organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[(2-Hy­dr­oxy­naphthalen-1-yl)methyl­­idene]-4-methyl­benzene­sulfono­hydrazide

aDepartment of Applied Chemistry, Research Laboratory, Islamic Azad University, Tabriz Branch, Tabriz, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: shahverdizadeh@iaut.ac.ir

(Received 26 January 2011; accepted 17 February 2011; online 26 February 2011)

In the title compound, C18H16N2O3S, the dihedral angle between the planes of the benzene ring and the naphthyl ring system is 83.37 (10)°. An intra­molecular O—H⋯N hydrogen bond occurs. Inter­molecular N—H⋯O hydrogen bonds stabilize the crystal structure. There is a ππ inter­action between the naphthyl ring systems [centroid–centroid distance = 3.7556 (15) Å]. In addition, naphth­yl–tolyl and naphth­yl–naphthyl C—H⋯π inter­actions are observed.

Related literature

For related structures, see: Bikas et al. (2010[Bikas, R., Hosseini Monfared, H., Bijanzad, K., Koroglu, A. & Kazak, C. (2010). Acta Cryst. E66, o2073.]); Silva et al. (2006[Silva, L. L., Oliveira, K. N. & Nunes, R. J. (2006). ARKIVOC, 13, 124-129.]); Zimmer et al. (1959[Zimmer, H., Benjamin, B. H., Gerlach, E. H., Fry, K., Pronay, A. C. & Schmank, H. (1959). J. Org. Chem. 24, 1667-1669.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O3S

  • Mr = 340.40

  • Monoclinic, P 21 /c

  • a = 15.740 (3) Å

  • b = 10.573 (2) Å

  • c = 10.322 (2) Å

  • β = 103.86 (3)°

  • V = 1667.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.35 × 0.25 × 0.2 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.935, Tmax = 0.957

  • 13245 measured reflections

  • 4474 independent reflections

  • 2439 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.143

  • S = 0.92

  • 4474 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C3/C5–C7 and C9–C13/C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.82 1.85 2.563 (2) 145
N1—H1A⋯O2i 0.86 2.36 2.998 (2) 132
C15—H15⋯Cg1ii 0.92 2.72 3.625 (3) 164
C16—H16⋯Cg2i 0.92 2.75 3.501 (3) 139
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Sulfonyl hydrazones are found to exhibit large medicinal applications. Similar to sulfonamides, sulfonyl hydrazones also have various biological activities. For example, imidosulfonylhydrazones have antibacterial and antineociceptive properties (Silva et al., 2006). Acidic sulfonyl hydrazone derivatives have analgesic and anti-inflammatory activities. 4-Substituted benzenesulfonylhydrazone has been found to have antibacterial activity (Zimmer et al., 1959).

As part of our studies on the synthesis and characterization of hydrazone derivatives (Bikas et al., 2010), we report here the crystal structure of (E)-N'-((2-hydroxynaphthalen-1-yl)methylene)-4-methylbenzenesulfonohydrazide. The asymmetric unit of the title compound contains one molecule, which is shown in Fig. 1. The packing diagram of the title compound is shown in Fig. 2. The structure is stabilized by an intramolecular O—H···N hydrogen bond, with the nitrogen of the azomethine group (–C=N–) acting as hydrogen bond acceptor and intermolecular N—H···O hydrogen bonds with the S=O group as hydrogen bond acceptor (Table 1 and Fig. 2). The packing is characterized by a π-π interaction between the naphthyl rings (Fig. 3) with Cg2···Cg3ii distance = 3.7556 (15) Å where Cg2 and Cg3 are the centroids of C9-C13/C18 and C13-C18, respectively (symmetry code ii: -x,1 - y,-z). Furthermore, C—Hnaphthyl···πtolyl and C—Hnaphthyl···πnaphthyl interactions are observed with distances equal to 2.72 and 2.75 Å, respectively (Table 1 & Fig. 3).

Related literature top

For related structures, see: Bikas et al. (2010); Silva et al. (2006); Zimmer et al. (1959).

Experimental top

All reagents were commercially available and used as received. A methanol (10 ml) solution of 2-hydroxy-1-naphtaldehyde (1.63 mmol) was dropwise added to a methanol solution (10 ml) of 4-methyl-benzenesulfonic acid hydrazide (1.63 mmol), and the mixture was refluxed for 3 hrs. Then the solution was evaporated on a steam bath to 5 ml and cooled to room temperature. A yellow precipitate of the title compound was separated and filtered off, washed with 5 ml of cooled methanol and then dried in air. X-ray quality crystals of the title compound were obtained from methanol by slow solvent evaporation. Yield: 81%, mp: 167.8–168.2 °C.

Refinement top

The hydrogen atom of N—H and O—H group were positioned geometrically and refined as riding atoms with, N—H = 0.86 Å and Uiso(H) = 1.2 Ueq(N) and O—H = 0.82 Å and Uiso(H) = 1.5 Ueq(O). The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for imine and aromatic C—H groups and C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl group.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 30% probability level) for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of the title compound. Hydrogen bonds are shown as blue dashed line.
[Figure 3] Fig. 3. The packing diagram of the title compound showing π-π and C—H···π interactions as blue and orange dashed lines, respectively. Cg1, Cg2 and Cg3 are the centroids of rings C1-C3/C5-C7, C9-C13/C18 and C13-C18, respectively; symmetry codes: (i) x, -y + 1/2, z - 1/2; (ii) -x, -y + 1, -z.).
(E)-N'-[(2-Hydroxynaphthalen-1-yl)methylidene]-4- methylbenzenesulfonohydrazide top
Crystal data top
C18H16N2O3SF(000) = 712
Mr = 340.40Dx = 1.356 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4474 reflections
a = 15.740 (3) Åθ = 2.3–29.2°
b = 10.573 (2) ŵ = 0.21 mm1
c = 10.322 (2) ÅT = 298 K
β = 103.86 (3)°Plate, yellow
V = 1667.8 (6) Å30.35 × 0.25 × 0.2 mm
Z = 4
Data collection top
Stoe IPDS 2T
diffractometer
4474 independent reflections
Radiation source: fine-focus sealed tube2439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.3°
rotation method scansh = 2121
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
k = 1413
Tmin = 0.935, Tmax = 0.957l = 1314
13245 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0771P)2]
where P = (Fo2 + 2Fc2)/3
4474 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H16N2O3SV = 1667.8 (6) Å3
Mr = 340.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.740 (3) ŵ = 0.21 mm1
b = 10.573 (2) ÅT = 298 K
c = 10.322 (2) Å0.35 × 0.25 × 0.2 mm
β = 103.86 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
4474 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
2439 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.957Rint = 0.080
13245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 0.92Δρmax = 0.35 e Å3
4474 reflectionsΔρmin = 0.28 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.41858 (14)0.4904 (3)0.3196 (2)0.0705 (8)
H60.44260.44140.26260.085*
S10.34568 (3)0.27206 (7)0.38051 (5)0.0577 (2)
O20.31790 (11)0.23002 (19)0.49498 (15)0.0713 (5)
N10.26101 (10)0.25594 (19)0.25177 (17)0.0534 (5)
H1A0.26320.21470.18080.064*
O10.41463 (10)0.2084 (2)0.34045 (19)0.0783 (6)
N20.18558 (10)0.31574 (17)0.26935 (16)0.0474 (4)
C80.11925 (12)0.3191 (2)0.16968 (19)0.0436 (5)
H80.12280.28160.08960.052*
C90.03862 (12)0.38038 (19)0.17943 (18)0.0414 (4)
O30.10297 (10)0.45363 (19)0.40269 (14)0.0656 (5)
H30.14640.42170.38530.098*
C180.03826 (12)0.37537 (19)0.07041 (19)0.0429 (4)
C70.36860 (12)0.4348 (3)0.39778 (19)0.0553 (6)
C170.04179 (15)0.3112 (2)0.0504 (2)0.0539 (6)
H170.00770.26880.06180.065*
C100.03447 (13)0.4460 (2)0.29415 (19)0.0489 (5)
C10.33366 (15)0.5089 (3)0.4823 (2)0.0660 (7)
H10.30070.47230.53610.079*
C110.04155 (15)0.5093 (2)0.3048 (2)0.0610 (6)
H110.04250.55380.38210.073*
C150.19112 (16)0.3721 (3)0.1373 (3)0.0675 (7)
H150.24150.37040.20620.081*
C130.11516 (13)0.4395 (2)0.0837 (2)0.0500 (5)
C140.19068 (14)0.4359 (3)0.0229 (3)0.0637 (7)
H140.24100.47790.01450.076*
C120.11397 (15)0.5057 (2)0.2025 (2)0.0598 (6)
H120.16410.54810.21100.072*
C160.11621 (17)0.3097 (3)0.1513 (2)0.0653 (7)
H160.11660.26640.22990.078*
C30.39614 (15)0.6954 (3)0.4084 (3)0.0700 (8)
C50.43222 (16)0.6196 (3)0.3274 (3)0.0787 (9)
H50.46680.65650.27620.094*
C20.34799 (17)0.6369 (3)0.4863 (3)0.0738 (8)
H20.32430.68600.54370.089*
C40.4090 (2)0.8355 (4)0.4087 (4)0.0969 (10)
H4A0.37250.87110.32900.145*
H4B0.46920.85390.41170.145*
H4C0.39370.87150.48540.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.0495 (12)0.105 (3)0.0628 (15)0.0036 (13)0.0256 (11)0.0034 (14)
S10.0488 (3)0.0843 (5)0.0418 (3)0.0121 (3)0.0145 (2)0.0078 (3)
O20.0796 (10)0.0930 (15)0.0447 (9)0.0094 (9)0.0215 (8)0.0149 (8)
N10.0489 (9)0.0698 (14)0.0440 (9)0.0081 (8)0.0159 (7)0.0049 (9)
O10.0576 (9)0.1076 (16)0.0717 (11)0.0291 (9)0.0196 (8)0.0054 (10)
N20.0468 (8)0.0557 (12)0.0426 (9)0.0048 (7)0.0168 (7)0.0009 (8)
C80.0503 (10)0.0455 (13)0.0370 (10)0.0002 (9)0.0145 (8)0.0005 (8)
C90.0483 (10)0.0396 (12)0.0377 (9)0.0012 (8)0.0133 (8)0.0014 (8)
O30.0641 (9)0.0914 (14)0.0413 (8)0.0074 (9)0.0124 (7)0.0137 (8)
C180.0508 (10)0.0363 (12)0.0429 (10)0.0012 (8)0.0138 (8)0.0052 (8)
C70.0388 (9)0.0851 (19)0.0410 (10)0.0006 (10)0.0075 (8)0.0010 (11)
C170.0605 (12)0.0487 (14)0.0489 (12)0.0027 (10)0.0059 (9)0.0041 (10)
C100.0554 (11)0.0537 (14)0.0398 (10)0.0019 (9)0.0157 (9)0.0001 (9)
C10.0621 (13)0.092 (2)0.0478 (12)0.0105 (13)0.0207 (10)0.0082 (12)
C110.0748 (15)0.0609 (17)0.0533 (13)0.0125 (12)0.0269 (11)0.0063 (11)
C150.0601 (13)0.0675 (19)0.0645 (15)0.0075 (12)0.0053 (11)0.0088 (13)
C130.0517 (11)0.0447 (14)0.0549 (12)0.0014 (9)0.0151 (9)0.0091 (10)
C140.0495 (11)0.0630 (18)0.0763 (16)0.0046 (11)0.0106 (11)0.0169 (13)
C120.0584 (12)0.0594 (16)0.0669 (15)0.0153 (11)0.0255 (11)0.0050 (12)
C160.0759 (15)0.0604 (17)0.0513 (13)0.0027 (12)0.0011 (11)0.0032 (11)
C30.0472 (12)0.096 (2)0.0622 (15)0.0087 (12)0.0032 (11)0.0008 (14)
C50.0523 (13)0.105 (3)0.0819 (19)0.0119 (14)0.0222 (13)0.0181 (17)
C20.0712 (15)0.094 (2)0.0565 (14)0.0097 (15)0.0160 (12)0.0129 (14)
C40.0861 (19)0.099 (3)0.098 (2)0.0163 (18)0.0068 (17)0.0056 (19)
Geometric parameters (Å, º) top
C6—C51.383 (4)C10—C111.398 (3)
C6—C71.386 (3)C1—C21.370 (4)
C6—H60.9300C1—H10.9300
S1—O11.4204 (17)C11—C121.356 (3)
S1—O21.4257 (17)C11—H110.9300
S1—N11.6499 (18)C15—C141.359 (4)
S1—C71.758 (3)C15—C161.389 (4)
N1—N21.395 (2)C15—H150.9300
N1—H1A0.8600C13—C121.408 (3)
N2—C81.279 (2)C13—C141.413 (3)
C8—C91.450 (3)C14—H140.9300
C8—H80.9300C12—H120.9300
C9—C101.387 (3)C16—H160.9300
C9—C181.443 (3)C3—C51.375 (4)
O3—C101.358 (2)C3—C21.376 (4)
O3—H30.8200C3—C41.496 (5)
C18—C171.409 (3)C5—H50.9300
C18—C131.422 (3)C2—H20.9300
C7—C11.382 (3)C4—H4A0.9600
C17—C161.368 (3)C4—H4B0.9600
C17—H170.9300C4—H4C0.9600
C5—C6—C7119.2 (3)C7—C1—H1120.3
C5—C6—H6120.4C12—C11—C10120.1 (2)
C7—C6—H6120.4C12—C11—H11120.0
O1—S1—O2120.06 (12)C10—C11—H11120.0
O1—S1—N1104.04 (10)C14—C15—C16119.9 (2)
O2—S1—N1106.64 (10)C14—C15—H15120.1
O1—S1—C7109.94 (12)C16—C15—H15120.1
O2—S1—C7108.50 (11)C12—C13—C14121.6 (2)
N1—S1—C7106.82 (10)C12—C13—C18119.13 (18)
N2—N1—S1113.38 (13)C14—C13—C18119.3 (2)
N2—N1—H1A123.3C15—C14—C13121.2 (2)
S1—N1—H1A123.3C15—C14—H14119.4
C8—N2—N1117.67 (17)C13—C14—H14119.4
N2—C8—C9121.08 (18)C11—C12—C13121.7 (2)
N2—C8—H8119.5C11—C12—H12119.2
C9—C8—H8119.5C13—C12—H12119.2
C10—C9—C18118.81 (18)C17—C16—C15120.6 (2)
C10—C9—C8120.25 (17)C17—C16—H16119.7
C18—C9—C8120.94 (17)C15—C16—H16119.7
C10—O3—H3109.5C5—C3—C2117.3 (3)
C17—C18—C13117.44 (18)C5—C3—C4120.1 (3)
C17—C18—C9123.77 (18)C2—C3—C4122.5 (3)
C13—C18—C9118.79 (18)C3—C5—C6122.0 (3)
C1—C7—C6119.7 (3)C3—C5—H5119.0
C1—C7—S1121.08 (19)C6—C5—H5119.0
C6—C7—S1119.2 (2)C1—C2—C3122.4 (3)
C16—C17—C18121.6 (2)C1—C2—H2118.8
C16—C17—H17119.2C3—C2—H2118.8
C18—C17—H17119.2C3—C4—H4A109.5
O3—C10—C9122.90 (18)C3—C4—H4B109.5
O3—C10—C11115.60 (19)H4A—C4—H4B109.5
C9—C10—C11121.50 (19)C3—C4—H4C109.5
C2—C1—C7119.4 (2)H4A—C4—H4C109.5
C2—C1—H1120.3H4B—C4—H4C109.5
O1—S1—N1—N2178.38 (16)C8—C9—C10—C11178.0 (2)
O2—S1—N1—N253.77 (18)C6—C7—C1—C20.9 (3)
C7—S1—N1—N262.10 (17)S1—C7—C1—C2175.48 (18)
S1—N1—N2—C8173.14 (15)O3—C10—C11—C12179.0 (2)
N1—N2—C8—C9179.48 (18)C9—C10—C11—C121.1 (4)
N2—C8—C9—C105.5 (3)C17—C18—C13—C12179.4 (2)
N2—C8—C9—C18175.04 (19)C9—C18—C13—C120.0 (3)
C10—C9—C18—C17179.7 (2)C17—C18—C13—C140.2 (3)
C8—C9—C18—C170.8 (3)C9—C18—C13—C14179.6 (2)
C10—C9—C18—C130.9 (3)C16—C15—C14—C130.4 (4)
C8—C9—C18—C13178.56 (19)C12—C13—C14—C15179.7 (2)
C5—C6—C7—C10.3 (3)C18—C13—C14—C150.1 (4)
C5—C6—C7—S1176.16 (18)C10—C11—C12—C130.1 (4)
O1—S1—C7—C1154.14 (17)C14—C13—C12—C11180.0 (2)
O2—S1—C7—C121.0 (2)C18—C13—C12—C110.4 (4)
N1—S1—C7—C193.57 (18)C18—C17—C16—C150.1 (4)
O1—S1—C7—C629.5 (2)C14—C15—C16—C170.3 (4)
O2—S1—C7—C6162.58 (17)C2—C3—C5—C62.3 (4)
N1—S1—C7—C682.81 (18)C4—C3—C5—C6177.0 (2)
C13—C18—C17—C160.3 (3)C7—C6—C5—C31.4 (4)
C9—C18—C17—C16179.7 (2)C7—C1—C2—C30.1 (4)
C18—C9—C10—O3178.6 (2)C5—C3—C2—C11.7 (4)
C8—C9—C10—O31.9 (3)C4—C3—C2—C1177.6 (2)
C18—C9—C10—C111.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C3/C5–C7 and C9–C13/C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.852.563 (2)145
N1—H1A···O2i0.862.362.998 (2)132
C15—H15···Cg1ii0.922.723.625 (3)164
C16—H16···Cg2i0.922.753.501 (3)139
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H16N2O3S
Mr340.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.740 (3), 10.573 (2), 10.322 (2)
β (°) 103.86 (3)
V3)1667.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.35 × 0.25 × 0.2
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.935, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
13245, 4474, 2439
Rint0.080
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.143, 0.92
No. of reflections4474
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.28

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C3/C5–C7 and C9–C13/C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.852.563 (2)144.7
N1—H1A···O2i0.862.362.998 (2)131.6
C15—H15···Cg1ii0.922.723.625 (3)164
C16—H16···Cg2i0.922.753.501 (3)139
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z.
 

Acknowledgements

The authors are grateful to the Islamic Azad University, Tabriz Branch, and Shahid Beheshti University for financial support.

References

First citationBikas, R., Hosseini Monfared, H., Bijanzad, K., Koroglu, A. & Kazak, C. (2010). Acta Cryst. E66, o2073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, L. L., Oliveira, K. N. & Nunes, R. J. (2006). ARKIVOC, 13, 124–129.  CrossRef Google Scholar
First citationStoe & Cie (2005). X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZimmer, H., Benjamin, B. H., Gerlach, E. H., Fry, K., Pronay, A. C. & Schmank, H. (1959). J. Org. Chem. 24, 1667–1669.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds