organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,4-Di­methyl­benzamide

aCollege of Chemical and Biological Engineering, Yancheng Institute of Technology, Yinbing Road No. 9 Yancheng, Yancheng 224051, People's Republic of China, and bDepartment of Chemical Engineering, Yancheng College of Textile Technology, Yancheng 224051, People's Republic of China
*Correspondence e-mail: xujiaying-1984@163.com

(Received 20 January 2011; accepted 27 January 2011; online 5 February 2011)

In the crystal of the title compound, C9H11NO, mol­ecules are connected via inter­molecular N—H⋯O hydrogen bonds, forming a one-dimensional network in the b-axis direction. The dihedral angle between the amide group and the benzyl ring is 13.8 (2)°.

Related literature

For the synthetic procedure, see: Lee et al. (2009[Lee, S., Song, K. H., Choe, J., Ju, J. & Jo, Y. (2009). J. Org. Chem. 74, 6358-6361.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). ?show [softreturn]>

[Scheme 1]

Experimental

Crystal data
  • C9H11NO

  • Mr = 149.19

  • Monoclinic, P 21 /n

  • a = 6.7670 (14) Å

  • b = 9.946 (2) Å

  • c = 12.229 (2) Å

  • β = 92.63 (3)°

  • V = 822.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.977, Tmax = 0.992

  • 3362 measured reflections

  • 1510 independent reflections

  • 1062 reflections with I > 2σ(I)

  • Rint = 0.033

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.166

  • S = 1.01

  • 1510 reflections

  • 103 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯Oi 0.86 2.10 2.912 (2) 158
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzamide derivatives exhibit interesting biological activities such as antibacterial and antifungal effects (Lee et al., 2009) We report here the crystal structure of the title compound N,4-dimethylbenzamide (I), an important organic intermediate (Fig. 1). Bond lengths and angles are within normal ranges (Allen et al., 1987).

In the crystal packing of (I) the molecules are connected together via N—H···O intermolecular hydrogen bonds to form a one-dimensional network in the b direction (Table 1, graph set C1,1(4)), which seems to be very effective in the stabilization of the crystal structure.

Related literature top

For the synthetic procedure, see: Lee et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Lee et al. (2009)). Crystals were obtained by dissolving (I) (0.2 g, 1.34 mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H, 0.96 Å for methyl H and 0.86 Å for N—H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and N—H, and x = 1.5 for methyl H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram for (I) showing the N—H···O hydrogen bonds as dashed lines.
N,4-Dimethylbenzamide top
Crystal data top
C9H11NOF(000) = 320
Mr = 149.19Dx = 1.205 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.7670 (14) Åθ = 9–13°
b = 9.946 (2) ŵ = 0.08 mm1
c = 12.229 (2) ÅT = 293 K
β = 92.63 (3)°Block, colourless
V = 822.2 (3) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1062 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 25.4°, θmin = 2.6°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.977, Tmax = 0.992l = 1414
3362 measured reflections3 standard reflections every 200 reflections
1510 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.1P)2 + 0.080P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1510 reflectionsΔρmax = 0.20 e Å3
103 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (8)
Crystal data top
C9H11NOV = 822.2 (3) Å3
Mr = 149.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7670 (14) ŵ = 0.08 mm1
b = 9.946 (2) ÅT = 293 K
c = 12.229 (2) Å0.30 × 0.20 × 0.10 mm
β = 92.63 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1062 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.033
Tmin = 0.977, Tmax = 0.9923 standard reflections every 200 reflections
3362 measured reflections intensity decay: 1%
1510 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
1510 reflectionsΔρmin = 0.15 e Å3
103 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.2041 (3)0.99892 (14)0.23558 (16)0.0773 (6)
N0.2849 (2)0.78998 (15)0.28900 (14)0.0514 (5)
H0A0.25540.70590.28680.062*
C10.5644 (4)0.6995 (3)0.0146 (2)0.0766 (8)
H1A0.62950.63530.05920.115*
H1B0.53670.65910.05430.115*
H1C0.64850.77630.00230.115*
C20.3742 (3)0.7431 (2)0.07191 (17)0.0550 (6)
C30.2949 (4)0.8698 (2)0.05499 (19)0.0652 (7)
H3A0.35990.92830.00620.078*
C40.1226 (3)0.9106 (2)0.10867 (18)0.0591 (6)
H4A0.07500.99680.09690.071*
C50.0184 (3)0.82556 (17)0.18015 (15)0.0440 (5)
C60.0961 (3)0.69834 (18)0.19627 (17)0.0530 (6)
H6A0.02910.63870.24340.064*
C70.2701 (3)0.6593 (2)0.14374 (18)0.0581 (6)
H7A0.31950.57380.15690.070*
C80.1657 (3)0.87739 (18)0.23661 (16)0.0479 (5)
C90.4623 (3)0.8321 (2)0.3494 (2)0.0613 (6)
H9A0.51680.75750.39040.092*
H9B0.43090.90340.39870.092*
H9C0.55710.86370.29930.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0747 (11)0.0273 (8)0.1272 (15)0.0054 (7)0.0245 (10)0.0023 (8)
N0.0498 (10)0.0296 (8)0.0737 (12)0.0025 (7)0.0084 (8)0.0006 (7)
C10.0590 (15)0.0951 (19)0.0743 (16)0.0004 (13)0.0132 (12)0.0086 (14)
C20.0481 (12)0.0610 (13)0.0555 (12)0.0047 (10)0.0017 (10)0.0086 (10)
C30.0654 (15)0.0563 (13)0.0721 (15)0.0125 (11)0.0159 (12)0.0065 (11)
C40.0631 (14)0.0396 (11)0.0739 (14)0.0040 (10)0.0038 (12)0.0083 (10)
C50.0446 (11)0.0321 (9)0.0552 (11)0.0050 (8)0.0007 (9)0.0030 (8)
C60.0531 (12)0.0351 (10)0.0695 (13)0.0000 (9)0.0108 (10)0.0047 (9)
C70.0547 (13)0.0463 (12)0.0724 (14)0.0055 (9)0.0068 (11)0.0010 (10)
C80.0503 (12)0.0288 (9)0.0647 (12)0.0016 (8)0.0017 (9)0.0024 (8)
C90.0537 (13)0.0506 (12)0.0783 (15)0.0037 (10)0.0122 (11)0.0019 (11)
Geometric parameters (Å, º) top
O—C81.237 (2)C3—H3A0.9300
N—C81.330 (2)C4—C51.386 (3)
N—C91.442 (3)C4—H4A0.9300
N—H0A0.8600C5—C61.388 (3)
C1—C21.501 (3)C5—C81.489 (3)
C1—H1A0.9600C6—C71.372 (3)
C1—H1B0.9600C6—H6A0.9300
C1—H1C0.9600C7—H7A0.9300
C2—C71.381 (3)C9—H9A0.9600
C2—C31.389 (3)C9—H9B0.9600
C3—C41.373 (3)C9—H9C0.9600
C8—N—C9121.90 (17)C4—C5—C6117.46 (19)
C8—N—H0A119.0C4—C5—C8118.17 (17)
C9—N—H0A119.0C6—C5—C8124.35 (17)
C2—C1—H1A109.5C7—C6—C5120.96 (19)
C2—C1—H1B109.5C7—C6—H6A119.5
H1A—C1—H1B109.5C5—C6—H6A119.5
C2—C1—H1C109.5C6—C7—C2121.9 (2)
H1A—C1—H1C109.5C6—C7—H7A119.0
H1B—C1—H1C109.5C2—C7—H7A119.0
C7—C2—C3117.0 (2)O—C8—N121.39 (19)
C7—C2—C1121.6 (2)O—C8—C5120.36 (18)
C3—C2—C1121.4 (2)N—C8—C5118.24 (16)
C4—C3—C2121.5 (2)N—C9—H9A109.5
C4—C3—H3A119.2N—C9—H9B109.5
C2—C3—H3A119.2H9A—C9—H9B109.5
C3—C4—C5121.2 (2)N—C9—H9C109.5
C3—C4—H4A119.4H9A—C9—H9C109.5
C5—C4—H4A119.4H9B—C9—H9C109.5
C7—C2—C3—C41.1 (3)C3—C2—C7—C60.1 (3)
C1—C2—C3—C4178.9 (2)C1—C2—C7—C6179.9 (2)
C2—C3—C4—C51.5 (4)C9—N—C8—O1.5 (3)
C3—C4—C5—C60.7 (3)C9—N—C8—C5177.53 (18)
C3—C4—C5—C8179.17 (19)C4—C5—C8—O13.1 (3)
C4—C5—C6—C70.4 (3)C6—C5—C8—O165.2 (2)
C8—C5—C6—C7177.91 (18)C4—C5—C8—N167.81 (18)
C5—C6—C7—C20.8 (3)C6—C5—C8—N13.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Oi0.862.102.912 (2)158
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H11NO
Mr149.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.7670 (14), 9.946 (2), 12.229 (2)
β (°) 92.63 (3)
V3)822.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.977, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3362, 1510, 1062
Rint0.033
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.166, 1.01
No. of reflections1510
No. of parameters103
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Oi0.862.102.912 (2)158
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLee, S., Song, K. H., Choe, J., Ju, J. & Jo, Y. (2009). J. Org. Chem. 74, 6358–6361.  Web of Science PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds