9115 (3)C10—N2—C11—C12174.43 (19)
O1—Ni—N1—C9168.43 (14)Ni—N2—C11—C122.5 (3)
N1—Ni—N2—C11174.22 (18)N2—C11—C12—C183.5 (3)
O2—Ni—N2—C117.22 (18)N2—C11—C12—C13177.6 (2)
O1—Ni—N2—C1171 (4)C18—C12—C13—C140.1 (3)
N1—Ni—N2—C108.76 (14)C11—C12—C13—C14179.0 (2)
O2—Ni—N2—C10169.79 (14)C12—C13—C14—C150.0 (3)
O1—Ni—N2—C10112 (4)C13—C14—C15—C160.8 (3)
Ni—O1—C1—C74.0 (3)C17—O4—C16—C153.2 (3)
Ni—O1—C1—C2176.32 (13)C17—O4—C16—C18177.79 (16)
C3—O3—C2—C46.9 (3)C14—C15—C16—O4179.68 (19)
C3—O3—C2—C1173.86 (17)C14—C15—C16—C181.4 (3)
O1—C1—C2—O30.4 (3)Ni—O2—C18—C126.0 (3)
C7—C1—C2—O3179.85 (17)Ni—O2—C18—C16173.96 (13)
O1—C1—C2—C4178.85 (18)C13—C12—C18—O2179.44 (19)
C7—C1—C2—C40.9 (3)C11—C12—C18—O21.6 (3)
O3—C2—C4—C5179.16 (18)C13—C12—C18—C160.5 (3)
C1—C2—C4—C51.6 (3)C11—C12—C18—C16178.44 (18)
C2—C4—C5—C60.7 (3)O4—C16—C18—O20.3 (3)
C4—C5—C6—C70.9 (3)C15—C16—C18—O2178.73 (18)
C5—C6—C7—C11.6 (3)O4—C16—C18—C12179.74 (17)
C5—C6—C7—C8175.9 (2)C15—C16—C18—C121.2 (3)
O1—C1—C7—C6179.6 (2)C2S—N1S—C1S—O1S179.27 (18)
C2—C1—C7—C60.7 (3)C3S—N1S—C1S—O1S0.1 (3)
O1—C1—C7—C83.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1S0.952.623.310 (3)130
C9—H9A···O2i0.992.453.334 (3)148
C10—H10A···O1ii0.992.453.348 (3)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C18H18N2O4)]·C3H7NO
Mr458.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)6.8601 (1), 15.3432 (3), 18.9065 (4)
β (°) 91.676 (2)
V3)1989.17 (6)
Z4
Radiation typeCu Kα
µ (mm1)1.75
Crystal size (mm)0.53 × 0.35 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Mo) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.750, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7909, 3911, 3513
Rint0.020
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.10
No. of reflections3911
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni—N11.8503 (17)Ni—O11.8609 (13)
Ni—N21.8502 (17)Ni—O21.8594 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1S0.952.623.310 (3)130
C9—H9A···O2i0.992.453.334 (3)148
C10—H10A···O1ii0.992.453.348 (3)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer. KA wishes to thank the National Science Foundation's AGEP Fellowship for support.

References

First citationAbe, Y., Akao, H., Yoshida, Y., Takashima, H., Tanase, T., Mukai, H. & Ohta, K. (2006). Inorg. Chim. Acta, 359, 3147–3155.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAssey, G., Gultneh, Y. & Butcher, R. J. (2010). Acta Cryst. E66, m654–m655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFeng, X., Du, Z.-X., Ye, B.-X. & Cui, F.-N. (2007). Chin. J. Struct. Chem. 26, 1033–1038.  CAS Google Scholar
First citationMiyamura, K., Mihara, A., Fujii, T., Gohshi, Y. & Ishii, Y. (1995). J. Am. Chem. Soc. 117, 2377–2378.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasil'eva, S. V., Chepurnaya, I. A., Logvinov, S. A., Gaman'kov, P. V. & Timonov, A. M. (2003). Russ. J. Electrochem. 39, 310–313.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds