organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­phenyl 2-bromo-2-methyl­propano­ate

aDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43124 Parma, Italy, bFakulteti i Shkencave të Natyrës, Departamenti i Kimise, Universiteti i Tiranes, Bulevardi "Zogu I", Tirana, Albania, and cDipartimento ISAC, Universitá Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it

(Received 16 February 2011; accepted 17 February 2011; online 23 February 2011)

In the title compound, C10H10BrNO4, the planes of the carboxyl­ate and nitro groups are rotated by 60.53 (13) and 6.4 (3)°, respectively, to the benzene ring. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into zigzag chains parallel to the c axis.

Related literature

For the synthesis and biological properties of the title compound and analogues, see: Bischoff (1907[Bischoff, C. A. (1907). Chem. Ber. 39, 3854-3861.]); Kaeriyama et al. (1976[Kaeriyama, M., Sato, M., Kumita, I., Okuma, K., Ando, M., Hashimoto, S. & Yoneda, H. (1976). Jpn Kokai Tokyo Koho Patent JP 51146427.]). For the use of the title compound in organic synthesis, see: Haddleton & Waterson (1999[Haddleton, D. M. & Waterson, C. (1999). Macromolecules, 32, 8732-8739.]); Edeleva et al. (2009[Edeleva, M. V., Kirilyuk, I. A., Zubenko, D. P., Zhurko, I. F., Marque, S. R. A., Gigmes, D., Guillaneuf, Y. & Bagryanskaya, E. G. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 6579-6595.]); Guillaneuf et al. (2007[Guillaneuf, Y., Gigmes, D., Marque, S. R. A., Astolfi, P., Greci, L., Tordo, P. & Bertin, D. (2007). Macromolecules, 40, 3108-3114.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10BrNO4

  • Mr = 288.10

  • Orthorhombic, P b c n

  • a = 11.4128 (16) Å

  • b = 14.450 (2) Å

  • c = 14.539 (2) Å

  • V = 2397.7 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.43 mm−1

  • T = 295 K

  • 0.45 × 0.15 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.625, Tmax = 0.720

  • 18926 measured reflections

  • 2177 independent reflections

  • 1086 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.132

  • S = 1.00

  • 2177 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.93 2.59 3.385 (4) 144
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL97 (Keller, 1997[Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The synthesis of the title compound and analogues was originally reported in the early part of last century (Bischoff, 1907), and in the seventies several of these compounds were found to possess useful miticidal, insecticidal, nematocidal or fungicidal activities (Kaeriyama et al., 1976). More recently, the title compound was prepared (Haddleton & Waterson, 1999) and used as initiator for H-atom transfer polymerization. The same compound was also used in the preparation of new alkoxyamines derived from imadaziline-, imidazoline- and pyrrolidine-1-oxyl nitroxides (Edeleva et al., 2009) and, within our group, for the synthesis of phenyl- and 4-nitrophenyl- 2-(2,2-diphenyl-3-(phenylimino)-indolin-1-yloxy)-2-methylpropionate (Guillaneuf et al., 2007). In order to obtain structural parameters for molecular mechanics calculations for the above mentioned alkoxyamines, the X-ray crystal structure of the title compound has been determined and the results are reported herein.

In the molecule of the title compound (Fig. 1), the plane of the nitro group is approximately coplanar with the benzene ring (dihedral angle 6.4 (3) °), whereas the plane of the carboxylic group is tilted by 60.53 (13) °. All bond lengths and angles are unexceptional. In the crystal structure (Fig. 2), the molecules are linked by intermolecular C—H···O hydrogen bonds (Table 1) into zigzag chains running parallel to the c axis.

Related literature top

For the synthesis and biological properties of the title compound and analogues, see: Bischoff (1907); Kaeriyama et al. (1976). For the use of the title compound in organic synthesis, see: Haddleton & Waterson (1999); Edeleva et al. (2009); Guillaneuf et al. (2007).

Experimental top

The title compound was prepared according to the literature method (Haddleton & Waterson, 1999). Crystals suitable for X-ray analysis were obtained by slow evaporation of its n-pentane solution (m. p. 342–343 K). IR data, ν, cm-1: 1753 (CO), 1615 and 1592 (benzene ring), 1521 (NO2). 1H NMR spectrum, δ in CDCl3: 2.08 (s, 6H); 7.3 (2H, d, J = 9.2 Hz); 8.31 (2H, d, J = 9.2 Hz). The ESI-MS obtained with 3200 QTRAP spectrometer does not give the molecular ion peak. The melting point was measured by an electrothermal apparatus and is uncorrected. The 1H NMR spectrum was recorded with a Varian 400 MHz spectrometer. The IR spectrum was recorded with a Perkin-Elmer MGX1 spectrophotometer.

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding atoms, with C—H = 0.93–0.96 Å, and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. Partial crystal packing of the title compound viewed approximately along the a axis. Intermolecular C—H···O hydrogen bonds are shown as dashed lines.
4-Nitrophenyl 2-bromo-2-methylpropanoate top
Crystal data top
C10H10BrNO4F(000) = 1152
Mr = 288.10Dx = 1.596 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 877 reflections
a = 11.4128 (16) Åθ = 5.6–21.3°
b = 14.450 (2) ŵ = 3.43 mm1
c = 14.539 (2) ÅT = 295 K
V = 2397.7 (6) Å3Needle, colourless
Z = 80.45 × 0.15 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2177 independent reflections
Radiation source: fine-focus sealed tube1086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 25.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.625, Tmax = 0.720k = 1517
18926 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0685P)2]
where P = (Fo2 + 2Fc2)/3
2177 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C10H10BrNO4V = 2397.7 (6) Å3
Mr = 288.10Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 11.4128 (16) ŵ = 3.43 mm1
b = 14.450 (2) ÅT = 295 K
c = 14.539 (2) Å0.45 × 0.15 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2177 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1086 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 0.720Rint = 0.049
18926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.00Δρmax = 0.84 e Å3
2177 reflectionsΔρmin = 0.51 e Å3
145 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.00330 (6)0.10818 (4)0.62160 (4)0.1233 (3)
O10.0531 (2)0.33291 (18)0.53800 (18)0.0757 (8)
O20.1275 (2)0.30016 (16)0.58917 (16)0.0639 (7)
O30.1600 (3)0.6175 (2)0.8793 (2)0.1042 (11)
O40.1583 (4)0.6983 (2)0.7567 (2)0.1188 (13)
N10.1583 (3)0.6243 (3)0.7961 (3)0.0724 (9)
C10.0266 (3)0.1820 (2)0.5074 (2)0.0603 (10)
C20.1417 (3)0.1512 (2)0.4701 (3)0.0783 (12)
H2A0.20160.16140.51540.117*
H2B0.15970.18590.41560.117*
H2C0.13800.08650.45540.117*
C30.0733 (4)0.1656 (3)0.4429 (4)0.1049 (17)
H3A0.14510.18490.47140.157*
H3B0.07770.10090.42830.157*
H3C0.06120.20050.38750.157*
C40.0267 (3)0.2799 (3)0.5452 (2)0.0603 (10)
C50.1339 (3)0.3821 (2)0.6389 (3)0.0551 (9)
C60.1295 (3)0.4663 (3)0.5954 (2)0.0628 (10)
H60.12070.46950.53190.075*
C80.1531 (3)0.5392 (3)0.7411 (2)0.0556 (9)
C70.1381 (3)0.5461 (3)0.6467 (3)0.0626 (10)
H70.13390.60380.61840.075*
C90.1598 (3)0.4549 (3)0.7842 (2)0.0618 (10)
H90.16990.45150.84760.074*
C100.1515 (3)0.3756 (3)0.7324 (3)0.0623 (10)
H100.15760.31790.76040.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1760 (7)0.0961 (5)0.0979 (5)0.0278 (3)0.0319 (3)0.0105 (3)
O10.0642 (16)0.0717 (18)0.091 (2)0.0147 (14)0.0123 (15)0.0147 (15)
O20.0549 (15)0.0642 (17)0.0727 (16)0.0074 (13)0.0079 (13)0.0145 (14)
O30.153 (3)0.095 (2)0.064 (2)0.023 (2)0.0036 (18)0.0151 (16)
O40.198 (4)0.061 (2)0.097 (2)0.017 (2)0.004 (2)0.0031 (19)
N10.084 (2)0.071 (3)0.062 (2)0.0081 (19)0.0088 (19)0.009 (2)
C10.058 (2)0.062 (2)0.061 (2)0.0014 (18)0.0044 (18)0.0028 (19)
C20.080 (3)0.062 (3)0.093 (3)0.014 (2)0.012 (2)0.005 (2)
C30.097 (3)0.087 (3)0.131 (4)0.018 (3)0.043 (3)0.047 (3)
C40.053 (2)0.070 (3)0.058 (2)0.006 (2)0.0084 (19)0.007 (2)
C50.0414 (19)0.060 (2)0.064 (2)0.0041 (17)0.0010 (17)0.006 (2)
C60.069 (2)0.075 (3)0.045 (2)0.001 (2)0.0076 (18)0.001 (2)
C80.046 (2)0.064 (3)0.056 (2)0.0086 (18)0.0046 (16)0.007 (2)
C70.071 (2)0.059 (3)0.057 (2)0.003 (2)0.0135 (19)0.003 (2)
C90.062 (2)0.073 (3)0.050 (2)0.002 (2)0.0102 (18)0.005 (2)
C100.058 (2)0.055 (2)0.074 (3)0.0015 (19)0.0109 (19)0.0033 (19)
Geometric parameters (Å, º) top
Br1—C12.002 (4)C3—H3A0.9600
O1—C41.195 (4)C3—H3B0.9600
O2—C41.348 (4)C3—H3C0.9600
O2—C51.390 (4)C5—C61.372 (5)
O3—N11.214 (4)C5—C101.378 (5)
O4—N11.214 (4)C6—C71.376 (5)
N1—C81.467 (5)C6—H60.9300
C1—C21.489 (5)C8—C91.372 (5)
C1—C31.496 (5)C8—C71.388 (5)
C1—C41.518 (5)C7—H70.9300
C2—H2A0.9600C9—C101.375 (5)
C2—H2B0.9600C9—H90.9300
C2—H2C0.9600C10—H100.9300
C4—O2—C5118.5 (3)O1—C4—O2123.6 (4)
O4—N1—O3122.8 (4)O1—C4—C1124.4 (3)
O4—N1—C8118.8 (3)O2—C4—C1112.0 (3)
O3—N1—C8118.4 (4)C6—C5—C10121.4 (4)
C2—C1—C3113.4 (3)C6—C5—O2121.0 (3)
C2—C1—C4114.2 (3)C10—C5—O2117.6 (3)
C3—C1—C4112.0 (3)C5—C6—C7119.4 (3)
C2—C1—Br1107.1 (2)C5—C6—H6120.3
C3—C1—Br1107.8 (3)C7—C6—H6120.3
C4—C1—Br1101.3 (2)C9—C8—C7121.5 (3)
C1—C2—H2A109.5C9—C8—N1119.5 (4)
C1—C2—H2B109.5C7—C8—N1118.9 (3)
H2A—C2—H2B109.5C6—C7—C8119.0 (4)
C1—C2—H2C109.5C6—C7—H7120.5
H2A—C2—H2C109.5C8—C7—H7120.5
H2B—C2—H2C109.5C8—C9—C10119.1 (4)
C1—C3—H3A109.5C8—C9—H9120.4
C1—C3—H3B109.5C10—C9—H9120.4
H3A—C3—H3B109.5C9—C10—C5119.5 (4)
C1—C3—H3C109.5C9—C10—H10120.2
H3A—C3—H3C109.5C5—C10—H10120.2
H3B—C3—H3C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.932.593.385 (4)144
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC10H10BrNO4
Mr288.10
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)295
a, b, c (Å)11.4128 (16), 14.450 (2), 14.539 (2)
V3)2397.7 (6)
Z8
Radiation typeMo Kα
µ (mm1)3.43
Crystal size (mm)0.45 × 0.15 × 0.14
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.625, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
18926, 2177, 1086
Rint0.049
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.132, 1.00
No. of reflections2177
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.51

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.932.593.385 (4)144
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

Financial support from the Universitá Politecnica delle Marche and the Universitá degli Studi di Parma is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBischoff, C. A. (1907). Chem. Ber. 39, 3854–3861.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdeleva, M. V., Kirilyuk, I. A., Zubenko, D. P., Zhurko, I. F., Marque, S. R. A., Gigmes, D., Guillaneuf, Y. & Bagryanskaya, E. G. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 6579–6595.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGuillaneuf, Y., Gigmes, D., Marque, S. R. A., Astolfi, P., Greci, L., Tordo, P. & Bertin, D. (2007). Macromolecules, 40, 3108–3114.  Web of Science CrossRef CAS Google Scholar
First citationHaddleton, D. M. & Waterson, C. (1999). Macromolecules, 32, 8732–8739.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaeriyama, M., Sato, M., Kumita, I., Okuma, K., Ando, M., Hashimoto, S. & Yoneda, H. (1976). Jpn Kokai Tokyo Koho Patent JP 51146427.  Google Scholar
First citationKeller, E. (1997). SCHAKAL97. University of Freiburg, Germany.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds