metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-6,6′-Dimeth­­oxy-2,2-[propane-1,3-diylbis(nitrilo­methanylyl­­idene)]diphenolato}trinitratocopper(II)dysprosium(III) methanol monosolvate

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: jehugu@yahoo.com.cn

(Received 14 January 2011; accepted 12 February 2011; online 23 February 2011)

In the title heterodinuclear salen-type complex, [CuDy(C19H20N2O4)(NO3)3]·CH3OH, the copper(II) ion is tetra­coordinated by two imino N atoms [Cu—N = 1.961 (4) and 1.968 (4) Å] and two phenolate O atoms [Cu—O = 1.931 (3) and 1.938 (3) Å] in a planar geometry. The ten-coordin­ate DyIII ion is ligated by six O atoms of three nitrate groups and four O atoms from the ligand [Dy—O = 2.368 (3)–2.601 (3) Å]. In the crystal, complex mol­ecules and solvent mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For similar Cu–Ln complexes (Ln = lanthanide), see: Bao et al. (2010[Bao, Y., Li, G.-M., Yang, F., Yan, P.-F. & Chen, P. (2010). Acta Cryst. E66, m1379.]); Elmali & Elerman (2003[Elmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639-643.], 2004[Elmali, A. & Elerman, Y. (2004). Z. Naturforsch.Teil B, 59, 535-540.]); Wang et al. (2008[Wang, J.-H., Gao, P., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2008). Acta Cryst. E64, m344.]); Xing et al. (2008[Xing, J.-C., Wang, J.-H., Yan, P.-F. & Li, G.-M. (2008). Acta Cryst. E64, m1206.]). For bond-valence calculations, see: Pauling (1947[Pauling, L. (1947). J. Am. Chem. Soc. 69, 542-553.]).

[Scheme 1]

Experimental

Crystal data
  • [CuDy(C19H20N2O4)(NO3)3]·CH4O

  • Mr = 784.49

  • Triclinic, [P \overline 1]

  • a = 8.3572 (17) Å

  • b = 12.130 (2) Å

  • c = 13.891 (3) Å

  • α = 91.64 (3)°

  • β = 106.85 (3)°

  • γ = 99.52 (3)°

  • V = 1324.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.68 mm−1

  • T = 293 K

  • 0.15 × 0.12 × 0.11 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.595, Tmax = 0.667

  • 13040 measured reflections

  • 6008 independent reflections

  • 5600 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.05

  • 6008 reflections

  • 373 parameters

  • H-atom parameters constrained

  • Δρmax = 2.37 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1M—H4M⋯O2i 0.89 2.03 2.852 (8) 152
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of the studies of salen-type lanthanide complexes (Elmali et al., 2003, Elmali et al., 2004), we present here the synthesis and the crystal structure of the title compound (Fig. 1). The DyIII ion is ligated to six oxygen atoms from three bidentate nitrate groups and four oxygen atoms from the ligand, similar to what is found in previously published structures (Wang et al., 2008, Xing et al., 2008, Bao et al., 2010). The Dy—O bond distances are in the range of 2.368 (3) to 2.601 (3) Å, in accordance with the reported values. The planar coordinated Cu(II) ion is tetra-coordinated by two imino nitrogen atoms (Cu—N bond distance range, 1.961 (4)–1.968 (4) Å) and two phenolate oxygen atoms from the ligand (Cu—O bond distance range, 1.931 (3)–1.938 (3) Å). The positive charge of the DyIII and Cu(II) ions are balanced by the ligand L2- and three nitrate groups (L = N,N'- bis(2-oxy-3-methoxybenzylidene)-1,3-diaminopropane). However, bond valence calculations (Pauling, 1947) indicate a bond valency of +2 for the Dy ion. This difference is attributed to the longer bond distances of Dy—O. One MeOH molecule is dissociative in the complex, forming H-bonding with the adjacent nitrate group (O···O distance 2.852 (7) Å, Table 1). A methanol molecule is absent in the case of a reported Cu—Eu complex, where a similar coordination environment for Cu(II) and Eu(III) ions could be found (Xing et al., 2008). Furthermore, an acetone molecule is observed instead of the methanol molecule in the case of the reported structures with Sm(III) and Cu(II) ions in a similar coordination environment (Wang et al., 2008). Weak π-π interactions between adjacent aromatic rings of the 2-oxy-3-methoxybenzylidene groups could also be observed (Fig. 2, Cg(5)···Cg(5)i distance = 4.368 (3) Å, Cg(5) is the centroid of ring C5-C16, symmetry code (i): 1 - x, 1 - y, 1 - z).

Related literature top

For similar Cu–Ln complexes, see: Bao et al. (2010); Elmali et al. (2003, 2004); Wang et al. (2008); Xing et al. (2008). For bond-valence calculations, see: Pauling (1947).

Experimental top

To a 1:1 MeOH/CH2Cl2 solution (20 ml) of H2L (0.0684 g) and Cu(OAc)2.2H2O (0.0440 g) was added a MeOH solution (10 ml) of Dy(NO3)3].6H2O (0.0753 g) at the ambient temperature. The color of the solution immediately changed to green. After stirring for 5 hrs, the solution was filtered to remove the suspended particles. Green single crystals suitable for X-ray determination were obtained by slow diffusion of diethylether into the filtrate in one week. [CuDy(C19H20N2O4)(NO3)3].CH3OH Elemental Anal. Calc. for C20H24N5O14CuDy: C, 30.62; H, 3.08; N, 8.93 wt%, Found: C, 30.61; H, 3.10; N, 8.93 wt%.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methyl C) with Uiso(H) = 1.5Ueq(C). The H atom bound to the O atom is found from the Fourier difference map, and refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of the title compound along the b direction. The black dotted line shows the H-bonding between the methanol molecules and the complexes. The purple dotted line shows the π-π interaction of the adjacent aromatic rings of the 2-oxy-3-methoxybenzylidene groups [Symmetry code: (i) 1 - x, 1 - y, 1 - z].
{µ-6,6'-Dimethoxy-2,2-[propane-1,3- diylbis(nitrilomethanylylidene)]diphenolate}trinitratocopper(II)dysprosium(III) methanol monosolvate top
Crystal data top
[CuDy(C19H20N2O4)(NO3)3]·CH4OZ = 2
Mr = 784.49F(000) = 772
Triclinic, P1Dx = 1.967 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3572 (17) ÅCell parameters from 11901 reflections
b = 12.130 (2) Åθ = 6.2–54.9°
c = 13.891 (3) ŵ = 3.68 mm1
α = 91.64 (3)°T = 293 K
β = 106.85 (3)°Block, green
γ = 99.52 (3)°0.15 × 0.12 × 0.11 mm
V = 1324.8 (4) Å3
Data collection top
Bruker SMART1000 CCD
diffractometer
6008 independent reflections
Radiation source: fine-focus sealed tube5600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.595, Tmax = 0.667l = 1818
13040 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0635P)2 + 1.7058P]
where P = (Fo2 + 2Fc2)/3
6008 reflections(Δ/σ)max = 0.002
373 parametersΔρmax = 2.37 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
[CuDy(C19H20N2O4)(NO3)3]·CH4Oγ = 99.52 (3)°
Mr = 784.49V = 1324.8 (4) Å3
Triclinic, P1Z = 2
a = 8.3572 (17) ÅMo Kα radiation
b = 12.130 (2) ŵ = 3.68 mm1
c = 13.891 (3) ÅT = 293 K
α = 91.64 (3)°0.15 × 0.12 × 0.11 mm
β = 106.85 (3)°
Data collection top
Bruker SMART1000 CCD
diffractometer
6008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5600 reflections with I > 2σ(I)
Tmin = 0.595, Tmax = 0.667Rint = 0.032
13040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 2.37 e Å3
6008 reflectionsΔρmin = 0.88 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.37849 (2)0.787569 (14)0.221621 (13)0.03841 (9)
Cu10.31877 (7)0.49734 (4)0.17449 (4)0.03874 (13)
O10.0835 (6)0.8890 (5)0.1545 (6)0.110 (2)
O20.6579 (5)0.7776 (3)0.3469 (3)0.0593 (9)
O30.0638 (5)0.7570 (3)0.1705 (3)0.0595 (9)
O40.5635 (5)0.9497 (3)0.1845 (3)0.0552 (8)
O50.1903 (5)0.9285 (3)0.2077 (3)0.0569 (8)
O60.8516 (6)0.6889 (5)0.3236 (4)0.0776 (13)
O70.6210 (5)0.6967 (3)0.2017 (3)0.0556 (8)
O80.5279 (5)0.9712 (3)0.3301 (3)0.0610 (9)
O90.2663 (5)0.8246 (3)0.0324 (2)0.0473 (7)
O100.6882 (6)1.1015 (3)0.2812 (4)0.0751 (12)
O110.3043 (4)0.7795 (2)0.3860 (2)0.0434 (7)
O120.3359 (4)0.6077 (2)0.2818 (2)0.0394 (6)
O130.2861 (4)0.6277 (2)0.0987 (2)0.0436 (7)
N10.7158 (6)0.7207 (4)0.2913 (3)0.0514 (9)
N20.5956 (5)1.0105 (3)0.2662 (3)0.0471 (9)
N30.3609 (5)0.3818 (3)0.2707 (3)0.0459 (8)
N40.2908 (6)0.4019 (3)0.0522 (3)0.0547 (10)
N50.0505 (6)0.8594 (4)0.1763 (4)0.0601 (11)
C10.0878 (7)0.6441 (5)0.2067 (3)0.0605 (14)
H1A0.03840.64850.27540.073*
C20.4169 (9)0.2780 (5)0.2452 (5)0.0690 (16)
H2A0.53960.29310.26050.083*
H2B0.38800.22100.28800.083*
C30.3479 (13)0.2916 (5)0.0603 (5)0.094 (3)
H3A0.27840.24310.00130.113*
H3B0.46380.30360.05690.113*
C40.2237 (5)0.6294 (3)0.0002 (3)0.0351 (8)
C50.2281 (7)0.5542 (5)0.5486 (3)0.0544 (12)
H5A0.19890.54240.60760.065*
C60.3444 (16)0.2349 (7)0.1431 (6)0.125 (4)
H6A0.39420.16940.13650.150*
H6B0.22520.20720.13510.150*
C70.1365 (6)0.7421 (4)0.1414 (3)0.0492 (10)
H7A0.12310.81140.16640.059*
C80.2574 (6)0.4665 (4)0.4969 (3)0.0498 (11)
H8A0.25180.39620.52200.060*
C90.2411 (6)0.6609 (4)0.5148 (3)0.0491 (10)
H9A0.22220.72040.55120.059*
C100.3379 (6)0.3874 (4)0.3574 (4)0.0466 (10)
H10A0.34910.32430.39360.056*
C110.2961 (5)0.4819 (4)0.4057 (3)0.0395 (8)
C120.2829 (5)0.6775 (4)0.4259 (3)0.0380 (8)
C130.2253 (7)0.4274 (4)0.0364 (4)0.0516 (11)
H13A0.20290.37090.08770.062*
C140.2046 (5)0.7339 (4)0.0394 (3)0.0389 (8)
C150.1806 (5)0.5350 (4)0.0678 (3)0.0415 (9)
C160.3044 (5)0.5882 (3)0.3686 (3)0.0356 (8)
C170.1112 (7)0.5446 (5)0.1721 (3)0.0543 (12)
H17A0.08150.48110.21710.065*
C180.2464 (9)0.9328 (4)0.0057 (4)0.0643 (15)
H18A0.13170.92910.04770.097*
H18B0.32340.95280.04460.097*
H18C0.27090.98820.04980.097*
C190.2824 (9)0.8746 (4)0.4419 (5)0.0668 (16)
H19A0.17040.86150.44950.100*
H19B0.29660.94040.40620.100*
H19C0.36550.88540.50730.100*
O1M0.2556 (10)0.1421 (5)0.4462 (5)0.115 (2)
H4M0.31670.16360.50990.172*
C1M0.0847 (11)0.1206 (7)0.4006 (7)0.105 (3)
H1M0.06250.11200.32870.157*
H2M0.03580.18180.41770.157*
H3M0.03530.05280.42310.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.05015 (14)0.03209 (12)0.03392 (12)0.00629 (8)0.01485 (9)0.00087 (8)
Cu10.0546 (3)0.0298 (2)0.0348 (3)0.0108 (2)0.0165 (2)0.00046 (19)
O10.061 (3)0.109 (4)0.164 (6)0.040 (3)0.024 (3)0.040 (4)
O20.061 (2)0.070 (2)0.0459 (18)0.0213 (18)0.0094 (16)0.0059 (17)
O30.0519 (19)0.054 (2)0.070 (2)0.0050 (15)0.0172 (17)0.0044 (18)
O40.063 (2)0.0533 (19)0.0505 (19)0.0018 (16)0.0226 (16)0.0083 (16)
O50.064 (2)0.0459 (18)0.065 (2)0.0180 (16)0.0220 (18)0.0011 (16)
O60.059 (2)0.110 (4)0.076 (3)0.038 (2)0.026 (2)0.024 (3)
O70.062 (2)0.061 (2)0.0497 (19)0.0150 (17)0.0242 (16)0.0034 (16)
O80.069 (2)0.0489 (19)0.063 (2)0.0089 (16)0.0290 (19)0.0124 (17)
O90.072 (2)0.0358 (15)0.0326 (14)0.0105 (14)0.0122 (14)0.0045 (12)
O100.078 (3)0.0404 (19)0.099 (3)0.0094 (17)0.025 (2)0.005 (2)
O110.0644 (19)0.0357 (14)0.0360 (14)0.0111 (13)0.0237 (14)0.0009 (12)
O120.0618 (18)0.0290 (13)0.0321 (13)0.0101 (12)0.0203 (13)0.0036 (11)
O130.0654 (19)0.0356 (14)0.0286 (13)0.0105 (13)0.0114 (13)0.0007 (11)
N10.055 (2)0.053 (2)0.052 (2)0.0130 (18)0.0211 (19)0.0150 (19)
N20.048 (2)0.0328 (17)0.060 (2)0.0078 (15)0.0148 (18)0.0045 (17)
N30.058 (2)0.0315 (17)0.049 (2)0.0156 (15)0.0133 (17)0.0027 (15)
N40.089 (3)0.0335 (18)0.047 (2)0.0142 (19)0.029 (2)0.0020 (16)
N50.058 (3)0.066 (3)0.062 (3)0.022 (2)0.020 (2)0.016 (2)
C10.059 (3)0.087 (4)0.028 (2)0.015 (3)0.0008 (19)0.002 (2)
C20.098 (4)0.048 (3)0.071 (3)0.041 (3)0.024 (3)0.010 (3)
C30.181 (9)0.050 (3)0.073 (4)0.048 (4)0.057 (5)0.001 (3)
C40.0370 (18)0.040 (2)0.0286 (17)0.0037 (15)0.0121 (14)0.0011 (15)
C50.064 (3)0.068 (3)0.037 (2)0.012 (2)0.024 (2)0.015 (2)
C60.211 (11)0.080 (5)0.075 (5)0.091 (6)0.004 (6)0.018 (4)
C70.051 (2)0.059 (3)0.037 (2)0.017 (2)0.0081 (18)0.010 (2)
C80.056 (3)0.055 (3)0.040 (2)0.010 (2)0.015 (2)0.017 (2)
C90.054 (3)0.065 (3)0.034 (2)0.017 (2)0.0191 (19)0.004 (2)
C100.053 (2)0.037 (2)0.048 (2)0.0119 (18)0.010 (2)0.0129 (19)
C110.042 (2)0.039 (2)0.0346 (19)0.0056 (16)0.0091 (16)0.0069 (16)
C120.042 (2)0.044 (2)0.0307 (18)0.0092 (16)0.0134 (16)0.0054 (16)
C130.069 (3)0.043 (2)0.044 (2)0.001 (2)0.025 (2)0.012 (2)
C140.040 (2)0.044 (2)0.0331 (19)0.0070 (16)0.0121 (16)0.0012 (16)
C150.042 (2)0.044 (2)0.036 (2)0.0021 (17)0.0110 (16)0.0042 (17)
C160.0358 (18)0.041 (2)0.0292 (17)0.0069 (15)0.0087 (14)0.0051 (15)
C170.057 (3)0.066 (3)0.032 (2)0.002 (2)0.0067 (19)0.011 (2)
C180.101 (4)0.036 (2)0.053 (3)0.015 (2)0.016 (3)0.016 (2)
C190.110 (5)0.044 (3)0.063 (3)0.017 (3)0.052 (3)0.005 (2)
O1M0.160 (6)0.098 (4)0.085 (4)0.036 (4)0.025 (4)0.015 (3)
C1M0.084 (5)0.085 (5)0.123 (7)0.021 (4)0.007 (5)0.013 (5)
Geometric parameters (Å, º) top
Dy1—O122.368 (3)C2—C61.417 (9)
Dy1—O132.414 (3)C2—H2A0.9700
Dy1—O42.458 (3)C2—H2B0.9700
Dy1—O32.477 (4)C3—C61.361 (11)
Dy1—O52.483 (3)C3—H3A0.9700
Dy1—O22.499 (4)C3—H3B0.9700
Dy1—O112.534 (3)C4—C151.389 (6)
Dy1—O72.539 (4)C4—C141.410 (6)
Dy1—O82.567 (4)C5—C81.360 (7)
Dy1—O92.601 (3)C5—C91.387 (7)
Dy1—N52.914 (5)C5—H5A0.9300
Dy1—Cu13.4884 (9)C6—H6A0.9700
Cu1—O121.931 (3)C6—H6B0.9700
Cu1—O131.938 (3)C7—C141.378 (6)
Cu1—N41.961 (4)C7—H7A0.9300
Cu1—N31.968 (4)C8—C111.405 (6)
O1—N51.190 (7)C8—H8A0.9300
O2—N11.266 (6)C9—C121.389 (6)
O3—N51.268 (6)C9—H9A0.9300
O4—N21.270 (5)C10—C111.452 (6)
O5—N51.272 (6)C10—H10A0.9300
O6—N11.224 (6)C11—C161.401 (6)
O7—N11.261 (6)C12—C161.392 (6)
O8—N21.250 (5)C13—C151.460 (7)
O9—C141.387 (5)C13—H13A0.9300
O9—C181.446 (5)C15—C171.413 (6)
O10—N21.213 (5)C17—H17A0.9300
O11—C121.376 (5)C18—H18A0.9600
O11—C191.438 (5)C18—H18B0.9600
O12—C161.327 (5)C18—H18C0.9600
O13—C41.322 (5)C19—H19A0.9600
N3—C101.275 (6)C19—H19B0.9600
N3—C21.481 (6)C19—H19C0.9600
N4—C131.264 (7)O1M—C1M1.361 (10)
N4—C31.490 (7)O1M—H4M0.8898
C1—C171.335 (8)C1M—H1M0.9600
C1—C71.402 (8)C1M—H2M0.9600
C1—H1A0.9300C1M—H3M0.9600
O12—Dy1—O1362.51 (10)O7—N1—O2115.1 (4)
O12—Dy1—O4151.34 (13)O10—N2—O8122.1 (4)
O13—Dy1—O4116.69 (12)O10—N2—O4121.5 (4)
O12—Dy1—O383.06 (12)O8—N2—O4116.5 (4)
O13—Dy1—O374.94 (13)C10—N3—C2114.6 (4)
O4—Dy1—O3125.32 (13)C10—N3—Cu1123.8 (3)
O12—Dy1—O5126.44 (12)C2—N3—Cu1121.6 (3)
O13—Dy1—O5117.91 (12)C13—N4—C3115.8 (4)
O4—Dy1—O580.64 (13)C13—N4—Cu1124.1 (3)
O3—Dy1—O551.28 (13)C3—N4—Cu1120.1 (4)
O12—Dy1—O275.83 (13)O1—N5—O3122.4 (6)
O13—Dy1—O2111.10 (12)O1—N5—O5122.2 (6)
O4—Dy1—O278.57 (13)O3—N5—O5115.4 (4)
O3—Dy1—O2151.06 (14)O1—N5—Dy1177.9 (5)
O5—Dy1—O2130.98 (13)O3—N5—Dy157.6 (2)
O12—Dy1—O1163.88 (10)O5—N5—Dy157.8 (2)
O13—Dy1—O11120.64 (10)C17—C1—C7121.2 (4)
O4—Dy1—O11122.51 (11)C17—C1—H1A119.4
O3—Dy1—O1175.22 (13)C7—C1—H1A119.4
O5—Dy1—O1177.04 (12)C6—C2—N3114.3 (5)
O2—Dy1—O1177.78 (12)C6—C2—H2A108.7
O12—Dy1—O774.46 (12)N3—C2—H2A108.7
O13—Dy1—O766.68 (12)C6—C2—H2B108.7
O4—Dy1—O779.32 (13)N3—C2—H2B108.7
O3—Dy1—O7141.16 (13)H2A—C2—H2B107.6
O5—Dy1—O7158.96 (13)C6—C3—N4118.6 (6)
O2—Dy1—O750.09 (12)C6—C3—H3A107.7
O11—Dy1—O7119.63 (11)N4—C3—H3A107.7
O12—Dy1—O8125.97 (12)C6—C3—H3B107.7
O13—Dy1—O8166.55 (12)N4—C3—H3B107.7
O4—Dy1—O850.43 (12)H3A—C3—H3B107.1
O3—Dy1—O8114.80 (13)O13—C4—C15124.0 (4)
O5—Dy1—O867.16 (13)O13—C4—C14117.9 (4)
O2—Dy1—O865.33 (14)C15—C4—C14118.1 (4)
O11—Dy1—O872.08 (11)C8—C5—C9121.2 (4)
O7—Dy1—O8104.04 (13)C8—C5—H5A119.4
O12—Dy1—O9123.21 (10)C9—C5—H5A119.4
O13—Dy1—O962.27 (10)C3—C6—C2126.5 (9)
O4—Dy1—O970.15 (12)C3—C6—H6A105.7
O3—Dy1—O971.10 (13)C2—C6—H6A105.7
O5—Dy1—O971.82 (12)C3—C6—H6B105.7
O2—Dy1—O9137.45 (12)C2—C6—H6B105.7
O11—Dy1—O9143.81 (11)H6A—C6—H6B106.1
O7—Dy1—O995.24 (12)C14—C7—C1118.8 (5)
O8—Dy1—O9110.78 (12)C14—C7—H7A120.6
O12—Dy1—N5105.58 (13)C1—C7—H7A120.6
O13—Dy1—N596.16 (14)C5—C8—C11120.2 (4)
O4—Dy1—N5102.99 (14)C5—C8—H8A119.9
O3—Dy1—N525.60 (13)C11—C8—H8A119.9
O5—Dy1—N525.70 (13)C5—C9—C12119.0 (4)
O2—Dy1—N5148.84 (13)C5—C9—H9A120.5
O11—Dy1—N575.38 (13)C12—C9—H9A120.5
O7—Dy1—N5161.04 (14)N3—C10—C11126.9 (4)
O8—Dy1—N591.33 (15)N3—C10—H10A116.5
O9—Dy1—N568.55 (13)C11—C10—H10A116.5
O12—Dy1—Cu131.77 (7)C16—C11—C8119.4 (4)
O13—Dy1—Cu132.27 (7)C16—C11—C10122.6 (4)
O4—Dy1—Cu1135.29 (9)C8—C11—C10117.8 (4)
O3—Dy1—Cu184.41 (9)O11—C12—C9124.6 (4)
O5—Dy1—Cu1135.66 (9)O11—C12—C16114.4 (3)
O2—Dy1—Cu187.77 (10)C9—C12—C16121.0 (4)
O11—Dy1—Cu195.00 (7)N4—C13—C15127.7 (4)
O7—Dy1—Cu159.94 (9)N4—C13—H13A116.2
O8—Dy1—Cu1151.81 (10)C15—C13—H13A116.2
O9—Dy1—Cu194.54 (8)C7—C14—O9124.6 (4)
N5—Dy1—Cu1109.96 (11)C7—C14—C4121.3 (4)
O12—Cu1—O1379.77 (12)O9—C14—C4114.1 (3)
O12—Cu1—N4171.66 (15)C4—C15—C17119.9 (4)
O13—Cu1—N491.99 (15)C4—C15—C13121.8 (4)
O12—Cu1—N391.17 (14)C17—C15—C13117.7 (4)
O13—Cu1—N3170.84 (14)O12—C16—C12118.6 (4)
N4—Cu1—N397.10 (17)O12—C16—C11122.4 (4)
O12—Cu1—Dy140.19 (8)C12—C16—C11119.0 (4)
O13—Cu1—Dy141.67 (9)C1—C17—C15120.6 (5)
N4—Cu1—Dy1132.12 (12)C1—C17—H17A119.7
N3—Cu1—Dy1129.23 (11)C15—C17—H17A119.7
N1—O2—Dy198.3 (3)O9—C18—H18A109.5
N5—O3—Dy196.8 (3)O9—C18—H18B109.5
N2—O4—Dy198.9 (3)H18A—C18—H18B109.5
N5—O5—Dy196.5 (3)O9—C18—H18C109.5
N1—O7—Dy196.5 (3)H18A—C18—H18C109.5
N2—O8—Dy194.2 (3)H18B—C18—H18C109.5
C14—O9—C18115.2 (4)O11—C19—H19A109.5
C14—O9—Dy1118.9 (2)O11—C19—H19B109.5
C18—O9—Dy1125.6 (3)H19A—C19—H19B109.5
C12—O11—C19116.7 (3)O11—C19—H19C109.5
C12—O11—Dy1118.6 (2)H19A—C19—H19C109.5
C19—O11—Dy1124.8 (3)H19B—C19—H19C109.5
C16—O12—Cu1126.8 (3)C1M—O1M—H4M131.5
C16—O12—Dy1124.4 (2)O1M—C1M—H1M109.5
Cu1—O12—Dy1108.04 (12)O1M—C1M—H2M109.5
C4—O13—Cu1127.3 (3)H1M—C1M—H2M109.5
C4—O13—Dy1126.6 (3)O1M—C1M—H3M109.5
Cu1—O13—Dy1106.06 (12)H1M—C1M—H3M109.5
O6—N1—O7122.9 (5)H2M—C1M—H3M109.5
O6—N1—O2121.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1M—H4M···O2i0.892.032.852 (8)152
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CuDy(C19H20N2O4)(NO3)3]·CH4O
Mr784.49
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3572 (17), 12.130 (2), 13.891 (3)
α, β, γ (°)91.64 (3), 106.85 (3), 99.52 (3)
V3)1324.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.68
Crystal size (mm)0.15 × 0.12 × 0.11
Data collection
DiffractometerBruker SMART1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.595, 0.667
No. of measured, independent and
observed [I > 2σ(I)] reflections
13040, 6008, 5600
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.05
No. of reflections6008
No. of parameters373
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.37, 0.88

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1M—H4M···O2i0.892.032.852 (8)152
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 20872030 and 20972043), Heilongjiang Province (Nos. 2009RFXXG201, GC09A402, GZ08A401and 2010td03) and Heilongjiang University.

References

First citationBao, Y., Li, G.-M., Yang, F., Yan, P.-F. & Chen, P. (2010). Acta Cryst. E66, m1379.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639–643.  CAS Google Scholar
First citationElmali, A. & Elerman, Y. (2004). Z. Naturforsch.Teil B, 59, 535–540.  CAS Google Scholar
First citationPauling, L. (1947). J. Am. Chem. Soc. 69, 542–553.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-H., Gao, P., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2008). Acta Cryst. E64, m344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXing, J.-C., Wang, J.-H., Yan, P.-F. & Li, G.-M. (2008). Acta Cryst. E64, m1206.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds