metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m299-m300

Bis[2,6-bis­­(2-meth­­oxy­phen­yl)pyridinium] di-μ-bromido-bis­­[di­bromidocuprate(II)]

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand, and bNational Metal and Materials Technology Center, Thailand Science Park, Klong Luang, Pathumthani, Thailand
*Correspondence e-mail: scpsf@mahidol.ac.th

(Received 22 January 2011; accepted 27 January 2011; online 5 February 2011)

The title salt, (C19H18NO2)2[Cu2Br6], was obtained from an attempt to synthesize the copper(II) complex of 2,6-bis­(2-meth­oxy­phen­yl)pyridine (L) from a reaction between CuBr2 and one equivalent of L in CH2Cl2 at room temperature. The resulting compound is the salt of the 2,6-bis­(2-meth­oxy­phen­yl)pyridinium cation and 0.5 equivalents of a hexa­bromido­dicuprate(II) dianion. Both meth­oxy groups of the cationic pyridinium moiety are directed towards the N atom of the pyridine ring as a result of intra­molecular N—H⋯O hydrogen bonds. The centrosymmetric hexabromidodicuprate dianion possesses a distorted tetra­hedral geometry at the copper ion. The Cu—Br bond lengths are 2.3385 (7) and 2.3304 (7) Å for the terminal bromides, whereas the bond length between the Cu atom and two bridging bromides is slightly longer [2.4451 (6) Å].

Related literature

The neutral compound 2,6-bis­(2-meth­oxy­phen­yl)pyridine has been previously reported (Silva et al., 1997[Silva, A. M. S., Almeida, L. M. P. M., Cavaleiro, J. A. S., Foces-Foces, C., Llamas-Saiz, A. L., Fontenas, C., Jagerovic, N. & Elguero, J. (1997). Tetrahedron, 53, 11645-11658.]) and copper(II) complexes of the related ligand 2,6-bis­(2′-hy­droxy­phen­yl)pyridine have also been characterized (Steinhauser et al., 2004[Steinhauser, S., Heinz, U., Sander, J. & Hegetschweiler, K. (2004). Z. Anorg. Allg. Chem. 630, 1829-1838.]).

[Scheme 1]

Experimental

Crystal data
  • (C19H18NO2)2[Cu2Br6]

  • Mr = 1191.23

  • Orthorhombic, P b c a

  • a = 11.5329 (1) Å

  • b = 17.0104 (4) Å

  • c = 21.0021 (5) Å

  • V = 4120.18 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.89 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.207, Tmax = 0.301

  • 28095 measured reflections

  • 4177 independent reflections

  • 3240 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.104

  • S = 1.05

  • 4177 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H20⋯O1 0.96 1.90 2.625 (4) 131
N1—H20⋯O2 0.96 1.92 2.630 (4) 129

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and maXus (Mackay et al., 1999[Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus. Bruker-Nonius, Delft, The Netherlands, MacScience, Yokohama, Japan, and The University of Glasgow, Scotland.]).

Supporting information


Comment top

An attempt to synthesize copper(II) complex of 2,6-bis(2-methoxyphenyl)- pyridine in CH2Cl2 unexpectedly yielded the ionic complex (C9H18NO2).0.5(Cu2Br6). The single crystals of the title compound crystallizes in the orthorhombic unit cell in space group Pbca. Each asymmetric unit cell contains one molecule of 2,6-bis(2-methoxy- phenyl)pyridinium cation and half a molecule of hexabromodicuprate(II). Crystallographic data of the title compound reveals intramolecular N—H···O hydrogen bonds forcing both methoxy groups to be in close proximity to the nitrogen atom of the pyridinium ring (N···O distances of 2.625 (4) and 2.630 (4) Å). The pyridinium and two methoxyphenyl rings are almost co-planar, having the dihedral angles between them of 7.5 (5)° and 15.0 (5)°. In addition, weak intermolecular π-π stacking interactions between pyridine and phenyl moieties of the neighboring molecules with centroid-centroid distances of 3.649 (2) and 3.850 (2) Å are present.

Note that the centroid of the complete dianion coincides with the inversion center. Moreover, the hexabromodicuprate(II) dianion displays a distorted tetrahedral geometry at both copper(II) ions with Cu—Br bond distances of 2.3385 (7) and 2.3304 (7) Å for terminal bromides, and 2.4451 (6) Å for bridging bromides, respectively.

The neutral compound 2,6-bis(2-methoxyphenyl)pyridine has been previously reported (Silva et al., 1997) and their crystals were obtained from an ethyl acetate solution. The published crystal structure reveals that both methoxy groups are on opposite sides of the pyridine nitrogen to avoid the N···O lone pair repulsion. In addition, copper(II) complexes of the related ligand 2,6-bis(2'- hydroxyphenyl)pyridine have previously been synthesized and characterized (Steinhauser et al., 2004).

Related literature top

The neutral compound 2,6-bis(2-methoxyphenyl)pyridine has been previously reported (Silva et al., 1997) and copper(II) complexes of the related ligand 2,6-bis(2'-hydroxyphenyl)pyridine have also been characterized (Steinhauser et al., 2004).

Experimental top

The title compound, (C9H18NO2).0.5(Cu2Br6) (1), was prepared from a reaction of CuBr2 (0.5 mmol) with one equivalent of 2,6-bis(2-methoxyphenyl)pyridine (0.5 mmol) in dichloromethane (30 ml) at room temperature for 3 h. The reaction solution was filtered to remove any unreacted CuBr2. X-ray quality single crystals were obtained from slow evaporation of a dichloromethane solution of 1 at room temperature.

Refinement top

Structure refinement was performed using least-squares analysis. All non-H atoms were refined anisotropically whereas all H atoms were placed in calculated positions and treated as riding with C,N—H = 0.96 with Uiso(H) = 1.2 Ueq(C,N), including the methoxy H atoms.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and maXus (Mackay et al., 1999).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound (1). Displacement ellipsoids are drawn at the 30% probability level.
Bis[2,6-bis(2-methoxyphenyl)pyridinium] di-µ-bromido-bis[dibromidocuprate(II)] top
Crystal data top
(C19H18NO2)2[Cu2Br6]F(000) = 2312
Mr = 1191.23Dx = 1.920 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 32254 reflections
a = 11.5329 (1) Åθ = 1.0–26.4°
b = 17.0104 (4) ŵ = 6.89 mm1
c = 21.0021 (5) ÅT = 298 K
V = 4120.18 (14) Å3Cube, dark green
Z = 40.25 × 0.20 × 0.18 mm
Data collection top
Nonius KappaCCD
diffractometer
3240 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.075
ω scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1414
Tmin = 0.207, Tmax = 0.301k = 2121
28095 measured reflectionsl = 2226
4177 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0575P)2 + 1.1145P]
where P = (Fo2 + 2Fc2)/3
4177 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
(C19H18NO2)2[Cu2Br6]V = 4120.18 (14) Å3
Mr = 1191.23Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 11.5329 (1) ŵ = 6.89 mm1
b = 17.0104 (4) ÅT = 298 K
c = 21.0021 (5) Å0.25 × 0.20 × 0.18 mm
Data collection top
Nonius KappaCCD
diffractometer
4177 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
3240 reflections with I > 2σ(I)
Tmin = 0.207, Tmax = 0.301Rint = 0.075
28095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
4177 reflectionsΔρmin = 0.55 e Å3
235 parameters
Special details top

Experimental. multi-scan from symmetry-related measurements SORTAV (Blessing 1995)

Geometry. All standard uncertainties (except dihedral angles between l.s. planes) are estimated using the full covariance matrix. The standard uncertainties in cell dimensions are are used in calculating the standard uncertainties of bond distances, angles and torsion angles. Angles between l.s. planes have standard uncertainties calculated from atomic positional standard uncertainties; the errors in cell dimensions are not used in this case.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.03538 (4)0.45904 (3)0.07154 (2)0.07414 (19)
Br20.14159 (4)0.30603 (3)0.00330 (2)0.05795 (15)
Br30.31781 (4)0.47771 (3)0.02118 (2)0.06266 (16)
Cu10.12512 (4)0.44281 (3)0.00337 (2)0.05014 (16)
N10.3781 (2)0.23294 (16)0.25843 (14)0.0384 (7)
H200.37540.23670.21280.046*
O10.3184 (2)0.16507 (18)0.15107 (14)0.0609 (8)
O20.4577 (2)0.30722 (17)0.15766 (13)0.0571 (7)
C10.2958 (3)0.1857 (2)0.28504 (18)0.0438 (9)
C20.2983 (4)0.1787 (3)0.3505 (2)0.0613 (11)
H20.24310.14510.37130.074*
C30.3783 (4)0.2192 (3)0.3857 (2)0.0678 (12)
H30.37680.21420.43120.081*
C40.4595 (3)0.2663 (2)0.35705 (19)0.0535 (10)
H40.51560.29410.38220.064*
C50.4602 (3)0.2733 (2)0.29171 (17)0.0388 (8)
C60.2118 (3)0.1434 (2)0.2446 (2)0.0461 (9)
C70.2227 (3)0.1327 (2)0.1792 (2)0.0500 (10)
C80.1406 (4)0.0902 (3)0.1446 (3)0.0658 (12)
H80.14960.08350.09950.079*
C90.0476 (4)0.0583 (3)0.1753 (3)0.0768 (16)
H90.00880.02940.15120.092*
C100.0341 (4)0.0672 (3)0.2395 (3)0.0751 (15)
H100.03110.04360.26060.090*
C110.1135 (3)0.1099 (3)0.2742 (2)0.0614 (12)
H110.10270.11720.31910.074*
C120.3434 (4)0.1461 (3)0.0865 (2)0.0712 (13)
H12A0.41270.17300.07340.085*
H12B0.27980.16240.06000.085*
H12C0.35440.09040.08240.085*
C130.5483 (3)0.3218 (2)0.25782 (18)0.0421 (8)
C140.5472 (3)0.3374 (2)0.19176 (19)0.0445 (9)
C150.6341 (4)0.3824 (2)0.1641 (2)0.0569 (11)
H150.63370.39190.11910.068*
C160.7214 (4)0.4135 (3)0.2013 (3)0.0671 (13)
H160.78120.44480.18210.081*
C170.7238 (3)0.4001 (3)0.2657 (3)0.0669 (13)
H170.78440.42220.29140.080*
C180.6385 (3)0.3547 (2)0.2938 (2)0.0550 (10)
H180.64210.34580.33890.066*
C190.4346 (4)0.3398 (3)0.0959 (2)0.0667 (12)
H19A0.36960.31330.07720.080*
H19B0.50160.33310.06930.080*
H19C0.41740.39480.10000.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0777 (3)0.0785 (4)0.0662 (3)0.0310 (2)0.0336 (2)0.0342 (3)
Br20.0599 (3)0.0497 (3)0.0643 (3)0.00570 (18)0.01288 (19)0.0059 (2)
Br30.0578 (3)0.0655 (3)0.0646 (3)0.00476 (19)0.0102 (2)0.0042 (2)
Cu10.0534 (3)0.0490 (3)0.0480 (3)0.0075 (2)0.0124 (2)0.0064 (2)
N10.0394 (16)0.0413 (16)0.0344 (16)0.0002 (12)0.0000 (12)0.0008 (13)
O10.0662 (18)0.0702 (19)0.0464 (18)0.0161 (15)0.0017 (13)0.0131 (16)
O20.0643 (17)0.0674 (19)0.0395 (16)0.0155 (14)0.0049 (12)0.0100 (14)
C10.0392 (19)0.044 (2)0.048 (2)0.0010 (15)0.0072 (16)0.0039 (18)
C20.062 (3)0.072 (3)0.050 (3)0.013 (2)0.011 (2)0.007 (2)
C30.079 (3)0.086 (3)0.039 (2)0.009 (3)0.003 (2)0.004 (2)
C40.060 (2)0.058 (3)0.043 (2)0.0058 (19)0.0026 (18)0.005 (2)
C50.0388 (19)0.0363 (19)0.041 (2)0.0044 (14)0.0021 (14)0.0026 (16)
C60.041 (2)0.036 (2)0.061 (3)0.0040 (14)0.0015 (17)0.0058 (18)
C70.047 (2)0.042 (2)0.061 (3)0.0006 (16)0.0013 (18)0.0037 (19)
C80.061 (3)0.055 (3)0.082 (4)0.004 (2)0.014 (2)0.014 (3)
C90.054 (3)0.052 (3)0.124 (5)0.006 (2)0.020 (3)0.012 (3)
C100.046 (3)0.054 (3)0.126 (5)0.0071 (19)0.003 (3)0.011 (3)
C110.045 (2)0.054 (3)0.085 (3)0.0010 (19)0.009 (2)0.009 (2)
C120.089 (3)0.071 (3)0.054 (3)0.001 (2)0.002 (2)0.020 (2)
C130.0374 (18)0.039 (2)0.050 (2)0.0028 (14)0.0009 (15)0.0031 (17)
C140.046 (2)0.040 (2)0.048 (2)0.0004 (16)0.0024 (16)0.0020 (17)
C150.060 (3)0.052 (3)0.059 (3)0.001 (2)0.014 (2)0.010 (2)
C160.050 (3)0.052 (3)0.099 (4)0.008 (2)0.012 (2)0.008 (3)
C170.043 (2)0.062 (3)0.096 (4)0.006 (2)0.005 (2)0.007 (3)
C180.049 (2)0.054 (2)0.062 (3)0.0034 (18)0.0075 (19)0.003 (2)
C190.081 (3)0.077 (3)0.042 (3)0.005 (2)0.006 (2)0.011 (2)
Geometric parameters (Å, º) top
Br2—Cu12.3385 (7)C2—H20.9600
Br3—Cu12.3304 (7)C19—H19A0.9600
Br1—Cu12.4451 (6)C19—H19B0.9600
C5—N11.362 (4)C19—H19C0.9600
C5—C41.377 (5)C3—H30.9600
C5—C131.490 (5)C7—C61.392 (6)
O2—C141.356 (4)C7—C81.396 (6)
O2—C191.435 (5)C11—C61.413 (5)
O1—C71.367 (5)C11—H110.9600
O1—C121.423 (5)C12—H12A0.9600
C14—C151.389 (5)C12—H12B0.9600
C14—C131.413 (5)C12—H12C0.9600
N1—C11.363 (4)C13—C181.402 (5)
N1—H200.9600C8—C91.364 (7)
C10—C91.365 (8)C8—H80.9600
C10—C111.377 (7)C18—C171.382 (6)
C10—H100.9601C18—H180.9600
C4—C31.372 (6)C16—C171.372 (7)
C4—H40.9600C16—H160.9600
C15—C161.380 (6)C17—H170.9600
C15—H150.9598C9—H90.9600
C2—C31.368 (6)C1—C61.476 (5)
C2—C11.380 (6)
Br3—Cu1—Br2100.69 (2)O1—C7—C8122.1 (4)
Br3—Cu1—Br1142.79 (3)C6—C7—C8121.3 (4)
Br2—Cu1—Br197.77 (2)C10—C11—C6121.0 (5)
N1—C5—C4117.6 (3)C10—C11—H11120.1
N1—C5—C13120.5 (3)C6—C11—H11118.9
C4—C5—C13121.8 (3)O1—C12—H12A109.4
C14—O2—C19118.1 (3)O1—C12—H12B109.4
C7—O1—C12118.9 (3)H12A—C12—H12B109.5
O2—C14—C15122.5 (4)O1—C12—H12C109.6
O2—C14—C13117.0 (3)H12A—C12—H12C109.5
C15—C14—C13120.5 (4)H12B—C12—H12C109.5
C5—N1—C1124.8 (3)C18—C13—C14117.4 (4)
C5—N1—H20120.1C18—C13—C5118.0 (3)
C1—N1—H20115.2C14—C13—C5124.5 (3)
C9—C10—C11120.3 (5)C9—C8—C7119.6 (5)
C9—C10—H10119.9C9—C8—H8120.4
C11—C10—H10119.8C7—C8—H8120.1
C3—C4—C5119.4 (4)C17—C18—C13121.4 (4)
C3—C4—H4120.5C17—C18—H18118.5
C5—C4—H4120.1C13—C18—H18120.0
C16—C15—C14120.1 (4)C17—C16—C15120.6 (4)
C16—C15—H15119.8C17—C16—H16119.5
C14—C15—H15120.1C15—C16—H16119.9
C3—C2—C1120.6 (4)C16—C17—C18120.0 (4)
C3—C2—H2120.0C16—C17—H17120.2
C1—C2—H2119.4C18—C17—H17119.9
O2—C19—H19A109.5C8—C9—C10120.9 (5)
O2—C19—H19B109.4C8—C9—H9119.1
H19A—C19—H19B109.5C10—C9—H9120.0
O2—C19—H19C109.5N1—C1—C2116.4 (3)
H19A—C19—H19C109.5N1—C1—C6120.6 (3)
H19B—C19—H19C109.5C2—C1—C6123.0 (3)
C2—C3—C4121.2 (4)C7—C6—C11117.0 (4)
C2—C3—H3118.9C7—C6—C1124.9 (3)
C4—C3—H3120.0C11—C6—C1118.1 (4)
O1—C7—C6116.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H20···O10.961.902.625 (4)131
N1—H20···O20.961.922.630 (4)129

Experimental details

Crystal data
Chemical formula(C19H18NO2)2[Cu2Br6]
Mr1191.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)11.5329 (1), 17.0104 (4), 21.0021 (5)
V3)4120.18 (14)
Z4
Radiation typeMo Kα
µ (mm1)6.89
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.207, 0.301
No. of measured, independent and
observed [I > 2σ(I)] reflections
28095, 4177, 3240
Rint0.075
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.104, 1.05
No. of reflections4177
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.55

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and maXus (Mackay et al., 1999).

Selected bond lengths (Å) top
Br2—Cu12.3385 (7)Br1—Cu12.4451 (6)
Br3—Cu12.3304 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H20···O10.961.902.625 (4)131
N1—H20···O20.961.922.630 (4)129
 

Acknowledgements

The authors acknowledge financial support from the Young Scientist and Technologist Programme (YSTP), the Center of Excellence for Innovation in Chemistry (PERCH-CIC) and the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus. Bruker–Nonius, Delft, The Netherlands, MacScience, Yokohama, Japan, and The University of Glasgow, Scotland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, A. M. S., Almeida, L. M. P. M., Cavaleiro, J. A. S., Foces-Foces, C., Llamas-Saiz, A. L., Fontenas, C., Jagerovic, N. & Elguero, J. (1997). Tetrahedron, 53, 11645–11658.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteinhauser, S., Heinz, U., Sander, J. & Hegetschweiler, K. (2004). Z. Anorg. Allg. Chem. 630, 1829–1838.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m299-m300
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds