metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m379-m380

Bis(8-hy­dr­oxy-2-methyl­quinolinium) bis­­(pyridine-2,6-di­carboxyl­ato)cuprate(II) methanol monosolvate monohydrate

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 917791436, Iran, and cDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: r3.chemist@gmail.com

(Received 5 February 2011; accepted 22 February 2011; online 26 February 2011)

The title compound, (C10H10NO)2[Cu(C7H3NO4)2]·CH3OH·H2O was prepared by the reaction of copper(II) nitrate hexa­hydrate, 8-hy­droxy-2-methyl­quinoline, and pyridine-2,6-dicarb­oxy­lic acid in a 1:2:2 molar ratio in an aqueous solution. The geometry of the resulting CuN2O4 coordination can be described as distorted octa­hedral. In the crystal, there are several inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds. An intra­molecular N—H⋯O hydrogen bond occurs in one of the cations. Considerable ππ stacking inter­actions are also observed between the aromatic rings of the cations, with centroid–centroid distances of 3.4567 (13), 3.5342 (14), 3.6941 (14) and 3.4568 (13) Å. These non-covalent inter­actions connect the components, forming a three-dimensional supra­molecular structure.

Related literature

For background to proton-transfer compounds, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]). For examples of proton transfer from pyridine-2,6-dicarb­oxy­lic acid (pydcH2) to different amine base ligands, see: Eshtiagh-Hosseini et al. (2010a[Eshtiagh-Hosseini, H., Yousefi, Z., Safiee, M. & Mirzaei, M. (2010a). J. Coord. Chem. 63, 3187-3197.],b[Eshtiagh-Hosseini, H., Aghabozorg, H., Mirzaei, M., Amini, M. M., Chen, Y.-G., Shokrollahi, A. & Aghaei, R. (2010b). J. Mol. Struct. 973, 180-189.],c[Eshtiagh-Hosseini, H., Alfi, N., Mirzaei, M., Fanwick, P. & Fanwick, P. E. (2010c). Acta Cryst. E66, m1450.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10NO)2[Cu(C7H3NO4)2]·CH4O·H2O

  • Mr = 764.20

  • Triclinic, [P \overline 1]

  • a = 10.116 (2) Å

  • b = 12.895 (3) Å

  • c = 14.816 (3) Å

  • α = 64.45 (3)°

  • β = 76.23 (3)°

  • γ = 83.74 (3)°

  • V = 1693.5 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 298 K

  • 0.5 × 0.4 × 0.3 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.714, Tmax = 0.803

  • 18924 measured reflections

  • 9061 independent reflections

  • 7185 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.01

  • 9061 reflections

  • 498 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O9 0.83 (3) 2.37 (2) 2.692 (2) 104.3 (17)
N3—H3A⋯O11 0.83 (3) 1.93 (3) 2.739 (3) 164 (2)
N4—H4A⋯O8i 0.95 (3) 1.87 (3) 2.723 (2) 149 (2)
O9—H9A⋯O5 0.78 (3) 1.79 (3) 2.563 (2) 176 (3)
O10—H10A⋯O4 0.87 (4) 1.70 (4) 2.555 (3) 167 (3)
O11—H11A⋯O1i 0.83 (4) 1.88 (4) 2.706 (3) 172 (4)
O12—H12A⋯O7 0.82 (3) 2.14 (3) 2.895 (3) 154 (4)
O12—H12B⋯O2ii 0.82 (4) 2.21 (4) 2.974 (3) 156 (4)
C10—H10⋯O3iii 0.93 2.55 3.177 (3) 125
C15—H15C⋯O2i 0.96 2.55 3.480 (3) 163
C17—H17⋯O6iv 0.93 2.29 3.185 (3) 161
C25—H25C⋯O8i 0.96 2.48 3.212 (3) 133
C27—H27⋯O2v 0.93 2.50 3.394 (3) 162
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+2; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+2, -z+1; (v) x-1, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our research focusses on water soluble proton transfer compounds as novel self-assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported examples of proton transfer from pyridine-2,6-dicarboxylic acid (pydcH2) to different amine base ligands (Eshtiagh-Hosseini et al. 2010a,b,c). This has resulted in the formation of some novel proton transfer compounds based on carboxylic acid ligand derivatives (Aghabozorg et al. 2008).

The molecular structure of the title compound is presented in Fig. 1. In the title compound, CuII ion is six-coordinated by two pyridine-2,6-dicarboxylate, or (pydc)2- groups and each (pydc)2- ligand is coordinating through one pyridine N atom and two carboxylate O atoms. The atoms N1 and N2 of the two (pydc)2- fragments occupy the axial positions, while atoms O1, O3, O5, and O7 form the equatorial plane [with Cu—O distances ranging from 2.1799 (16) to 2.2070 (16) Å]. The N1—Cu1—N2 angle [174.84 (5)°] deviates little from linearity. The O3—Cu1—O7 and O1—Cu1—O5 bond angles are equal to 91.22 (6)° and 94.25 (6)°, respectively. So the geometry of the resulting CuN2O4 coordination can be described as distorted octahedral. The packing diagram of the title compound is shown in Fig. 2. It is interesting to note that the space between the layers of [Cu(pydc)2]2- units is occupied by (8hmqH)+ cations and uncoordinated water and methanol molecules, which the latter bridge the anionic and cationic units via hydrogen bonds (Fig 2 and Table 1). In the crystal structure, there are several intermolecular O—H···O, N—H···O, C—H···O and intramolecular N—H···O hydrogen bonds (Fig 2 and Table 1).

There are also extensive ππ interactions (Fig. 3) between the rings of (8hmqH)+ fragments with centroid–centroid distances for Cg7—Cg10vi, Cg10—Cg11vii, Cg7—Cg7iv and Cg10—Cg7viii equal to 3.4567 (13), 3.5342 (14), 3.6941 (14) and 3.4568 (13) Å, respectively, where Cg7, Cg10 and Cg11 are the centroids of N3/C16—C19/C24, N4/C26—C29/C34 and C29—C34, respectively (symmetry codes: iv: 1 - x,2 - y,1 - z; vi: x,1 + y,z; vii:1 - x,-y,2 - z; viii: x,-1 + y,z).

In the crystal packing a wide range of non-covalent interactions, consisting of hydrogen bonding and π ···π interactions plays an important role in the stabilization of the three-dimensional supramolecular network.

Related literature top

For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For examples of proton transfer from pyridine-2,6-dicarboxylic acid (pydcH2) to different amine base ligands, see: Eshtiagh-Hosseini et al. (2010a,b,c).

Experimental top

A solution of 8-hydroxy-2-methylquinoline (0.320 g, 2 mmol) in methanol (10 ml) and 2,6-pyridine dicarboxylic acid (0.170 g, 1 mmol) in methanol (10 ml) were mixed and stirrered until a clear solution was obtained. A solution of Cu(NO3)2.3H20 (0.121 g, 0.5 mmol) in methanol (5 ml) was added to the acid-base mixture and stirred for 30 min. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation after two weeks.

Refinement top

The hydrogen atoms bonded to O and N atoms were found in difference Fourier map and refined isotropically. The water hydrogen atoms were refined with Uiso(H) = 1.2 Ueq(O) and distance restraints of O—H 0.82 (3) and 0.82 (4) Å for H12A and H12B, respectively. The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic C—H groups, C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl group.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound. The intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds are shown as green dashed lines.
[Figure 3] Fig. 3. The packing diagram of the title compound showing π-π interactions between (8hmqH)+ fragments. Only (8hmqH)+ fragments without hydrogen atoms are shown for clarity. Cg7, Cg10 and Cg11 are the centroids of rings N3/C16—C19/C24, N4/C26—C29/C34 and C29—C34, respectively (symmetry codes: iv: 1 - x,2 - y,1 - z; vi: x,1 + y,z; vii:1 - x,-y,2 - z; viii: x,-1 + y,z).
Bis(8-hydroxy-2-methylquinolinium) bis(pyridine-2,6-dicarboxylato)cuprate(II) methanol monosolvate monohydrate top
Crystal data top
(C10H10NO)2[Cu(C7H3NO4)2]·CH4O·H2OZ = 2
Mr = 764.20F(000) = 790
Triclinic, P1Dx = 1.499 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.116 (2) ÅCell parameters from 9061 reflections
b = 12.895 (3) Åθ = 2.3–29.2°
c = 14.816 (3) ŵ = 0.72 mm1
α = 64.45 (3)°T = 298 K
β = 76.23 (3)°Block, green
γ = 83.74 (3)°0.5 × 0.4 × 0.3 mm
V = 1693.5 (8) Å3
Data collection top
Stoe IPDS II
diffractometer
9061 independent reflections
Radiation source: fine-focus sealed tube7185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.3°
rotation method scansh = 1313
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
k = 1717
Tmin = 0.714, Tmax = 0.803l = 2018
18924 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0728P)2]
where P = (Fo2 + 2Fc2)/3
9061 reflections(Δ/σ)max = 0.002
498 parametersΔρmax = 0.70 e Å3
2 restraintsΔρmin = 0.45 e Å3
Crystal data top
(C10H10NO)2[Cu(C7H3NO4)2]·CH4O·H2Oγ = 83.74 (3)°
Mr = 764.20V = 1693.5 (8) Å3
Triclinic, P1Z = 2
a = 10.116 (2) ÅMo Kα radiation
b = 12.895 (3) ŵ = 0.72 mm1
c = 14.816 (3) ÅT = 298 K
α = 64.45 (3)°0.5 × 0.4 × 0.3 mm
β = 76.23 (3)°
Data collection top
Stoe IPDS II
diffractometer
9061 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
7185 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.803Rint = 0.028
18924 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.70 e Å3
9061 reflectionsΔρmin = 0.45 e Å3
498 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.987953 (19)0.531740 (17)0.743974 (16)0.03101 (7)
N10.88383 (13)0.54422 (11)0.86756 (11)0.0300 (3)
N21.09007 (13)0.53417 (11)0.61416 (10)0.0279 (3)
O50.89361 (13)0.67395 (12)0.63268 (11)0.0447 (3)
O30.81065 (14)0.42206 (13)0.78562 (11)0.0460 (3)
O11.11637 (13)0.64363 (13)0.76480 (11)0.0440 (3)
O71.12019 (15)0.38075 (12)0.79369 (10)0.0450 (3)
O81.28336 (16)0.28824 (13)0.72425 (12)0.0545 (4)
O21.11205 (17)0.73177 (15)0.86636 (13)0.0587 (4)
O40.61123 (14)0.37723 (14)0.89804 (13)0.0536 (4)
C10.92907 (16)0.61020 (14)0.90270 (13)0.0317 (3)
C50.76455 (16)0.48968 (14)0.91421 (13)0.0331 (3)
C70.72560 (18)0.42323 (15)0.86147 (14)0.0371 (4)
C61.06461 (17)0.66757 (15)0.84037 (14)0.0368 (4)
C81.06465 (16)0.61551 (13)0.52592 (13)0.0305 (3)
C141.19898 (18)0.36591 (15)0.72033 (14)0.0351 (3)
C20.8541 (2)0.62252 (17)0.98891 (15)0.0420 (4)
H20.88580.66851.01320.050*
C121.18579 (16)0.45418 (14)0.61431 (13)0.0313 (3)
O90.66369 (14)0.76955 (12)0.66892 (13)0.0495 (4)
O60.92311 (15)0.77708 (13)0.46303 (12)0.0573 (4)
C91.13573 (19)0.61976 (16)0.43302 (14)0.0400 (4)
H91.11660.67630.37230.048*
C101.2365 (2)0.53816 (19)0.43151 (15)0.0481 (5)
H101.28650.53940.36960.058*
N30.45289 (14)0.91753 (13)0.63308 (11)0.0325 (3)
C230.68490 (17)0.87638 (16)0.65494 (15)0.0375 (4)
C240.57362 (16)0.95441 (15)0.63553 (13)0.0325 (3)
C111.2618 (2)0.45481 (18)0.52344 (15)0.0452 (4)
H111.32950.39980.52390.054*
C160.34540 (17)0.98636 (16)0.61397 (13)0.0372 (4)
C30.7318 (2)0.5658 (2)1.03830 (16)0.0487 (5)
H30.68070.57301.09650.058*
C150.21709 (19)0.9375 (2)0.61694 (17)0.0477 (5)
H15A0.23750.88920.58090.072*
H15B0.15750.99880.58500.072*
H15C0.17350.89290.68680.072*
C40.68596 (19)0.49856 (19)1.00097 (15)0.0452 (4)
H40.60380.45981.03340.054*
O100.52372 (17)0.25204 (13)0.83028 (15)0.0587 (4)
N40.38002 (15)0.08098 (13)0.84401 (12)0.0349 (3)
C210.8161 (2)1.0311 (2)0.64068 (19)0.0548 (5)
H210.89791.05600.64260.066*
C260.30049 (18)0.00004 (17)0.85244 (14)0.0400 (4)
C190.58640 (19)1.06926 (16)0.61857 (14)0.0389 (4)
C330.58524 (19)0.14932 (17)0.85447 (16)0.0415 (4)
C250.1594 (2)0.0336 (2)0.83583 (19)0.0551 (5)
H25A0.10270.03780.89610.083*
H25B0.12370.02270.82190.083*
H25C0.16090.10720.77870.083*
C170.3561 (2)1.10237 (18)0.59373 (15)0.0460 (5)
H170.28281.15210.57780.055*
C220.80401 (19)0.9164 (2)0.65722 (18)0.0490 (5)
H220.87800.86670.67000.059*
C340.50978 (17)0.05901 (15)0.86173 (13)0.0337 (3)
C180.4726 (2)1.14235 (17)0.59722 (16)0.0475 (5)
H180.47751.21890.58540.057*
C200.7101 (2)1.10638 (19)0.62198 (18)0.0508 (5)
H200.71941.18190.61150.061*
C320.7142 (2)0.1243 (2)0.87438 (17)0.0510 (5)
H320.76650.18210.86980.061*
C290.56299 (19)0.05345 (16)0.88863 (14)0.0399 (4)
C270.3516 (2)0.11168 (18)0.87752 (16)0.0474 (5)
H270.29760.16860.88250.057*
C280.4794 (2)0.13769 (17)0.89464 (16)0.0478 (5)
H280.51240.21230.91060.057*
C310.7666 (2)0.0131 (2)0.90131 (18)0.0567 (6)
H310.85360.00180.91480.068*
C300.6951 (2)0.0749 (2)0.90864 (18)0.0537 (5)
H300.73300.14820.92660.064*
C130.95099 (17)0.69800 (15)0.53946 (15)0.0371 (4)
O110.37869 (17)0.70218 (16)0.6708 (2)0.0806 (7)
C350.4497 (3)0.6032 (2)0.6755 (3)0.0786 (9)
H35A0.54150.62230.63740.118*
H35B0.40660.56550.64670.118*
H35C0.45050.55280.74560.118*
O120.9690 (3)0.1914 (2)0.96545 (19)0.0947 (8)
H3A0.446 (2)0.8493 (19)0.6449 (16)0.035 (5)*
H4A0.342 (2)0.156 (2)0.8246 (19)0.054 (7)*
H9A0.732 (3)0.738 (3)0.660 (2)0.070 (9)*
H10A0.564 (3)0.296 (3)0.846 (2)0.075 (9)*
H11A0.298 (4)0.689 (3)0.702 (3)0.094 (11)*
H12A1.029 (3)0.227 (3)0.917 (2)0.113*
H12B0.927 (4)0.221 (3)1.003 (3)0.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02831 (10)0.03006 (11)0.03525 (12)0.00009 (7)0.00293 (7)0.01629 (8)
N10.0281 (6)0.0299 (6)0.0327 (7)0.0011 (5)0.0045 (5)0.0146 (6)
N20.0274 (6)0.0269 (6)0.0296 (7)0.0023 (5)0.0063 (5)0.0126 (5)
O50.0377 (6)0.0417 (7)0.0478 (8)0.0125 (5)0.0056 (6)0.0172 (6)
O30.0490 (7)0.0507 (8)0.0423 (8)0.0129 (6)0.0001 (6)0.0253 (6)
O10.0337 (6)0.0550 (8)0.0484 (8)0.0097 (5)0.0033 (5)0.0304 (7)
O70.0557 (8)0.0449 (7)0.0320 (7)0.0042 (6)0.0071 (6)0.0161 (6)
O80.0634 (9)0.0454 (8)0.0517 (9)0.0267 (7)0.0230 (7)0.0183 (7)
O20.0605 (9)0.0664 (10)0.0627 (10)0.0269 (8)0.0034 (7)0.0386 (8)
O40.0424 (7)0.0590 (9)0.0635 (10)0.0217 (6)0.0021 (7)0.0316 (8)
C10.0317 (7)0.0315 (8)0.0344 (8)0.0016 (6)0.0082 (6)0.0160 (7)
C50.0301 (7)0.0335 (8)0.0335 (8)0.0038 (6)0.0032 (6)0.0130 (7)
C70.0377 (8)0.0354 (9)0.0378 (9)0.0072 (7)0.0048 (7)0.0149 (7)
C60.0349 (8)0.0376 (9)0.0413 (10)0.0057 (7)0.0065 (7)0.0194 (8)
C80.0291 (7)0.0269 (7)0.0348 (8)0.0005 (6)0.0098 (6)0.0108 (6)
C140.0390 (8)0.0329 (8)0.0356 (9)0.0057 (6)0.0129 (7)0.0153 (7)
C20.0466 (10)0.0473 (10)0.0410 (10)0.0029 (8)0.0099 (8)0.0273 (9)
C120.0329 (7)0.0307 (8)0.0335 (8)0.0061 (6)0.0093 (6)0.0167 (7)
O90.0309 (6)0.0377 (7)0.0792 (11)0.0076 (5)0.0099 (7)0.0266 (7)
O60.0513 (8)0.0447 (8)0.0548 (9)0.0159 (6)0.0168 (7)0.0022 (7)
C90.0460 (9)0.0398 (9)0.0307 (9)0.0008 (7)0.0107 (7)0.0105 (7)
C100.0538 (11)0.0567 (12)0.0327 (9)0.0082 (9)0.0030 (8)0.0229 (9)
N30.0306 (7)0.0334 (7)0.0327 (7)0.0039 (5)0.0044 (5)0.0153 (6)
C230.0317 (8)0.0381 (9)0.0422 (10)0.0035 (7)0.0053 (7)0.0186 (8)
C240.0308 (7)0.0367 (8)0.0302 (8)0.0021 (6)0.0037 (6)0.0162 (7)
C110.0467 (10)0.0489 (11)0.0414 (10)0.0176 (8)0.0082 (8)0.0249 (9)
C160.0310 (8)0.0473 (10)0.0292 (8)0.0087 (7)0.0048 (6)0.0151 (7)
C30.0452 (10)0.0655 (13)0.0383 (10)0.0003 (9)0.0021 (8)0.0302 (10)
C150.0321 (8)0.0600 (12)0.0479 (11)0.0052 (8)0.0096 (8)0.0207 (10)
C40.0350 (9)0.0570 (12)0.0390 (10)0.0082 (8)0.0031 (7)0.0197 (9)
O100.0600 (9)0.0412 (8)0.0869 (13)0.0020 (7)0.0339 (9)0.0282 (8)
N40.0353 (7)0.0378 (8)0.0338 (8)0.0020 (6)0.0096 (6)0.0155 (6)
C210.0419 (10)0.0660 (14)0.0639 (14)0.0103 (9)0.0095 (9)0.0328 (12)
C260.0380 (9)0.0491 (10)0.0346 (9)0.0105 (7)0.0024 (7)0.0195 (8)
C190.0434 (9)0.0373 (9)0.0353 (9)0.0007 (7)0.0040 (7)0.0171 (7)
C330.0429 (9)0.0444 (10)0.0429 (10)0.0047 (8)0.0140 (8)0.0201 (8)
C250.0367 (10)0.0753 (15)0.0601 (14)0.0075 (9)0.0082 (9)0.0341 (12)
C170.0470 (10)0.0436 (10)0.0400 (10)0.0173 (8)0.0110 (8)0.0139 (8)
C220.0334 (9)0.0571 (12)0.0597 (13)0.0040 (8)0.0121 (8)0.0275 (10)
C340.0360 (8)0.0367 (8)0.0297 (8)0.0025 (6)0.0090 (6)0.0136 (7)
C180.0566 (12)0.0333 (9)0.0472 (11)0.0059 (8)0.0067 (9)0.0155 (8)
C200.0561 (12)0.0436 (11)0.0563 (13)0.0106 (9)0.0070 (10)0.0246 (10)
C320.0411 (10)0.0705 (14)0.0522 (12)0.0073 (9)0.0134 (9)0.0323 (11)
C290.0444 (9)0.0401 (9)0.0322 (9)0.0020 (7)0.0087 (7)0.0128 (7)
C270.0549 (11)0.0419 (10)0.0439 (11)0.0167 (8)0.0006 (9)0.0181 (9)
C280.0617 (12)0.0349 (9)0.0419 (11)0.0013 (8)0.0065 (9)0.0138 (8)
C310.0369 (10)0.0833 (17)0.0556 (13)0.0081 (10)0.0177 (9)0.0323 (12)
C300.0521 (11)0.0576 (13)0.0495 (12)0.0180 (10)0.0198 (10)0.0203 (10)
C130.0302 (8)0.0301 (8)0.0455 (10)0.0033 (6)0.0095 (7)0.0107 (7)
O110.0351 (8)0.0562 (10)0.139 (2)0.0101 (7)0.0123 (10)0.0444 (12)
C350.0630 (15)0.0560 (15)0.107 (2)0.0065 (12)0.0113 (15)0.0386 (16)
O120.125 (2)0.0851 (16)0.0707 (15)0.0470 (14)0.0092 (13)0.0350 (12)
Geometric parameters (Å, º) top
Cu1—N21.9433 (15)C15—H15A0.9600
Cu1—N11.9461 (15)C15—H15B0.9600
Cu1—O52.1799 (16)C15—H15C0.9600
Cu1—O72.1880 (16)C4—H40.9300
Cu1—O12.2018 (14)O10—C331.337 (3)
Cu1—O32.2070 (16)O10—H10A0.87 (3)
N1—C11.336 (2)N4—C261.332 (2)
N1—C51.341 (2)N4—C341.375 (2)
N2—C121.335 (2)N4—H4A0.95 (3)
N2—C81.339 (2)C21—C201.360 (3)
O5—C131.276 (2)C21—C221.405 (3)
O3—C71.247 (2)C21—H210.9300
O1—C61.268 (2)C26—C271.396 (3)
O7—C141.260 (2)C26—C251.492 (3)
O8—C141.234 (2)C19—C201.407 (3)
O2—C61.230 (2)C19—C181.412 (3)
O4—C71.248 (2)C33—C321.379 (3)
C1—C21.386 (3)C33—C341.413 (3)
C1—C61.520 (2)C25—H25A0.9600
C5—C41.385 (3)C25—H25B0.9600
C5—C71.516 (2)C25—H25C0.9600
C8—C91.374 (3)C17—C181.357 (3)
C8—C131.517 (2)C17—H170.9300
C14—C121.518 (2)C22—H220.9300
C2—C31.380 (3)C34—C291.409 (3)
C2—H20.9300C18—H180.9300
C12—C111.380 (3)C20—H200.9300
O9—C231.336 (2)C32—C311.392 (3)
O9—H9A0.78 (3)C32—H320.9300
O6—C131.223 (2)C29—C281.409 (3)
C9—C101.387 (3)C29—C301.410 (3)
C9—H90.9300C27—C281.355 (3)
C10—C111.385 (3)C27—H270.9300
C10—H100.9300C28—H280.9300
N3—C161.330 (2)C31—C301.362 (4)
N3—C241.372 (2)C31—H310.9300
N3—H3A0.83 (2)C30—H300.9300
C23—C221.375 (3)O11—C351.378 (3)
C23—C241.421 (2)O11—H11A0.83 (4)
C24—C191.407 (3)C35—H35A0.9600
C11—H110.9300C35—H35B0.9600
C16—C171.404 (3)C35—H35C0.9600
C16—C151.487 (3)O12—H12A0.82 (3)
C3—C41.378 (3)O12—H12B0.82 (4)
C3—H30.9300
N2—Cu1—N1174.84 (5)C16—C15—H15B109.5
N2—Cu1—O577.26 (6)H15A—C15—H15B109.5
N1—Cu1—O598.34 (6)C16—C15—H15C109.5
N2—Cu1—O778.01 (6)H15A—C15—H15C109.5
N1—Cu1—O7106.57 (6)H15B—C15—H15C109.5
O5—Cu1—O7154.84 (6)C3—C4—C5118.75 (18)
N2—Cu1—O1100.11 (6)C3—C4—H4120.6
N1—Cu1—O177.38 (6)C5—C4—H4120.6
O5—Cu1—O194.25 (6)C33—O10—H10A110.9 (19)
O7—Cu1—O194.57 (6)C26—N4—C34122.97 (16)
N2—Cu1—O3104.79 (6)C26—N4—H4A115.8 (15)
N1—Cu1—O377.75 (6)C34—N4—H4A121.2 (15)
O5—Cu1—O390.63 (6)C20—C21—C22121.13 (19)
O7—Cu1—O391.22 (6)C20—C21—H21119.4
O1—Cu1—O3155.09 (5)C22—C21—H21119.4
C1—N1—C5120.77 (15)N4—C26—C27118.97 (17)
C1—N1—Cu1119.89 (12)N4—C26—C25117.88 (18)
C5—N1—Cu1119.29 (12)C27—C26—C25123.14 (19)
C12—N2—C8120.70 (15)C24—C19—C20119.47 (17)
C12—N2—Cu1119.15 (12)C24—C19—C18117.23 (18)
C8—N2—Cu1120.15 (11)C20—C19—C18123.29 (19)
C13—O5—Cu1114.39 (11)O10—C33—C32125.54 (19)
C7—O3—Cu1112.59 (12)O10—C33—C34116.62 (17)
C6—O1—Cu1113.61 (11)C32—C33—C34117.83 (19)
C14—O7—Cu1113.22 (11)C26—C25—H25A109.5
N1—C1—C2120.51 (16)C26—C25—H25B109.5
N1—C1—C6114.34 (15)H25A—C25—H25B109.5
C2—C1—C6125.15 (16)C26—C25—H25C109.5
N1—C5—C4121.03 (17)H25A—C25—H25C109.5
N1—C5—C7113.87 (15)H25B—C25—H25C109.5
C4—C5—C7125.08 (16)C18—C17—C16120.42 (17)
O3—C7—O4127.36 (18)C18—C17—H17119.8
O3—C7—C5116.32 (15)C16—C17—H17119.8
O4—C7—C5116.30 (17)C23—C22—C21121.22 (19)
O2—C6—O1126.85 (17)C23—C22—H22119.4
O2—C6—C1118.45 (17)C21—C22—H22119.4
O1—C6—C1114.70 (15)N4—C34—C29119.13 (16)
N2—C8—C9121.44 (15)N4—C34—C33119.13 (16)
N2—C8—C13113.94 (15)C29—C34—C33121.73 (17)
C9—C8—C13124.61 (15)C17—C18—C19120.87 (19)
O8—C14—O7128.10 (17)C17—C18—H18119.6
O8—C14—C12116.60 (16)C19—C18—H18119.6
O7—C14—C12115.30 (14)C21—C20—C19119.6 (2)
C3—C2—C1119.29 (18)C21—C20—H20120.2
C3—C2—H2120.4C19—C20—H20120.2
C1—C2—H2120.4C33—C32—C31120.5 (2)
N2—C12—C11120.58 (16)C33—C32—H32119.8
N2—C12—C14114.29 (15)C31—C32—H32119.8
C11—C12—C14125.13 (15)C28—C29—C34117.42 (17)
C23—O9—H9A111 (2)C28—C29—C30124.26 (19)
C8—C9—C10118.74 (17)C34—C29—C30118.31 (19)
C8—C9—H9120.6C28—C27—C26120.44 (19)
C10—C9—H9120.6C28—C27—H27119.8
C11—C10—C9119.10 (18)C26—C27—H27119.8
C11—C10—H10120.5C27—C28—C29121.04 (19)
C9—C10—H10120.5C27—C28—H28119.5
C16—N3—C24122.87 (16)C29—C28—H28119.5
C16—N3—H3A118.3 (14)C30—C31—C32122.37 (19)
C24—N3—H3A118.8 (14)C30—C31—H31118.8
O9—C23—C22125.73 (17)C32—C31—H31118.8
O9—C23—C24116.22 (16)C31—C30—C29119.3 (2)
C22—C23—C24118.04 (18)C31—C30—H30120.3
N3—C24—C19119.72 (15)C29—C30—H30120.3
N3—C24—C23119.76 (16)O6—C13—O5127.45 (17)
C19—C24—C23120.52 (16)O6—C13—C8118.55 (18)
C12—C11—C10119.43 (16)O5—C13—C8113.99 (15)
C12—C11—H11120.3C35—O11—H11A112 (2)
C10—C11—H11120.3O11—C35—H35A109.5
N3—C16—C17118.85 (18)O11—C35—H35B109.5
N3—C16—C15118.99 (18)H35A—C35—H35B109.5
C17—C16—C15122.15 (16)O11—C35—H35C109.5
C4—C3—C2119.63 (18)H35A—C35—H35C109.5
C4—C3—H3120.2H35B—C35—H35C109.5
C2—C3—H3120.2H12A—O12—H12B120 (4)
C16—C15—H15A109.5
O5—Cu1—N1—C190.30 (13)Cu1—N2—C12—C142.18 (19)
O7—Cu1—N1—C193.28 (13)O8—C14—C12—N2177.89 (16)
O1—Cu1—N1—C12.21 (12)O7—C14—C12—N21.2 (2)
O3—Cu1—N1—C1179.13 (13)O8—C14—C12—C111.1 (3)
O5—Cu1—N1—C587.16 (13)O7—C14—C12—C11179.80 (18)
O7—Cu1—N1—C589.26 (13)N2—C8—C9—C100.5 (3)
O1—Cu1—N1—C5179.67 (13)C13—C8—C9—C10179.33 (18)
O3—Cu1—N1—C51.67 (12)C8—C9—C10—C110.3 (3)
O5—Cu1—N2—C12177.07 (13)C16—N3—C24—C190.8 (3)
O7—Cu1—N2—C121.75 (12)C16—N3—C24—C23179.05 (16)
O1—Cu1—N2—C1290.82 (13)O9—C23—C24—N30.6 (3)
O3—Cu1—N2—C1289.82 (13)C22—C23—C24—N3179.72 (18)
O5—Cu1—N2—C83.17 (12)O9—C23—C24—C19179.23 (17)
O7—Cu1—N2—C8178.49 (13)C22—C23—C24—C190.4 (3)
O1—Cu1—N2—C888.94 (13)N2—C12—C11—C101.2 (3)
O3—Cu1—N2—C890.42 (13)C14—C12—C11—C10177.78 (19)
N2—Cu1—O5—C134.78 (13)C9—C10—C11—C120.5 (3)
N1—Cu1—O5—C13172.49 (13)C24—N3—C16—C171.1 (3)
O7—Cu1—O5—C1315.6 (2)C24—N3—C16—C15177.64 (17)
O1—Cu1—O5—C1394.64 (14)C1—C2—C3—C40.4 (3)
O3—Cu1—O5—C13109.81 (14)C2—C3—C4—C50.0 (3)
N2—Cu1—O3—C7171.70 (13)N1—C5—C4—C30.7 (3)
N1—Cu1—O3—C73.68 (13)C7—C5—C4—C3177.43 (18)
O5—Cu1—O3—C794.71 (14)C34—N4—C26—C271.9 (3)
O7—Cu1—O3—C7110.38 (14)C34—N4—C26—C25177.28 (18)
O1—Cu1—O3—C76.8 (2)N3—C24—C19—C20179.49 (17)
N2—Cu1—O1—C6172.75 (13)C23—C24—C19—C200.6 (3)
N1—Cu1—O1—C62.65 (13)N3—C24—C19—C181.4 (3)
O5—Cu1—O1—C694.96 (14)C23—C24—C19—C18178.43 (17)
O7—Cu1—O1—C6108.63 (14)N3—C16—C17—C182.3 (3)
O3—Cu1—O1—C65.8 (2)C15—C16—C17—C18176.36 (19)
N2—Cu1—O7—C141.00 (13)O9—C23—C22—C21179.5 (2)
N1—Cu1—O7—C14176.57 (13)C24—C23—C22—C210.1 (3)
O5—Cu1—O7—C1411.8 (2)C20—C21—C22—C230.1 (4)
O1—Cu1—O7—C1498.39 (14)C26—N4—C34—C290.9 (3)
O3—Cu1—O7—C14105.86 (14)C26—N4—C34—C33177.81 (18)
C5—N1—C1—C20.7 (2)O10—C33—C34—N40.0 (3)
Cu1—N1—C1—C2178.13 (13)C32—C33—C34—N4178.91 (18)
C5—N1—C1—C6179.02 (14)O10—C33—C34—C29178.76 (18)
Cu1—N1—C1—C61.60 (19)C32—C33—C34—C290.2 (3)
C1—N1—C5—C41.1 (3)C16—C17—C18—C191.7 (3)
Cu1—N1—C5—C4178.51 (14)C24—C19—C18—C170.2 (3)
C1—N1—C5—C7177.25 (14)C20—C19—C18—C17179.2 (2)
Cu1—N1—C5—C70.19 (19)C22—C21—C20—C190.3 (4)
Cu1—O3—C7—O4174.11 (17)C24—C19—C20—C210.6 (3)
Cu1—O3—C7—C54.8 (2)C18—C19—C20—C21178.4 (2)
N1—C5—C7—O33.6 (2)O10—C33—C32—C31178.4 (2)
C4—C5—C7—O3178.13 (18)C34—C33—C32—C310.4 (3)
N1—C5—C7—O4175.40 (16)N4—C34—C29—C280.8 (3)
C4—C5—C7—O42.8 (3)C33—C34—C29—C28179.49 (19)
Cu1—O1—C6—O2176.75 (17)N4—C34—C29—C30178.67 (17)
Cu1—O1—C6—C12.55 (19)C33—C34—C29—C300.1 (3)
N1—C1—C6—O2178.49 (17)N4—C26—C27—C281.1 (3)
C2—C1—C6—O21.2 (3)C25—C26—C27—C28178.0 (2)
N1—C1—C6—O10.9 (2)C26—C27—C28—C290.6 (3)
C2—C1—C6—O1179.41 (17)C34—C29—C28—C271.5 (3)
C12—N2—C8—C90.1 (2)C30—C29—C28—C27177.9 (2)
Cu1—N2—C8—C9179.63 (13)C33—C32—C31—C300.4 (4)
C12—N2—C8—C13178.78 (14)C32—C31—C30—C290.2 (4)
Cu1—N2—C8—C131.46 (19)C28—C29—C30—C31179.5 (2)
Cu1—O7—C14—O8179.14 (17)C34—C29—C30—C310.1 (3)
Cu1—O7—C14—C120.18 (19)Cu1—O5—C13—O6175.71 (17)
N1—C1—C2—C30.0 (3)Cu1—O5—C13—C85.28 (19)
C6—C1—C2—C3179.72 (18)N2—C8—C13—O6178.03 (17)
C8—N2—C12—C111.0 (3)C9—C8—C13—O63.1 (3)
Cu1—N2—C12—C11178.77 (14)N2—C8—C13—O52.9 (2)
C8—N2—C12—C14178.06 (14)C9—C8—C13—O5176.01 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O90.83 (3)2.37 (2)2.692 (2)104.3 (17)
N3—H3A···O110.83 (3)1.93 (3)2.739 (3)164 (2)
N4—H4A···O8i0.95 (3)1.87 (3)2.723 (2)149 (2)
O9—H9A···O50.78 (3)1.79 (3)2.563 (2)176 (3)
O10—H10A···O40.87 (4)1.70 (4)2.555 (3)167 (3)
O11—H11A···O1i0.83 (4)1.88 (4)2.706 (3)172 (4)
O12—H12A···O70.82 (3)2.14 (3)2.895 (3)154 (4)
O12—H12B···O2ii0.82 (4)2.21 (4)2.974 (3)156 (4)
C10—H10···O3iii0.932.553.177 (3)125
C15—H15C···O2i0.962.553.480 (3)163
C17—H17···O6iv0.932.293.185 (3)161
C25—H25C···O8i0.962.483.212 (3)133
C27—H27···O2v0.932.503.394 (3)162
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+2; (iii) x+2, y+1, z+1; (iv) x+1, y+2, z+1; (v) x1, y1, z.

Experimental details

Crystal data
Chemical formula(C10H10NO)2[Cu(C7H3NO4)2]·CH4O·H2O
Mr764.20
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.116 (2), 12.895 (3), 14.816 (3)
α, β, γ (°)64.45 (3), 76.23 (3), 83.74 (3)
V3)1693.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.714, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
18924, 9061, 7185
Rint0.028
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.01
No. of reflections9061
No. of parameters498
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.45

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O90.83 (3)2.37 (2)2.692 (2)104.3 (17)
N3—H3A···O110.83 (3)1.93 (3)2.739 (3)164 (2)
N4—H4A···O8i0.95 (3)1.87 (3)2.723 (2)149 (2)
O9—H9A···O50.78 (3)1.79 (3)2.563 (2)176 (3)
O10—H10A···O40.87 (4)1.70 (4)2.555 (3)167 (3)
O11—H11A···O1i0.83 (4)1.88 (4)2.706 (3)172 (4)
O12—H12A···O70.82 (3)2.14 (3)2.895 (3)154 (4)
O12—H12B···O2ii0.82 (4)2.21 (4)2.974 (3)156 (4)
C10—H10···O3iii0.932.553.177 (3)125
C15—H15C···O2i0.962.553.480 (3)163
C17—H17···O6iv0.932.293.185 (3)161
C25—H25C···O8i0.962.483.212 (3)133
C27—H27···O2v0.932.503.394 (3)162
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+2; (iii) x+2, y+1, z+1; (iv) x+1, y+2, z+1; (v) x1, y1, z.
 

Acknowledgements

The authors thank the Faculty of Chemistry, Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationEshtiagh-Hosseini, H., Aghabozorg, H., Mirzaei, M., Amini, M. M., Chen, Y.-G., Shokrollahi, A. & Aghaei, R. (2010b). J. Mol. Struct. 973, 180–189.  CAS Google Scholar
First citationEshtiagh-Hosseini, H., Alfi, N., Mirzaei, M., Fanwick, P. & Fanwick, P. E. (2010c). Acta Cryst. E66, m1450.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Yousefi, Z., Safiee, M. & Mirzaei, M. (2010a). J. Coord. Chem. 63, 3187–3197.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X–SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m379-m380
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds