organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-2-methyl-N-(4-nitro­phen­yl)propanamide

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bInstituto de Química, IQSC, Universidade de São Paulo, São Carlos, Brazil, and cWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

(Received 8 February 2011; accepted 12 February 2011; online 19 February 2011)

The title compound, C10H11BrN2O3, exhibits a small twist between the amide residue and benzene ring [the C—N—C—C torsion angle = 12.7 (4)°]. The crystal structure is stabilized by weak N—H⋯O, C—H⋯Br and C—H⋯O inter­actions. These lead to supra­molecular layers in the bc plane.

Related literature

For initiators in ATRP (polymerization by atom transfer radical) processes, see: Matyjaszewski & Xia (2001[Matyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921-2990.]); Pietrasik & Tsarevsky (2010[Pietrasik, J. & Tsarevsky, N. V. (2010). Eur. Polym. J. 46, 2333-2340.]). For graph-set notation of hydrogen-bond patterns, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11BrN2O3

  • Mr = 287.11

  • Monoclinic, C 2/c

  • a = 24.1245 (12) Å

  • b = 5.8507 (3) Å

  • c = 15.4723 (8) Å

  • β = 91.837 (5)°

  • V = 2182.72 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.76 mm−1

  • T = 123 K

  • 0.60 × 0.05 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.444, Tmax = 1.000

  • 5100 measured reflections

  • 2633 independent reflections

  • 2197 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.068

  • S = 1.06

  • 2633 reflections

  • 151 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.95 2.27 2.862 (3) 120
C7—H7⋯O1i 0.95 2.45 3.139 (3) 129
N1—H1n⋯O3ii 0.84 (3) 2.66 (3) 3.316 (3) 136 (2)
C10—H10⋯Br1iii 0.95 2.91 3.812 (2) 160
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), forms a part of a synthetic programme that the Polymer Research Group of Universidad del Valle is pursuing in order to obtain compounds that act as initiators of reactions in polymerization processes. Compound (I), Fig. 1, belongs to a series of polymeric ATRP (polymerization by atom transfer radical) initiators (Pietrasik & Tsarevsky, 2010); most initiators for ATRP processes are alkyl halides (Matyjaszewski & Xia, 2001). The C4—N1—C5—C6 torsion angle is 12.7 (4)°, indicating a small twist between the benzene ring and the amide. An intramolecular C—H···O interaction is observed (see Table 1).

In the crystal structure, weak C—H···O and N—H···O intermolecular interactions are detected (Table 1). In a first substructure (Fig. 2), molecules are linked by C7—H···O1i contacts (i: -x+1/2,-y-1/2,-z) which leads to the formation of dimers with graphs-set notation, R22(14) (Etter, 1990). In turn, N—H···O interactions link the dimers running along the c axis. The N1 atom acts as hydrogen bond donor to O3ii (ii: -x+1/2,+y-1/2,-z+1/2). In a second substructure, C10—H···Br (Table 1) interactions provide further links between the dimers. Overall, the crystal structure comprises layers in the bc plane (Fig. 3).

Related literature top

For initiators in ATRP (polymerization by atom transfer radical) processes, see: Matyjaszewski & Xia (2001); Pietrasik & Tsarevsky (2010). For graph-set notation of hydrogen-bond patterns, see: Etter (1990).

Experimental top

The initial reagents were purchased from Aldrich Chemical Co. and were used as received. In a 100 mL round bottom flask 4-nitroaniline (3.258 mmol, 0.450 g), triethylamine (0.653 mmol, 0.066 g) were mixed, then a solution of 2-bromo isobuturyl bromide (0.704 g) in anhydrous THF (5 mL) was added drop wise, under an argon stream. The reaction was carried out in a dry bag overnight under magnetic stirring. The solid was filtered off and dichloromethane (20 mL) added to the organic phase which was washed with brine (40 mL) followed by water (10 mL). The solution was concentrated at low pressure affording colourless crystals and recrystalized from a solution of hexane and ethyl acetate (80:20). M. pt. 356 (1) K.

Refinement top

The H-atoms were placed geometrically [C—H = 0.95 Å for aromatic & C—H = 0.98 Å for methyl], refined in the riding model approximation with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atom was refined freely.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis CCD (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of (I) with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of R22(10) and R44(18) rings, running along [110]. Symmetry code: (i) -x+1,-y+1,-z; (ii) -x+2,-y+2,-z.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of an infinite zig-zag chain of dimers along [001] direction. Symmetry code: (iii) x,-y+1/2+1,+z-1/2.
2-Bromo-2-methyl-N-(4-nitrophenyl)propanamide top
Crystal data top
C10H11BrN2O3F(000) = 1152
Mr = 287.11Dx = 1.747 Mg m3
Monoclinic, C2/cMelting point: 385(1) K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 24.1245 (12) ÅCell parameters from 2722 reflections
b = 5.8507 (3) Åθ = 3.2–29.3°
c = 15.4723 (8) ŵ = 3.76 mm1
β = 91.837 (5)°T = 123 K
V = 2182.72 (19) Å3Fragment cut from needle, colourless
Z = 80.60 × 0.05 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2633 independent reflections
Radiation source: fine-focus sealed tube2197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 29.0°, θmin = 3.2°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 3218
Tmin = 0.444, Tmax = 1.000k = 67
5100 measured reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0213P)2]
where P = (Fo2 + 2Fc2)/3
2633 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C10H11BrN2O3V = 2182.72 (19) Å3
Mr = 287.11Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.1245 (12) ŵ = 3.76 mm1
b = 5.8507 (3) ÅT = 123 K
c = 15.4723 (8) Å0.60 × 0.05 × 0.05 mm
β = 91.837 (5)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2633 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
2197 reflections with I > 2σ(I)
Tmin = 0.444, Tmax = 1.000Rint = 0.032
5100 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.55 e Å3
2633 reflectionsΔρmin = 0.60 e Å3
151 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.418223 (9)0.36757 (5)0.230618 (14)0.01800 (9)
O10.33754 (6)0.2340 (4)0.04409 (11)0.0205 (4)
O20.09326 (6)0.3711 (4)0.06453 (11)0.0219 (4)
O30.12126 (7)0.6341 (3)0.15486 (11)0.0224 (4)
N10.34163 (8)0.0629 (4)0.13870 (13)0.0177 (5)
N20.12933 (8)0.4612 (4)0.11152 (12)0.0175 (5)
C10.44903 (10)0.3344 (5)0.05532 (15)0.0205 (6)
H1A0.45200.25070.00080.031*
H1B0.42510.46810.04610.031*
H1C0.48600.38440.07560.031*
C20.42421 (9)0.1793 (5)0.12266 (14)0.0156 (5)
C30.46064 (9)0.0238 (5)0.14342 (16)0.0209 (6)
H3A0.49860.02830.15640.031*
H3B0.44650.10440.19370.031*
H3C0.46050.12750.09370.031*
C40.36323 (9)0.1220 (5)0.09765 (14)0.0143 (5)
C50.28757 (9)0.1555 (5)0.12844 (14)0.0133 (5)
C60.24391 (9)0.0415 (5)0.08499 (14)0.0156 (5)
H60.24970.10400.05950.019*
C70.19187 (9)0.1446 (5)0.07971 (14)0.0154 (5)
H70.16180.07000.05030.018*
C80.18422 (9)0.3543 (5)0.11722 (14)0.0135 (5)
C90.22692 (9)0.4702 (5)0.16051 (14)0.0158 (5)
H90.22080.61570.18570.019*
C100.27856 (9)0.3680 (5)0.16594 (14)0.0150 (5)
H100.30830.44380.19570.018*
H1N0.3624 (11)0.132 (5)0.1742 (17)0.028 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01677 (13)0.01963 (16)0.01755 (13)0.00024 (10)0.00059 (9)0.00090 (10)
O10.0181 (8)0.0222 (12)0.0211 (9)0.0011 (8)0.0017 (7)0.0079 (8)
O20.0143 (8)0.0292 (13)0.0218 (9)0.0013 (8)0.0029 (7)0.0000 (8)
O30.0204 (9)0.0223 (12)0.0247 (9)0.0072 (8)0.0027 (7)0.0027 (9)
N10.0135 (10)0.0205 (14)0.0187 (11)0.0023 (9)0.0038 (8)0.0075 (10)
N20.0183 (10)0.0190 (14)0.0152 (10)0.0039 (9)0.0026 (8)0.0028 (9)
C10.0180 (12)0.0222 (17)0.0214 (12)0.0066 (11)0.0030 (10)0.0025 (11)
C20.0151 (11)0.0158 (15)0.0159 (11)0.0025 (10)0.0004 (9)0.0007 (10)
C30.0141 (11)0.0220 (17)0.0265 (13)0.0001 (11)0.0008 (10)0.0007 (12)
C40.0166 (11)0.0144 (14)0.0122 (11)0.0001 (10)0.0032 (9)0.0011 (10)
C50.0127 (11)0.0165 (15)0.0109 (10)0.0002 (10)0.0020 (8)0.0010 (10)
C60.0176 (11)0.0145 (15)0.0148 (11)0.0015 (10)0.0005 (9)0.0023 (10)
C70.0121 (11)0.0187 (16)0.0152 (11)0.0004 (10)0.0013 (9)0.0010 (10)
C80.0119 (11)0.0170 (15)0.0117 (11)0.0030 (10)0.0024 (8)0.0034 (10)
C90.0200 (12)0.0120 (14)0.0155 (11)0.0010 (10)0.0030 (9)0.0018 (10)
C100.0143 (11)0.0177 (15)0.0130 (11)0.0018 (10)0.0001 (8)0.0016 (10)
Geometric parameters (Å, º) top
Br1—C22.010 (2)C3—H3A0.9800
O1—C41.211 (3)C3—H3B0.9800
O2—N21.234 (3)C3—H3C0.9800
O3—N21.232 (3)C5—C101.392 (4)
N1—C41.366 (3)C5—C61.400 (3)
N1—C51.416 (3)C6—C71.393 (3)
N1—H1N0.84 (3)C6—H60.9500
N2—C81.465 (3)C7—C81.373 (4)
C1—C21.519 (3)C7—H70.9500
C1—H1A0.9800C8—C91.387 (3)
C1—H1B0.9800C9—C101.382 (3)
C1—H1C0.9800C9—H90.9500
C2—C31.506 (4)C10—H100.9500
C2—C41.546 (3)
C4—N1—C5127.9 (2)H3B—C3—H3C109.5
C4—N1—H1N117 (2)O1—C4—N1123.5 (2)
C5—N1—H1N115 (2)O1—C4—C2121.0 (2)
O3—N2—O2123.4 (2)N1—C4—C2115.4 (2)
O3—N2—C8118.4 (2)C10—C5—C6120.1 (2)
O2—N2—C8118.2 (2)C10—C5—N1116.8 (2)
C2—C1—H1A109.5C6—C5—N1123.2 (2)
C2—C1—H1B109.5C7—C6—C5119.0 (2)
H1A—C1—H1B109.5C7—C6—H6120.5
C2—C1—H1C109.5C5—C6—H6120.5
H1A—C1—H1C109.5C8—C7—C6119.7 (2)
H1B—C1—H1C109.5C8—C7—H7120.1
C3—C2—C1112.2 (2)C6—C7—H7120.1
C3—C2—C4115.2 (2)C7—C8—C9122.2 (2)
C1—C2—C4110.53 (19)C7—C8—N2119.3 (2)
C3—C2—Br1108.18 (15)C9—C8—N2118.5 (2)
C1—C2—Br1106.45 (18)C10—C9—C8118.2 (2)
C4—C2—Br1103.51 (14)C10—C9—H9120.9
C2—C3—H3A109.5C8—C9—H9120.9
C2—C3—H3B109.5C9—C10—C5120.9 (2)
H3A—C3—H3B109.5C9—C10—H10119.6
C2—C3—H3C109.5C5—C10—H10119.6
H3A—C3—H3C109.5
C5—N1—C4—O10.7 (4)C5—C6—C7—C80.3 (3)
C5—N1—C4—C2179.5 (2)C6—C7—C8—C90.3 (4)
C3—C2—C4—O1145.0 (2)C6—C7—C8—N2179.9 (2)
C1—C2—C4—O116.6 (3)O3—N2—C8—C7170.6 (2)
Br1—C2—C4—O197.1 (2)O2—N2—C8—C78.3 (3)
C3—C2—C4—N133.9 (3)O3—N2—C8—C99.6 (3)
C1—C2—C4—N1162.3 (2)O2—N2—C8—C9171.6 (2)
Br1—C2—C4—N184.0 (2)C7—C8—C9—C100.4 (3)
C4—N1—C5—C10168.9 (2)N2—C8—C9—C10179.8 (2)
C4—N1—C5—C612.7 (4)C8—C9—C10—C50.5 (3)
C10—C5—C6—C70.4 (3)C6—C5—C10—C90.5 (3)
N1—C5—C6—C7178.7 (2)N1—C5—C10—C9179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.952.272.862 (3)120
C7—H7···O1i0.952.453.139 (3)129
N1—H1n···O3ii0.84 (3)2.66 (3)3.316 (3)136 (2)
C10—H10···Br1iii0.952.913.812 (2)160
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H11BrN2O3
Mr287.11
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)24.1245 (12), 5.8507 (3), 15.4723 (8)
β (°) 91.837 (5)
V3)2182.72 (19)
Z8
Radiation typeMo Kα
µ (mm1)3.76
Crystal size (mm)0.60 × 0.05 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur E
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.444, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5100, 2633, 2197
Rint0.032
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.068, 1.06
No. of reflections2633
No. of parameters151
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.60

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.952.272.862 (3)120
C7—H7···O1i0.952.453.139 (3)129
N1—H1n···O3ii0.84 (3)2.66 (3)3.316 (3)136 (2)
C10—H10···Br1iii0.952.913.812 (2)160
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF and FZ also thank the Universidad del Valle, Colombia, and the Instituto de Química de São Carlos, USP, Brasil for partial financial support. RLAH thanks CNPq for partial financial support.

References

First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921–2990.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPietrasik, J. & Tsarevsky, N. V. (2010). Eur. Polym. J. 46, 2333–2340.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds