organic compounds
4,4′-Bipyridine–5-fluoroisophthalic acid (1/1)
aSINOPEC Catalyst Company, Beijing 100011, People's Republic of China
*Correspondence e-mail: qinjinlai@gmail.com
Co-crystallization of 5-fluoroisophthalic acid (H2fip) with 4,4′-bipyridine (bipy) leads to the formation of the title compound [(H2fip)(bipy)], C8H5FO4·C10H8N2, with an acid–base molar ratio of 1:1. The acid and base subunits are arrange alternately in the displaying a wave-like tape motif via intermolecular O—H⋯N and C—H⋯O hydrogen bonds [carboxyl–pyridine synthon of R22(7) hydrogen-bond notation], which are further combined into a two-dimensional architecture through C—H⋯F interactions involving the bipy and H2fip molecules.
Related literature
For the supramolecular synthon approach in crystal engineering, see: Desiraju (1995); Nangia & Desiraju (1998). For background to co-crystallization, see: Aakeröy & Salmon (2005); Sharma & Zaworotko (1996); Schultheiss & Newman (2009). For co-crystals with a carboxyl–pyridyl heterosynthon, see: Etter (1990); Shan et al. (2002); Du et al. (2005). For co-crystals of halogen-substituted dicarboxylic acids, see: He et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell APEX2 and SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811004016/vm2069sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811004016/vm2069Isup2.hkl
All the reagents and solvents for synthesis were commercially available and used as received. For the preparation of compound (I), to a CH3OH/H2O (2:1) solution (6 ml) of H2fip (18.4 mg, 0.1 mmol) was added a solution of bipy (15.8 mg, 0.1 mmol) in CH3OH (5 ml). After stirring for ca. 30 minutes, the reaction mixture was filtered and left to stand at ambient temperature. Colorless block crystals of (I) suitable for X-ray diffraction were gained through one week evaporation of the filtrate with a yield of 75 % (25.5 mg, based on bipy). Anal. Calcd for C18H13FN2O4: C, 63.53; H, 3.85; N, 8.23 %. Found: C, 63.50; H, 3.85; N, 8.29 %.
One restraint was applied to bonded N1 and C5 atoms to equalize each anisotropic vector component parallel to the bond (DELU command). H atoms bonded to C atoms were positioned geometrically (C—H = 0.93 Å for pyridyl and phenyl H atoms) and included in the
in the riding-model approximation, with Uiso(H) = 1.2 Ueq(C). O-bound H atoms were refined as rigid groups, allowed to rotate but not tip. Isotropic displacement parameters were derived from the parent atoms with Uiso(H) = 1.5 Ueq(O) and O—H distance of 0.82 Å.Data collection: APEX2 (Bruker, 2007); cell
APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C8H5FO4·C10H8N2 | F(000) = 704 |
Mr = 340.30 | Dx = 1.453 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2260 reflections |
a = 7.1711 (13) Å | θ = 2.1–21.8° |
b = 20.106 (4) Å | µ = 0.11 mm−1 |
c = 11.272 (2) Å | T = 296 K |
β = 106.781 (2)° | Block, colorless |
V = 1556.0 (5) Å3 | 0.34 × 0.32 × 0.32 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2742 independent reflections |
Radiation source: fine-focus sealed tube | 1956 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −8→8 |
Tmin = 0.963, Tmax = 0.967 | k = −23→22 |
11109 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.166 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.067P)2 + 1.097P] where P = (Fo2 + 2Fc2)/3 |
2742 reflections | (Δ/σ)max < 0.001 |
228 parameters | Δρmax = 0.72 e Å−3 |
1 restraint | Δρmin = −0.33 e Å−3 |
C8H5FO4·C10H8N2 | V = 1556.0 (5) Å3 |
Mr = 340.30 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.1711 (13) Å | µ = 0.11 mm−1 |
b = 20.106 (4) Å | T = 296 K |
c = 11.272 (2) Å | 0.34 × 0.32 × 0.32 mm |
β = 106.781 (2)° |
Bruker APEXII CCD area-detector diffractometer | 2742 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1956 reflections with I > 2σ(I) |
Tmin = 0.963, Tmax = 0.967 | Rint = 0.042 |
11109 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 1 restraint |
wR(F2) = 0.166 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.72 e Å−3 |
2742 reflections | Δρmin = −0.33 e Å−3 |
228 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2245 (5) | 0.3051 (2) | −0.1085 (3) | 0.0680 (10) | |
H1 | 0.2529 | 0.2771 | −0.1667 | 0.082* | |
C2 | 0.2595 (5) | 0.28299 (18) | 0.0108 (3) | 0.0578 (9) | |
H2 | 0.3103 | 0.2406 | 0.0319 | 0.069* | |
C3 | 0.2198 (4) | 0.32356 (15) | 0.1013 (3) | 0.0463 (7) | |
C4 | 0.1530 (5) | 0.38653 (18) | 0.0671 (3) | 0.0618 (9) | |
H4 | 0.1293 | 0.4163 | 0.1242 | 0.074* | |
C5 | 0.1208 (5) | 0.40493 (18) | −0.0617 (4) | 0.0681 (9) | |
H5 | 0.0760 | 0.4475 | −0.0870 | 0.082* | |
C6 | 0.2374 (4) | 0.29661 (14) | 0.2275 (2) | 0.0390 (6) | |
C7 | 0.2065 (4) | 0.22960 (14) | 0.2432 (3) | 0.0472 (7) | |
H7 | 0.1809 | 0.2009 | 0.1758 | 0.057* | |
C8 | 0.2138 (5) | 0.20553 (15) | 0.3592 (3) | 0.0484 (7) | |
H8 | 0.1927 | 0.1603 | 0.3672 | 0.058* | |
C9 | 0.2766 (5) | 0.33605 (15) | 0.3328 (3) | 0.0512 (8) | |
H9 | 0.2999 | 0.3813 | 0.3279 | 0.061* | |
C10 | 0.2807 (5) | 0.30759 (15) | 0.4452 (3) | 0.0522 (8) | |
H10 | 0.3070 | 0.3350 | 0.5146 | 0.063* | |
C11 | 0.1900 (4) | 0.11407 (14) | 0.6366 (3) | 0.0420 (7) | |
C12 | 0.1879 (4) | 0.07233 (13) | 0.7462 (2) | 0.0374 (6) | |
C13 | 0.2825 (4) | 0.09158 (14) | 0.8674 (2) | 0.0401 (7) | |
H13 | 0.3453 | 0.1325 | 0.8829 | 0.048* | |
C14 | 0.2827 (4) | 0.04932 (14) | 0.9653 (2) | 0.0431 (7) | |
C15 | 0.1878 (5) | −0.01089 (15) | 0.9423 (3) | 0.0498 (8) | |
H15 | 0.1868 | −0.0393 | 1.0072 | 0.060* | |
C16 | 0.0951 (5) | −0.02820 (14) | 0.8225 (3) | 0.0482 (7) | |
C17 | 0.0933 (4) | 0.01109 (14) | 0.7225 (3) | 0.0424 (7) | |
H17 | 0.0313 | −0.0027 | 0.6420 | 0.051* | |
C18 | 0.3876 (5) | 0.06363 (18) | 1.0980 (3) | 0.0558 (9) | |
F1 | 0.0045 (3) | −0.08851 (9) | 0.80111 (18) | 0.0751 (7) | |
N1 | 0.1528 (4) | 0.36369 (18) | −0.1434 (3) | 0.0707 (8) | |
N2 | 0.2493 (4) | 0.24332 (12) | 0.4599 (2) | 0.0453 (6) | |
O1 | 0.2483 (3) | 0.17584 (10) | 0.66511 (18) | 0.0521 (6) | |
H1A | 0.2473 | 0.1961 | 0.6018 | 0.078* | |
O2 | 0.1424 (4) | 0.09213 (11) | 0.53240 (18) | 0.0615 (7) | |
O3 | 0.4816 (4) | 0.12082 (13) | 1.11386 (19) | 0.0662 (7) | |
H3 | 0.5535 | 0.1231 | 1.1850 | 0.099* | |
O4 | 0.3880 (4) | 0.02582 (13) | 1.1812 (2) | 0.0745 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.065 (2) | 0.091 (3) | 0.046 (2) | −0.003 (2) | 0.0142 (17) | 0.0128 (19) |
C2 | 0.061 (2) | 0.075 (2) | 0.0364 (17) | −0.0063 (17) | 0.0124 (15) | 0.0050 (16) |
C3 | 0.0388 (15) | 0.0540 (18) | 0.0413 (17) | −0.0042 (13) | 0.0037 (13) | 0.0110 (14) |
C4 | 0.062 (2) | 0.060 (2) | 0.061 (2) | 0.0019 (16) | 0.0123 (17) | 0.0205 (17) |
C5 | 0.068 (2) | 0.052 (2) | 0.078 (2) | 0.0076 (17) | 0.0099 (19) | 0.0185 (15) |
C6 | 0.0388 (15) | 0.0420 (16) | 0.0348 (15) | −0.0001 (12) | 0.0081 (12) | 0.0051 (12) |
C7 | 0.0608 (19) | 0.0430 (17) | 0.0358 (16) | −0.0047 (14) | 0.0110 (14) | −0.0032 (13) |
C8 | 0.0643 (19) | 0.0401 (17) | 0.0395 (17) | −0.0050 (14) | 0.0130 (14) | 0.0029 (13) |
C9 | 0.072 (2) | 0.0363 (16) | 0.0461 (18) | −0.0036 (15) | 0.0182 (16) | 0.0005 (13) |
C10 | 0.074 (2) | 0.0449 (18) | 0.0371 (17) | −0.0070 (15) | 0.0158 (15) | −0.0064 (13) |
C11 | 0.0455 (16) | 0.0424 (17) | 0.0364 (16) | −0.0014 (13) | 0.0090 (13) | −0.0012 (13) |
C12 | 0.0407 (15) | 0.0392 (15) | 0.0317 (14) | 0.0026 (12) | 0.0095 (12) | 0.0003 (11) |
C13 | 0.0442 (16) | 0.0368 (15) | 0.0377 (15) | 0.0009 (12) | 0.0092 (12) | −0.0053 (12) |
C14 | 0.0488 (16) | 0.0508 (18) | 0.0285 (14) | 0.0109 (13) | 0.0091 (12) | 0.0004 (12) |
C15 | 0.067 (2) | 0.0463 (18) | 0.0365 (16) | 0.0066 (15) | 0.0154 (15) | 0.0074 (13) |
C16 | 0.0629 (19) | 0.0372 (16) | 0.0444 (17) | −0.0057 (14) | 0.0156 (15) | 0.0032 (13) |
C17 | 0.0491 (17) | 0.0424 (16) | 0.0325 (15) | −0.0023 (13) | 0.0066 (13) | −0.0017 (12) |
C18 | 0.059 (2) | 0.067 (2) | 0.0395 (18) | 0.0141 (17) | 0.0113 (15) | −0.0101 (17) |
F1 | 0.1104 (17) | 0.0482 (11) | 0.0623 (12) | −0.0268 (11) | 0.0179 (11) | 0.0032 (9) |
N1 | 0.0663 (19) | 0.091 (2) | 0.0517 (18) | −0.0038 (17) | 0.0114 (14) | 0.0132 (14) |
N2 | 0.0574 (15) | 0.0436 (14) | 0.0347 (13) | −0.0042 (11) | 0.0131 (11) | 0.0021 (11) |
O1 | 0.0731 (14) | 0.0454 (12) | 0.0361 (11) | −0.0108 (10) | 0.0129 (10) | 0.0004 (9) |
O2 | 0.0936 (18) | 0.0562 (14) | 0.0324 (12) | −0.0184 (12) | 0.0147 (11) | −0.0025 (10) |
O3 | 0.0738 (16) | 0.0816 (18) | 0.0352 (12) | 0.0014 (13) | 0.0030 (11) | −0.0124 (11) |
O4 | 0.101 (2) | 0.0853 (18) | 0.0302 (12) | 0.0180 (15) | 0.0084 (12) | 0.0083 (12) |
C1—N1 | 1.301 (5) | C10—H10 | 0.9300 |
C1—C2 | 1.368 (4) | C11—O2 | 1.208 (3) |
C1—H1 | 0.9300 | C11—O1 | 1.320 (3) |
C2—C3 | 1.398 (4) | C11—C12 | 1.497 (4) |
C2—H2 | 0.9300 | C12—C13 | 1.393 (4) |
C3—C4 | 1.369 (4) | C12—C17 | 1.394 (4) |
C3—C6 | 1.493 (4) | C13—C14 | 1.392 (4) |
C4—C5 | 1.451 (5) | C13—H13 | 0.9300 |
C4—H4 | 0.9300 | C14—C15 | 1.376 (4) |
C5—N1 | 1.308 (5) | C14—C18 | 1.496 (4) |
C5—H5 | 0.9300 | C15—C16 | 1.367 (4) |
C6—C7 | 1.385 (4) | C15—H15 | 0.9300 |
C6—C9 | 1.387 (4) | C16—F1 | 1.364 (3) |
C7—C8 | 1.381 (4) | C16—C17 | 1.373 (4) |
C7—H7 | 0.9300 | C17—H17 | 0.9300 |
C8—N2 | 1.328 (4) | C18—O4 | 1.207 (4) |
C8—H8 | 0.9300 | C18—O3 | 1.319 (4) |
C9—C10 | 1.382 (4) | O1—H1A | 0.8200 |
C9—H9 | 0.9300 | O3—H3 | 0.8200 |
C10—N2 | 1.330 (4) | ||
N1—C1—C2 | 122.4 (4) | C9—C10—H10 | 118.1 |
N1—C1—H1 | 118.8 | O2—C11—O1 | 124.1 (3) |
C2—C1—H1 | 118.8 | O2—C11—C12 | 122.0 (3) |
C1—C2—C3 | 120.6 (4) | O1—C11—C12 | 113.9 (2) |
C1—C2—H2 | 119.7 | C13—C12—C17 | 120.4 (2) |
C3—C2—H2 | 119.7 | C13—C12—C11 | 122.4 (2) |
C4—C3—C2 | 117.6 (3) | C17—C12—C11 | 117.2 (2) |
C4—C3—C6 | 122.0 (3) | C14—C13—C12 | 119.7 (3) |
C2—C3—C6 | 120.3 (3) | C14—C13—H13 | 120.1 |
C3—C4—C5 | 117.3 (3) | C12—C13—H13 | 120.1 |
C3—C4—H4 | 121.3 | C15—C14—C13 | 120.0 (3) |
C5—C4—H4 | 121.3 | C15—C14—C18 | 115.9 (3) |
N1—C5—C4 | 122.3 (3) | C13—C14—C18 | 124.1 (3) |
N1—C5—H5 | 118.9 | C16—C15—C14 | 118.9 (3) |
C4—C5—H5 | 118.9 | C16—C15—H15 | 120.6 |
C7—C6—C9 | 116.6 (2) | C14—C15—H15 | 120.6 |
C7—C6—C3 | 120.1 (3) | F1—C16—C15 | 118.2 (3) |
C9—C6—C3 | 123.3 (3) | F1—C16—C17 | 118.4 (3) |
C8—C7—C6 | 119.9 (3) | C15—C16—C17 | 123.4 (3) |
C8—C7—H7 | 120.1 | C16—C17—C12 | 117.5 (3) |
C6—C7—H7 | 120.1 | C16—C17—H17 | 121.2 |
N2—C8—C7 | 123.7 (3) | C12—C17—H17 | 121.2 |
N2—C8—H8 | 118.2 | O4—C18—O3 | 123.9 (3) |
C7—C8—H8 | 118.2 | O4—C18—C14 | 122.9 (3) |
C10—C9—C6 | 119.5 (3) | O3—C18—C14 | 113.2 (3) |
C10—C9—H9 | 120.2 | C1—N1—C5 | 119.7 (3) |
C6—C9—H9 | 120.2 | C8—N2—C10 | 116.5 (2) |
N2—C10—C9 | 123.8 (3) | C11—O1—H1A | 109.5 |
N2—C10—H10 | 118.1 | C18—O3—H3 | 109.5 |
N1—C1—C2—C3 | −0.3 (5) | C17—C12—C13—C14 | 0.1 (4) |
C1—C2—C3—C4 | −2.7 (5) | C11—C12—C13—C14 | −177.2 (2) |
C1—C2—C3—C6 | 173.2 (3) | C12—C13—C14—C15 | −0.7 (4) |
C2—C3—C4—C5 | 2.7 (5) | C12—C13—C14—C18 | 176.9 (3) |
C6—C3—C4—C5 | −173.2 (3) | C13—C14—C15—C16 | 0.3 (4) |
C3—C4—C5—N1 | 0.2 (5) | C18—C14—C15—C16 | −177.6 (3) |
C4—C3—C6—C7 | 146.8 (3) | C14—C15—C16—F1 | 178.9 (3) |
C2—C3—C6—C7 | −29.0 (4) | C14—C15—C16—C17 | 0.9 (5) |
C4—C3—C6—C9 | −30.5 (4) | F1—C16—C17—C12 | −179.6 (3) |
C2—C3—C6—C9 | 153.8 (3) | C15—C16—C17—C12 | −1.5 (5) |
C9—C6—C7—C8 | 0.6 (4) | C13—C12—C17—C16 | 1.0 (4) |
C3—C6—C7—C8 | −176.9 (3) | C11—C12—C17—C16 | 178.4 (3) |
C6—C7—C8—N2 | 0.1 (5) | C15—C14—C18—O4 | −1.2 (4) |
C7—C6—C9—C10 | −0.7 (4) | C13—C14—C18—O4 | −179.0 (3) |
C3—C6—C9—C10 | 176.7 (3) | C15—C14—C18—O3 | 177.7 (3) |
C6—C9—C10—N2 | 0.1 (5) | C13—C14—C18—O3 | −0.1 (4) |
O2—C11—C12—C13 | 165.0 (3) | C2—C1—N1—C5 | 3.4 (5) |
O1—C11—C12—C13 | −14.8 (4) | C4—C5—N1—C1 | −3.3 (5) |
O2—C11—C12—C17 | −12.3 (4) | C7—C8—N2—C10 | −0.7 (5) |
O1—C11—C12—C17 | 167.9 (2) | C9—C10—N2—C8 | 0.6 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N2 | 0.82 | 1.86 | 2.684 (3) | 179 |
O3—H3···N1i | 0.82 | 1.88 | 2.674 (4) | 164 |
C8—H8···O2 | 0.93 | 2.42 | 3.138 (4) | 134 |
C8—H8···F1ii | 0.93 | 2.48 | 3.101 (4) | 125 |
Symmetry codes: (i) x+1/2, −y+1/2, z+3/2; (ii) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C8H5FO4·C10H8N2 |
Mr | 340.30 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 7.1711 (13), 20.106 (4), 11.272 (2) |
β (°) | 106.781 (2) |
V (Å3) | 1556.0 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.34 × 0.32 × 0.32 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.963, 0.967 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11109, 2742, 1956 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.166, 1.09 |
No. of reflections | 2742 |
No. of parameters | 228 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.72, −0.33 |
Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N2 | 0.82 | 1.86 | 2.684 (3) | 179 |
O3—H3···N1i | 0.82 | 1.88 | 2.674 (4) | 164 |
C8—H8···O2 | 0.93 | 2.42 | 3.138 (4) | 134 |
C8—H8···F1ii | 0.93 | 2.48 | 3.101 (4) | 125 |
Symmetry codes: (i) x+1/2, −y+1/2, z+3/2; (ii) −x, −y, −z+1. |
References
Aakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439–448. Web of Science CrossRef Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Du, M., Zhang, Z.-H. & Zhao, X.-J. (2005). Cryst. Growth Des. 5, 1199–1208. Web of Science CSD CrossRef CAS Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
He, M.-Y., Zhang, Z.-H., Lu, L.-D., Yang, X.-J. & Wang, X. (2009). Acta Cryst. C65, o525–o528. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nangia, A. & Desiraju, G. R. (1998). Acta Cryst. A54, 934–944. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967. Web of Science CrossRef PubMed CAS Google Scholar
Shan, N., Batchelor, E. & Jones, W. (2002). Tetrahedron Lett. 43, 8721–8725. Web of Science CSD CrossRef CAS Google Scholar
Sharma, C. V. K. & Zaworotko, M. J. (1996). Chem. Commun. pp. 2655–2656. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In light of the importance of hydrogen bonds in crystal engineering, the supramolecular synthon approach has been widely applied to adapt desired supramolecules by using identified robust intermolecular interactions (Desiraju, 1995; Nangia & Desiraju, 1998). Co-crystallization is a current theme in several research groups to study hydrogen bonding through X-ray diffraction technique (Aakeröy & Salmon, 2005), for the synthesis of interpenetrated networks (Sharma & Zaworotko, 1996), and especially in pharmaceutical developments (Schultheiss & Newman, 2009). At this stage, strong hydrogen bonds, such as O—H···N or charge-assisted N—H···O, are always essential in the co-crystallization of carboxylic acids with pyridyl bases, usually combining the auxiliary weak C—H···O interactions, lead to the familiar carboxyl/pyridyl heterosynthon [R22(7)] (Shan et al., 2002). Although aromatic dicarboxylic acids have been verified to be excellent building blocks in binary co-crystal assemblies with bipyridine-type components (Du et al., 2005), halogen substituented dicarboxylic acids have been seldom studied in this aspect (He, et al., 2009). Doubtless, substituents will profoundly influence the structural assemblies by demonstrating distinct hydrogen-bonding capability and potential steric/electronic effect. To further investigate the hydrogen-bonding networks involving halogen substituents, 5-fluoroisophthalic acid (H2fip) was chosen to construct binary cocrystal with familiar 4,4'-bipyridine (bipy) component as a hydrogen-bonding participant for the first time.
In this work, the reaction of 5-fluoroisophthalic acid (H2fip) with 4,4'-bipyridine (bipy) under ambient conditions and evaporation from the mixed CH3OH/H2O (2:1) solution of the reactants yields the crystalline binary adduct [(H2fip)(bipy)] (I). Single crystal X-ray diffraction reveals that compound (I) contains one-dimensional supramolecular tape via the connection of predictable carboxylate-bipyridine O—H···N/C—H···O interactions of R22(7) heterosynthon. Then, further C—H···F interactions extend the adjacent tape moieties into a two-dimensional (2-D) corrugated layer. The molecular structure contains one H2fip and one bipy molecule (Fig. 1). The two pyridyl rings within the basic unit form a dihedral angle of 30.9 (2) °. The heterosynthon R22(7) ring pattern of O—H···N/C—H···O bonds (synthon I in Fig. 2, Table 1), connecting the base and acid moieties, is responsible for the formation of a 1-D wavelike tape structure. Analysis of the crystal packing of (I) suggests that a further C—H···F interaction (Table 1) expands the 1-D motif into a 2-D hydrogen-bonding network (Figu. 2). Within the 2-D layer, a new hydrogen-bonding pattern denoted as R24(14) (synthon II in Fig. 2, Etter, 1990) is found to link two pairs of centrosymmetry related carboxyl-bipyridine motifs from adjacent tape structures. By comparison, a closely related 1:1 binary cocrystal of isophthalic acid and bipy exhibits similar tapes of acid:base components formed via R22(7) synthons. But these tapes extend to form supramolecular sheets via additional C—H···O interactions (Shan et al., 2002).
In conclusion, this work demonstrates the first example for H2fip as a good participant in co-crystallization with basic modules. When co-crystallizing with rod-like 4,4'-bipyridine building block, the H2fip subunits fulfill the reliable carboxylic-pyridine synthon R22(7). Although the associated C—H···O bonds are not present between adjoining tape motifs, the introduction of fluorine substituents leads to a new hydrogen-bonding synthon R24(14). This result presents a new challenge in the exploration of crystalline products based on such halogen substituted benzene dicarboxylic acids.