metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m301-m302

Tris{4-[(2H-tetra­zol-5-yl)meth­yl]morpholinium} dodeca­tungstophosphate hexa­hydrate

aDepartment of Chemistry, Islamic Azad University, Quchan Branch, Quchan, Iran, bDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 917791436, Iran, and cDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
*Correspondence e-mail: b_feizyzadeh@yahoo.com, mirzaeesh@um.ac.ir

(Received 1 December 2010; accepted 29 January 2011; online 5 February 2011)

The title heteropolyoxidotungstate-based inorganic–organic hybrid material, (C6H12N5O)3[W12(PO4)O36]·6H2O, consists of one α-Keggin-type [W12(PO4)O36]3− polyoxidometalate anion (POM), three crystallographically independent 4-[(2H-tetra­zol-5-yl)meth­yl]morpholinium cations and six water mol­ecules of crystallization. The morpholine ring of the cation adopts a chair conformation. The anion shows characteristic features with respect to bond lengths and angles. An extensive network of N—H⋯O, N—H⋯N, O—H⋯O and O—H⋯N hydrogen-bonding inter­actions between the organic cations, inorganic anion and the crystal water mol­ecules lead to a three-dimensional structure. Moreover, six uncoordinated water mol­ecules increase the number of hydrogen bonds in the network and lead to the formation of (H2O) clusters.

Related literature

For other inorganic–organic hybrid materials based on polyoxidometalates with organic cations, see: Alizadeh et al. (2008a[Alizadeh, M. H., Razavi, H. & Mirzaei, M. (2008a). Mater. Res. Bull. 43, 546-555.],b[Alizadeh, M. H., Eshtiagh-Hosseini, H., Mirzaei, M., Salimi, A. R. & Razavi, H. (2008b). Struct. Chem. 19, 155-164.]); Nikpour et al. (2009[Nikpour, M., Mirzaei, M., Chen, Y.-G., Aghaei Kaju, A. & Bakavoli, M. (2009). Inorg. Chem. Commun. 12, 879-882.], 2010[Nikpour, M., Eshtiagh-Hosseini, H., Mirzaei, M., Aghaei Kaju, A., Chen, Y.-G. & Zarinabadi, S. (2010). Chin. Chem. Lett. 21, 501-505.]). For details of (H2O)n cluster analysis, see: Aghabozorg et al. (2010[Aghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. R. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289-300.]). For background to pseudopolymorphism, see: Desiraju (2003[Desiraju, R. G. (2003). J. Mol. Struct. 656, 5-15.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H12N5O)3[W12(PO4)O36]·6H2O

  • Mr = 3495.88

  • Orthorhombic, P 21 21 21

  • a = 14.616 (3) Å

  • b = 15.213 (3) Å

  • c = 26.735 (6) Å

  • V = 5944 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 23.27 mm−1

  • T = 100 K

  • 0.12 × 0.11 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.078, Tmax = 0.246

  • 59635 measured reflections

  • 12321 independent reflections

  • 9617 reflections with I > 2σ(I)

  • Rint = 0.159

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.104

  • S = 1.00

  • 12321 reflections

  • 446 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 2.80 e Å−3

  • Δρmin = −2.72 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5544 Friedel pairs

  • Flack parameter: −0.041 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4A—H4A⋯O2W 0.88 1.90 2.77 (2) 173
N5A—H5A⋯O5W 0.90 1.88 2.76 (3) 166
N4B—H4B⋯O1Wi 0.88 1.84 2.71 (2) 168
N5B—H5B⋯N2Aii 0.90 2.31 2.97 (2) 130
N4C—H4C⋯O2W 0.88 2.09 2.87 (3) 149
N5C—H5C⋯O4W 0.87 2.01 2.71 (2) 137
O1W—H1W⋯O3Ciii 0.85 2.01 2.84 (2) 164
O1W—H2W⋯O3 0.85 1.92 2.77 (2) 180
O2W—H3W⋯O11Tiv 0.85 2.43 2.87 (2) 113
O2W—H4W⋯O9Tv 0.85 2.18 2.96 (2) 153
O2W—H4W⋯O2vi 0.85 2.54 3.06 (2) 121
O3W—H5W⋯N1Aii 0.85 2.41 3.03 (3) 130
O3W—H6W⋯N2C 0.85 2.14 2.79 (3) 134
O4W—H7W⋯O7T 0.85 2.11 2.96 (2) 180
O4W—H8W⋯O6Wvii 0.85 2.00 2.82 (2) 161
O5W—H9W⋯O2W 0.85 1.99 2.82 (2) 164
O5W—H10W⋯O6W 0.85 1.93 2.78 (2) 178
O6W—H11W⋯N2B 0.85 2.11 2.85 (2) 146
O6W—H12W⋯O2Tv 0.85 2.25 2.91 (2) 134
O6W—H12W⋯O1Wvi 0.85 2.44 3.11 (2) 137
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (v) x, y+1, z; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of our previous studies of inorganic-organic hybrid materials based on polyoxidometalates (Alizadeh et al., 2008a,b; Nikpour et al., 2009), we report here on the structure of the title compound, [C6H12N5O]3[W12(PO4)O36].6H2O, (I), as a pseudopolymorph (different number of crystal water molecules; Desiraju, 2003) of [C6H12N5O]3[W12(PO4)O36].5H2O as reported by us previously (Nikpour et al., 2010).

The structure of (I) consists of one discrete anion [(PO4)W12O36]3-, three [C6H12N5O]+ cations and six water molecules of crystallisation. (Fig. 1). The anion in the title compound is of the well-known α-Keggin type consisting of four groups of W3O10 units. Each WO6 octahedron in such a unit shares edges with its neighbours. Four W3O10 units are linked together via corner-sharing WO6 octahedra to form a cage with a P atom located in the tetrahedrally surrounded centre. There are four kinds of oxygen atoms in the heteropolyanion, viz. four O atoms (O1c, O5c, O9c, O13c) that are bonded to the P atom and to three W atoms, twelve corner-sharing atoms Oc atom that bridge the different W3O13 units, twelve edge-sharing atoms Ob that bridge within the W3O13 units, and twelve terminal oxygen atoms Ot. In the organic cation, the 1H-tetrazole ring and the methylcarbon atom lie approximately in the same plane and the morpholine ring is in a chair configuration. In (I), all bond lengths and angles are normal and comparable with those observed in the pseudopolymorph with 5 crystal water molecules (Nikpour et al., 2010)). The three organic cations in (I) show only minor differences with respect to bond lengths and angles.

The molecular entities are linked together via an extensive network of N—H···O, N—H···N, O—H···O and O—H···N hydrogen bonding interactions (Fig. 2). The charge-compensating cations [C6H12N5O]+ can be considered as the space-filling structural subunits and are connected to one side of the α-[(PO4)W12O36]3- anion by the aforementioned multiple hydrogen-bonding interactions. Since [C6H12N5O]+ cations lie at one side of the anion, the inorganic anions are well-separated by [C6H12N5O]+ cations and by additional water molecules of crystallisation.

In recent years, there has been increasing interest in the experimental and theoretical study of water clusters (H2O)n because these water assemblies might provide an insight into some of the unexplained properties of bulk water, namely into the processes that occur at the ice-liquid, ice-air, and liquid-air interfaces, and into the nature of water-water and water-solute interactions (Aghabozorg et al. 2010). In the network of (I), six uncoordinated water molecules increase the number of O—H···O hydrogen bonds and thus lead to the formation of (H2O) clusters. Indeed, these units were found to act as a 'supramolecular glue' in the aggregation of [C6H12N5O]3[W12(PO4)O36].6H2O and hence support the consolidation of the three-dimensional network.

Related literature top

For other inorganic–organic hybrid materials based on polyoxidometalates with organic cations, see: Alizadeh et al. (2008a,b); Nikpour et al. (2009, 2010). For details of (H2O)n cluster analysis, see: Aghabozorg et al. (2010). For background to pseudopolymorphism, see: Desiraju (2003).

Experimental top

A solution of ((1H-tetrazole-5-yl)methyl)morpholine (0.14 g, 0.82 mmol) in 30 ml of distilled water was added with vigorous stirring to a solution of α-H3[(PO4)W12O36].21H2O (0.50 g, 0.27 mmol) in 25 ml of distilled water. A colorless precipitate was formed after five hours. The solid was filtered off, washed with DMF and dried at room temperature. The precipitate was then re-dissolved in acetonitrile and the solution was cooled to ambient temperature; colorless block-shaped crystals were obtained, filtered off, washed several times with distilled water, and dried in air (yield 30% based on W) and characterized by spectroscopy and X-ray crystallography methods. 1H NMR in D2O:d 2.65 (t, 4H, (CH2)2N), 3.80 (t,4H, (CH2)2O), 4.15 (s, 2H, CH2-(N(CH2)2)).Anal. calcd. for C18H45N15O49PW12:C, 6.19; H, 1.30; N, 6.02; P, 0.90; W, 63.20. Found: C, 6.41; H, 1.41; N, 5.88; P, 0.85; W, 63.00.

Refinement top

Only heavy atoms (P and W) were refined anisotropically. Refinement in anisotropic approximation for all atoms was unstable due to the limited scattering powder of the crystal and absorption effects which could not be completely corrected. The highest peak and the deepest hole in the final Fourier map are 0.86 Å and 0.91 Å away from atoms W8 and W3, respectively.

Positions of hydrogen atoms were calculated. All hydrogen atoms were treated in the riding model approximation with the Uiso(H) parameters equal to 1.2 Ueq(Ci), where Ueq(C) are the equivalent temperature factors of the atoms to which corresponding H atoms are bonded.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of [C6H12N5O]3[W12(PO4)O36].6H2O, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I) in a projection along a, emphasizing the three-dimensional H-bonded network (dashed lines).
Tris{4-[(2H-tetrazol-5-yl)methyl]morpholinium} dodecatungstophosphate hexahydrate top
Crystal data top
(C6H12N5O)3[W12(PO4)O36]·6H2OF(000) = 6224
Mr = 3495.88Dx = 3.906 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 846 reflections
a = 14.616 (3) Åθ = 2.4–24.2°
b = 15.213 (3) ŵ = 23.27 mm1
c = 26.735 (6) ÅT = 100 K
V = 5944 (2) Å3Plate, colourless
Z = 40.12 × 0.11 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
12321 independent reflections
Radiation source: fine-focus sealed tube9617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.159
ω scansθmax = 26.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1818
Tmin = 0.078, Tmax = 0.246k = 1919
59635 measured reflectionsl = 3333
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.015P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
12321 reflectionsΔρmax = 2.80 e Å3
446 parametersΔρmin = 2.72 e Å3
6 restraintsAbsolute structure: Flack (1983), 5544 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.041 (19)
Crystal data top
(C6H12N5O)3[W12(PO4)O36]·6H2OV = 5944 (2) Å3
Mr = 3495.88Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 14.616 (3) ŵ = 23.27 mm1
b = 15.213 (3) ÅT = 100 K
c = 26.735 (6) Å0.12 × 0.11 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
12321 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
9617 reflections with I > 2σ(I)
Tmin = 0.078, Tmax = 0.246Rint = 0.159
59635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.104Δρmax = 2.80 e Å3
S = 1.00Δρmin = 2.72 e Å3
12321 reflectionsAbsolute structure: Flack (1983), 5544 Friedel pairs
446 parametersAbsolute structure parameter: 0.041 (19)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.13685 (6)0.08083 (6)0.78414 (3)0.0071 (2)
W20.12581 (6)0.11475 (6)0.84527 (3)0.00680 (19)
W30.01178 (6)0.05564 (6)0.88273 (3)0.00663 (19)
W40.23993 (6)0.27465 (6)0.84686 (3)0.0063 (2)
W50.32328 (6)0.25584 (6)0.96592 (3)0.00742 (19)
W60.09215 (6)0.24836 (6)0.94429 (3)0.00671 (19)
W70.38668 (6)0.08881 (6)0.80600 (3)0.0069 (2)
W80.46950 (6)0.07104 (6)0.92481 (3)0.0077 (2)
W90.37534 (7)0.10728 (6)0.86647 (3)0.0078 (2)
W100.21725 (7)0.13462 (6)0.97307 (3)0.0076 (2)
W110.08109 (6)0.03551 (6)1.01029 (3)0.0071 (2)
W120.31213 (6)0.04266 (6)1.03168 (3)0.0075 (2)
P10.2295 (4)0.0669 (4)0.9062 (2)0.0048 (11)
O1B0.1641 (10)0.1949 (9)0.8099 (5)0.004 (3)*
O2B0.2655 (11)0.0633 (9)0.7824 (5)0.010 (3)*
O3B0.2554 (11)0.1191 (10)0.8382 (6)0.015 (4)*
O4B0.1447 (10)0.1393 (10)0.9133 (5)0.009 (3)*
O5B0.0152 (10)0.0215 (9)0.9489 (5)0.006 (3)*
O6B0.0257 (11)0.1702 (9)0.9025 (5)0.009 (3)*
O7B0.3371 (11)0.1990 (10)0.8259 (6)0.011 (4)*
O8B0.4150 (11)0.1809 (9)0.9367 (5)0.009 (3)*
O9B0.3045 (11)0.1634 (9)1.0121 (5)0.007 (3)*
O10B0.0901 (11)0.1564 (10)0.9929 (6)0.013 (4)*
O11B0.4062 (11)0.0320 (10)0.9827 (5)0.012 (3)*
O12B0.3195 (10)0.1331 (9)0.9280 (5)0.008 (3)*
O1C0.1542 (10)0.0355 (9)0.8695 (5)0.006 (3)*
O2C0.1237 (10)0.0454 (9)0.7853 (5)0.009 (3)*
O3C0.0181 (10)0.0886 (9)0.8151 (5)0.006 (3)*
O4C0.0105 (10)0.0617 (9)0.8616 (5)0.009 (3)*
O5C0.2234 (11)0.1677 (9)0.9125 (5)0.010 (4)*
O6C0.1364 (11)0.3072 (9)0.8851 (5)0.008 (3)*
O7C0.3141 (10)0.3122 (9)0.9011 (5)0.002 (3)*
O8C0.1998 (10)0.2924 (9)0.9769 (5)0.004 (3)*
O9C0.3222 (11)0.0400 (10)0.8850 (5)0.009 (3)*
O10C0.4081 (11)0.0347 (10)0.8101 (5)0.012 (3)*
O11C0.4790 (11)0.1034 (10)0.8545 (5)0.012 (3)*
O12C0.4726 (12)0.0506 (11)0.9018 (6)0.017 (4)*
O13C0.2162 (10)0.0225 (9)0.9574 (5)0.004 (3)*
O14C0.2926 (10)0.0796 (9)1.0242 (5)0.005 (3)*
O15C0.1137 (11)0.0849 (10)1.0077 (5)0.012 (3)*
O16C0.1849 (11)0.0503 (10)1.0520 (6)0.014 (4)*
O1T0.1113 (11)0.1009 (9)0.7229 (5)0.008 (3)*
O2T0.0886 (12)0.2120 (11)0.8230 (6)0.021 (4)*
O3T0.1262 (11)0.0627 (10)0.8820 (5)0.009 (3)*
O4T0.2503 (11)0.3612 (9)0.8069 (6)0.011 (3)*
O5T0.3826 (11)0.3329 (10)0.9988 (6)0.013 (4)*
O6T0.0161 (12)0.3183 (10)0.9630 (6)0.015 (4)*
O7T0.4435 (10)0.1134 (10)0.7519 (5)0.008 (3)*
O8T0.5799 (10)0.0855 (10)0.9435 (5)0.009 (3)*
O9T0.4278 (10)0.2028 (9)0.8515 (5)0.008 (3)*
O10T0.2142 (10)0.2426 (9)0.9929 (5)0.007 (3)*
O11T0.0015 (10)0.0336 (9)1.0544 (5)0.007 (3)*
O12T0.3661 (11)0.0419 (10)1.0867 (5)0.010 (3)*
O10.0329 (11)0.6253 (10)0.9033 (6)0.014 (4)*
O20.3910 (12)0.1840 (10)0.6455 (6)0.014 (4)*
O30.7992 (11)0.3157 (10)0.8498 (6)0.013 (4)*
N1A0.2428 (14)0.5669 (13)1.0482 (7)0.016 (5)*
N2A0.3121 (13)0.6174 (12)1.0671 (6)0.010 (4)*
N3A0.3715 (13)0.6348 (12)1.0333 (7)0.012 (4)*
N4A0.3446 (13)0.5980 (12)0.9905 (7)0.014 (4)*
H4A0.37250.60050.96140.017*
N5A0.1426 (13)0.5627 (13)0.9376 (7)0.014 (4)*
H5A0.16730.59890.91470.017*
N1B0.1622 (12)0.4400 (11)0.7087 (6)0.006 (4)*
N2B0.1362 (15)0.4894 (13)0.7487 (7)0.019 (5)*
N3B0.0718 (14)0.4460 (13)0.7736 (7)0.017 (5)*
N4B0.0632 (13)0.3681 (12)0.7506 (6)0.009 (4)*
H4B0.02630.32560.76010.010*
N5B0.2227 (13)0.2763 (12)0.6584 (7)0.010 (4)*
H5B0.22370.33130.64600.012*
N1C0.4485 (14)0.3858 (13)0.7645 (7)0.015 (5)*
N2C0.4037 (14)0.4569 (13)0.7477 (7)0.015 (4)*
N3C0.3909 (14)0.5159 (13)0.7846 (7)0.017 (5)*
N4C0.4281 (14)0.4820 (13)0.8246 (7)0.017 (5)*
H4C0.42930.50580.85460.020*
N5C0.6017 (12)0.3217 (11)0.8337 (6)0.005 (4)*
H5C0.61460.31350.80230.006*
C1A0.2647 (16)0.5557 (14)1.0014 (8)0.013 (5)*
C2A0.2074 (16)0.5054 (14)0.9619 (8)0.012 (5)*
H2A0.24890.47970.93650.014*
H2B0.17420.45660.97840.014*
C3A0.0767 (16)0.6076 (15)0.9709 (9)0.014 (5)*
H3A0.11050.63730.99810.017*
H3B0.03580.56330.98630.017*
C4A0.0184 (18)0.6757 (15)0.9428 (8)0.016 (5)*
H4D0.02470.70500.96600.019*
H4E0.05790.72100.92730.019*
C5A0.0289 (14)0.5823 (13)0.8701 (7)0.004 (4)*
H5D0.06700.62700.85310.005*
H5E0.00660.55070.84420.005*
C6A0.0924 (15)0.5159 (13)0.8974 (7)0.004 (4)*
H6A0.05560.46760.91190.004*
H6B0.13640.49010.87330.004*
C1B0.1192 (16)0.3644 (14)0.7108 (8)0.011 (5)*
C2B0.1251 (15)0.2898 (13)0.6748 (7)0.006 (4)*
H2C0.08640.30240.64520.007*
H2D0.10200.23550.69080.007*
C3B0.2338 (17)0.2013 (14)0.6242 (9)0.013 (5)*
H3C0.21750.14640.64200.016*
H3D0.19100.20800.59570.016*
C4B0.3270 (17)0.1938 (16)0.6050 (9)0.017 (6)*
H4F0.33130.14220.58250.021*
H4G0.34240.24690.58530.021*
C5B0.3838 (16)0.2549 (14)0.6768 (8)0.011 (5)*
H5F0.39810.30900.65780.013*
H5G0.42990.24910.70380.013*
C6B0.2899 (14)0.2648 (13)0.7004 (7)0.006 (5)*
H6C0.27460.21180.72020.007*
H6D0.28860.31650.72280.007*
C1C0.4646 (16)0.4033 (15)0.8114 (8)0.013 (5)*
C2C0.5061 (16)0.3423 (15)0.8466 (8)0.013 (5)*
H2E0.47010.28720.84720.016*
H2F0.50400.36820.88060.016*
C3C0.6655 (15)0.3995 (14)0.8253 (8)0.007 (5)*
H3E0.64050.43720.79830.008*
H3F0.66910.43510.85620.008*
C4C0.7572 (18)0.3700 (16)0.8114 (9)0.019 (6)*
H4H0.75360.33610.77990.022*
H4I0.79640.42200.80520.022*
C5C0.7445 (17)0.2421 (15)0.8584 (9)0.015 (5)*
H5H0.77250.20680.88550.018*
H5I0.74390.20540.82780.018*
C6C0.6498 (17)0.2625 (16)0.8723 (8)0.015 (5)*
H6E0.64950.29220.90530.019*
H6F0.61500.20690.87570.019*
O1W0.9409 (11)0.2541 (10)0.7904 (5)0.013 (4)*
H1W0.96750.20960.80300.016*
H2W0.89720.27300.80850.016*
O2W0.4266 (11)0.6202 (10)0.8979 (5)0.014 (4)*
H350.48050.61090.90870.017*
H360.44650.66900.88670.017*
O3W0.3234 (12)0.4705 (11)0.6534 (7)0.027 (4)*
H5W0.32640.48960.62360.033*
H6W0.35700.49510.67520.033*
O4W0.6176 (14)0.2121 (12)0.7543 (6)0.029 (5)*
H7W0.56760.18360.75360.035*
H8W0.66450.18470.74360.035*
O5W0.2453 (12)0.6697 (10)0.8761 (6)0.018 (4)*
H9W0.29600.64480.88240.022*
H10W0.23170.66660.84520.022*
O6W0.2054 (12)0.6585 (11)0.7745 (6)0.020 (4)*
H710.18060.62070.75540.024*
H720.17140.70330.77070.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0073 (5)0.0071 (4)0.0068 (4)0.0005 (4)0.0002 (4)0.0001 (4)
W20.0071 (5)0.0054 (4)0.0079 (4)0.0006 (4)0.0003 (4)0.0009 (4)
W30.0049 (5)0.0065 (4)0.0085 (4)0.0006 (4)0.0000 (4)0.0006 (4)
W40.0061 (5)0.0051 (4)0.0077 (5)0.0002 (4)0.0001 (4)0.0006 (4)
W50.0080 (5)0.0055 (4)0.0088 (5)0.0005 (4)0.0015 (4)0.0001 (4)
W60.0060 (5)0.0051 (4)0.0091 (4)0.0001 (4)0.0014 (4)0.0003 (4)
W70.0050 (5)0.0068 (4)0.0090 (4)0.0005 (4)0.0007 (4)0.0007 (4)
W80.0061 (5)0.0076 (4)0.0094 (4)0.0004 (4)0.0014 (4)0.0007 (4)
W90.0058 (5)0.0061 (4)0.0114 (5)0.0012 (4)0.0015 (4)0.0002 (4)
W100.0088 (5)0.0052 (4)0.0088 (5)0.0003 (4)0.0004 (4)0.0008 (4)
W110.0070 (5)0.0068 (4)0.0076 (5)0.0000 (4)0.0010 (4)0.0009 (4)
W120.0089 (5)0.0073 (4)0.0064 (5)0.0002 (4)0.0008 (4)0.0008 (4)
P10.0043 (18)0.0060 (17)0.0042 (17)0.0007 (15)0.0014 (15)0.0003 (15)
Geometric parameters (Å, º) top
W1—O1T1.706 (14)N1A—C1A1.30 (3)
W1—O2B1.900 (16)N1A—N2A1.37 (3)
W1—O1B1.909 (14)N2A—N3A1.28 (2)
W1—O3C1.926 (15)N3A—N4A1.33 (2)
W1—O2C1.930 (14)N4A—C1A1.37 (3)
W1—O1C2.396 (14)N4A—H4A0.8800
W2—O2T1.685 (17)N5A—C2A1.44 (3)
W2—O4B1.878 (14)N5A—C6A1.48 (3)
W2—O3B1.905 (17)N5A—C3A1.48 (3)
W2—O2C1.920 (14)N5A—H5A0.8997
W2—O4C1.919 (15)N1B—C1B1.31 (3)
W2—O1C2.412 (14)N1B—N2B1.36 (3)
W3—O3T1.676 (15)N2B—N3B1.33 (3)
W3—O5B1.886 (14)N3B—N4B1.34 (3)
W3—O4C1.900 (14)N4B—C1B1.34 (3)
W3—O6B1.902 (15)N4B—H4B0.8800
W3—O3C1.925 (13)N5B—C3B1.47 (3)
W3—O1C2.471 (15)N5B—C6B1.50 (3)
W4—O4T1.703 (15)N5B—C2B1.51 (3)
W4—O6C1.893 (15)N5B—H5B0.9000
W4—O7C1.899 (14)N1C—C1C1.30 (3)
W4—O7B1.912 (16)N1C—N2C1.34 (3)
W4—O1B1.917 (14)N2C—N3C1.35 (3)
W4—O5C2.405 (14)N3C—N4C1.31 (3)
W5—O5T1.702 (16)N4C—C1C1.36 (3)
W5—O9B1.892 (14)N4C—H4C0.8800
W5—O8C1.911 (15)N5C—C2C1.47 (3)
W5—O8B1.925 (15)N5C—C3C1.52 (3)
W5—O7C1.938 (13)N5C—C6C1.54 (3)
W5—O5C2.444 (15)N5C—H5C0.8698
W6—O6T1.619 (16)C1A—C2A1.55 (3)
W6—O6B1.898 (15)C2A—H2A0.9900
W6—O10B1.910 (15)C2A—H2B0.9900
W6—O8C1.919 (14)C3A—C4A1.54 (3)
W6—O6C1.928 (14)C3A—H3A0.9900
W6—O5C2.430 (15)C3A—H3B0.9900
W7—O7T1.710 (14)C4A—H4D0.9900
W7—O11C1.884 (15)C4A—H4E0.9900
W7—O7B1.902 (15)C5A—C6A1.55 (3)
W7—O10C1.908 (15)C5A—H5D0.9900
W7—O2B1.920 (15)C5A—H5E0.9900
W7—O9C2.428 (14)C6A—H6A0.9900
W8—O8T1.704 (15)C6A—H6B0.9900
W8—O8B1.879 (15)C1B—C2B1.49 (3)
W8—O11B1.900 (15)C2B—H2C0.9900
W8—O12C1.950 (16)C2B—H2D0.9900
W8—O11C1.949 (14)C3B—C4B1.46 (3)
W8—O9C2.448 (15)C3B—H3C0.9900
W9—O9T1.691 (14)C3B—H3D0.9900
W9—O12B1.878 (15)C4B—H4F0.9900
W9—O12C1.913 (17)C4B—H4G0.9900
W9—O3B1.918 (17)C5B—C6B1.52 (3)
W9—O10C1.928 (15)C5B—H5F0.9900
W9—O9C2.423 (15)C5B—H5G0.9900
W10—O10T1.727 (14)C6B—H6C0.9900
W10—O12B1.920 (15)C6B—H6D0.9900
W10—O4B1.918 (14)C1C—C2C1.46 (3)
W10—O15C1.929 (15)C2C—H2E0.9900
W10—O14C1.944 (14)C2C—H2F0.9900
W10—O13C2.427 (13)C3C—C4C1.46 (3)
W11—O11T1.687 (14)C3C—H3E0.9900
W11—O15C1.895 (15)C3C—H3F0.9900
W11—O16C1.897 (16)C4C—H4H0.9900
W11—O10B1.901 (15)C4C—H4I0.9900
W11—O5B1.914 (14)C5C—C6C1.47 (3)
W11—O13C2.437 (14)C5C—H5H0.9900
W12—O12T1.668 (14)C5C—H5I0.9900
W12—O14C1.892 (13)C6C—H6E0.9900
W12—O11B1.904 (15)C6C—H6F0.9900
W12—O9B1.913 (14)O1W—H1W0.8498
W12—O16C1.941 (16)O1W—H2W0.8501
W12—O13C2.451 (14)O2W—H350.8500
P1—O9C1.525 (16)O2W—H360.8500
P1—O13C1.538 (14)O3W—H5W0.8498
P1—O5C1.545 (15)O3W—H6W0.8501
P1—O1C1.550 (15)O4W—H7W0.8500
O1—C5A1.43 (2)O4W—H8W0.8500
O1—C4A1.51 (3)O5W—H9W0.8499
O2—C5B1.37 (2)O5W—H10W0.8500
O2—C4B1.44 (3)O6W—H710.8500
O3—C5C1.40 (3)O6W—H720.8499
O3—C4C1.45 (3)
O1T—W1—O2B102.6 (7)W2—O4B—W10151.7 (9)
O1T—W1—O1B103.2 (6)W3—O5B—W11151.5 (8)
O2B—W1—O1B86.0 (6)W6—O6B—W3152.2 (9)
O1T—W1—O3C101.8 (7)W7—O7B—W4153.5 (9)
O2B—W1—O3C155.6 (6)W8—O8B—W5153.0 (9)
O1B—W1—O3C88.7 (6)W5—O9B—W12152.2 (8)
O1T—W1—O2C99.9 (6)W11—O10B—W6151.1 (9)
O2B—W1—O2C87.7 (6)W8—O11B—W12152.3 (9)
O1B—W1—O2C156.8 (6)W9—O12B—W10152.9 (9)
O3C—W1—O2C87.9 (6)P1—O1C—W1126.1 (8)
O1T—W1—O1C171.0 (6)P1—O1C—W2125.7 (8)
O2B—W1—O1C83.0 (6)W1—O1C—W290.0 (5)
O1B—W1—O1C84.0 (5)P1—O1C—W3124.6 (8)
O3C—W1—O1C72.7 (5)W1—O1C—W389.8 (5)
O2C—W1—O1C73.1 (5)W2—O1C—W389.3 (5)
O2T—W2—O4B102.4 (7)W2—O2C—W1124.0 (7)
O2T—W2—O3B104.8 (8)W1—O3C—W3126.3 (7)
O4B—W2—O3B86.7 (7)W3—O4C—W2127.8 (8)
O2T—W2—O2C100.5 (7)P1—O5C—W4125.9 (8)
O4B—W2—O2C157.1 (6)P1—O5C—W6125.8 (9)
O3B—W2—O2C87.3 (7)W4—O5C—W689.6 (5)
O2T—W2—O4C99.5 (8)P1—O5C—W5125.0 (9)
O4B—W2—O4C89.6 (6)W4—O5C—W589.7 (5)
O3B—W2—O4C155.6 (6)W6—O5C—W589.4 (5)
O2C—W2—O4C86.8 (6)W4—O6C—W6126.2 (8)
O2T—W2—O1C169.3 (7)W4—O7C—W5126.1 (7)
O4B—W2—O1C84.5 (6)W5—O8C—W6127.1 (7)
O3B—W2—O1C83.6 (6)P1—O9C—W9127.5 (9)
O2C—W2—O1C72.9 (5)P1—O9C—W7125.9 (8)
O4C—W2—O1C72.0 (6)W9—O9C—W788.9 (5)
O3T—W3—O5B103.7 (7)P1—O9C—W8124.6 (8)
O3T—W3—O4C103.1 (7)W9—O9C—W889.1 (5)
O5B—W3—O4C89.1 (6)W7—O9C—W888.7 (5)
O3T—W3—O6B103.4 (7)W7—O10C—W9124.6 (8)
O5B—W3—O6B86.1 (6)W7—O11C—W8125.6 (8)
O4C—W3—O6B153.4 (7)W9—O12C—W8124.5 (9)
O3T—W3—O3C101.5 (7)P1—O13C—W10125.8 (8)
O5B—W3—O3C154.8 (6)P1—O13C—W11125.7 (8)
O4C—W3—O3C85.8 (6)W10—O13C—W1189.1 (5)
O6B—W3—O3C87.5 (6)P1—O13C—W12126.4 (8)
O3T—W3—O1C170.4 (6)W10—O13C—W1288.8 (4)
O5B—W3—O1C84.0 (6)W11—O13C—W1289.0 (4)
O4C—W3—O1C70.9 (6)W12—O14C—W10125.7 (7)
O6B—W3—O1C82.6 (6)W11—O15C—W10126.4 (8)
O3C—W3—O1C71.0 (5)W11—O16C—W12126.5 (8)
O4T—W4—O6C102.0 (7)C5A—O1—C4A110.7 (17)
O4T—W4—O7C101.3 (7)C5B—O2—C4B109.3 (17)
O6C—W4—O7C88.0 (6)C5C—O3—C4C109.4 (18)
O4T—W4—O7B102.4 (7)C1A—N1A—N2A104.3 (19)
O6C—W4—O7B155.5 (6)N3A—N2A—N1A110.9 (17)
O7C—W4—O7B88.9 (6)N2A—N3A—N4A108.6 (18)
O4T—W4—O1B102.5 (7)N3A—N4A—C1A105.5 (18)
O6C—W4—O1B89.0 (6)N3A—N4A—H4A127.3
O7C—W4—O1B156.1 (6)C1A—N4A—H4A127.3
O7B—W4—O1B84.1 (6)C2A—N5A—C6A111.2 (17)
O4T—W4—O5C171.9 (6)C2A—N5A—C3A115.9 (18)
O6C—W4—O5C72.7 (6)C6A—N5A—C3A109.6 (18)
O7C—W4—O5C72.8 (5)C2A—N5A—H5A114.4
O7B—W4—O5C83.2 (6)C6A—N5A—H5A89.9
O1B—W4—O5C83.7 (5)C3A—N5A—H5A112.8
O5T—W5—O9B104.5 (7)C1B—N1B—N2B108.5 (18)
O5T—W5—O8C101.7 (7)N3B—N2B—N1B108.5 (18)
O9B—W5—O8C88.8 (6)N2B—N3B—N4B106.0 (18)
O5T—W5—O8B105.2 (7)N3B—N4B—C1B110.1 (19)
O9B—W5—O8B85.7 (6)N3B—N4B—H4B124.9
O8C—W5—O8B153.1 (6)C1B—N4B—H4B124.9
O5T—W5—O7C101.1 (6)C3B—N5B—C6B107.6 (17)
O9B—W5—O7C154.5 (6)C3B—N5B—C2B113.0 (17)
O8C—W5—O7C86.7 (6)C6B—N5B—C2B114.7 (16)
O8B—W5—O7C87.0 (6)C3B—N5B—H5B119.4
O5T—W5—O5C169.7 (6)C6B—N5B—H5B111.8
O9B—W5—O5C83.5 (6)C2B—N5B—H5B89.8
O8C—W5—O5C71.6 (6)C1C—N1C—N2C104.1 (19)
O8B—W5—O5C81.6 (6)N1C—N2C—N3C111.2 (18)
O7C—W5—O5C71.3 (5)N4C—N3C—N2C106.2 (19)
O6T—W6—O6B104.1 (8)N3C—N4C—C1C107.4 (19)
O6T—W6—O10B105.1 (7)N3C—N4C—H4C126.3
O6B—W6—O10B86.2 (6)C1C—N4C—H4C126.3
O6T—W6—O8C101.1 (7)C2C—N5C—C3C116.8 (16)
O6B—W6—O8C154.8 (6)C2C—N5C—C6C113.6 (17)
O10B—W6—O8C87.7 (6)C3C—N5C—C6C105.9 (16)
O6T—W6—O6C100.3 (7)C2C—N5C—H5C117.6
O6B—W6—O6C88.8 (6)C3C—N5C—H5C80.4
O10B—W6—O6C154.6 (7)C6C—N5C—H5C117.6
O8C—W6—O6C86.3 (6)N1A—C1A—N4A111 (2)
O6T—W6—O5C169.2 (7)N1A—C1A—C2A126 (2)
O6B—W6—O5C83.2 (6)N4A—C1A—C2A123 (2)
O10B—W6—O5C83.1 (6)N5A—C2A—C1A111.3 (18)
O8C—W6—O5C71.8 (5)N5A—C2A—H2A109.4
O6C—W6—O5C71.5 (6)C1A—C2A—H2A109.4
O7T—W7—O11C102.0 (7)N5A—C2A—H2B109.4
O7T—W7—O7B103.2 (7)C1A—C2A—H2B109.4
O11C—W7—O7B88.6 (7)H2A—C2A—H2B108.0
O7T—W7—O10C100.6 (7)N5A—C3A—C4A112.2 (18)
O11C—W7—O10C87.6 (6)N5A—C3A—H3A109.2
O7B—W7—O10C156.1 (7)C4A—C3A—H3A109.2
O7T—W7—O2B102.4 (7)N5A—C3A—H3B109.2
O11C—W7—O2B155.6 (6)C4A—C3A—H3B109.2
O7B—W7—O2B85.4 (6)H3A—C3A—H3B107.9
O10C—W7—O2B88.4 (6)O1—C4A—C3A106.0 (18)
O7T—W7—O9C172.4 (6)O1—C4A—H4D110.5
O11C—W7—O9C73.5 (6)C3A—C4A—H4D110.5
O7B—W7—O9C83.0 (6)O1—C4A—H4E110.5
O10C—W7—O9C73.3 (6)C3A—C4A—H4E110.5
O2B—W7—O9C82.3 (6)H4D—C4A—H4E108.7
O8T—W8—O8B103.7 (7)O1—C5A—C6A112.7 (16)
O8T—W8—O11B105.2 (7)O1—C5A—H5D109.1
O8B—W8—O11B86.2 (6)C6A—C5A—H5D109.1
O8T—W8—O12C101.1 (7)O1—C5A—H5E109.1
O8B—W8—O12C155.2 (7)C6A—C5A—H5E109.1
O11B—W8—O12C88.4 (6)H5D—C5A—H5E107.8
O8T—W8—O11C100.6 (7)N5A—C6A—C5A108.9 (16)
O8B—W8—O11C88.2 (6)N5A—C6A—H6A109.9
O11B—W8—O11C154.2 (7)C5A—C6A—H6A109.9
O12C—W8—O11C86.2 (6)N5A—C6A—H6B109.9
O8T—W8—O9C170.3 (6)C5A—C6A—H6B109.9
O8B—W8—O9C82.7 (6)H6A—C6A—H6B108.3
O11B—W8—O9C82.3 (6)N1B—C1B—N4B106.8 (19)
O12C—W8—O9C72.6 (6)N1B—C1B—C2B128 (2)
O11C—W8—O9C72.0 (6)N4B—C1B—C2B125 (2)
O9T—W9—O12B102.9 (7)C1B—C2B—N5B110.3 (18)
O9T—W9—O12C99.6 (7)C1B—C2B—H2C109.6
O12B—W9—O12C89.1 (6)N5B—C2B—H2C109.6
O9T—W9—O3B103.9 (7)C1B—C2B—H2D109.6
O12B—W9—O3B85.9 (7)N5B—C2B—H2D109.6
O12C—W9—O3B156.4 (7)H2C—C2B—H2D108.1
O9T—W9—O10C101.2 (7)C4B—C3B—N5B112 (2)
O12B—W9—O10C155.8 (6)C4B—C3B—H3C109.1
O12C—W9—O10C86.7 (7)N5B—C3B—H3C109.1
O3B—W9—O10C88.5 (7)C4B—C3B—H3D109.1
O9T—W9—O9C171.3 (6)N5B—C3B—H3D109.1
O12B—W9—O9C82.9 (6)H3C—C3B—H3D107.8
O12C—W9—O9C73.8 (6)O2—C4B—C3B110.5 (19)
O3B—W9—O9C82.8 (6)O2—C4B—H4F109.5
O10C—W9—O9C73.1 (6)C3B—C4B—H4F109.5
O10T—W10—O12B102.9 (6)O2—C4B—H4G109.5
O10T—W10—O4B101.9 (6)C3B—C4B—H4G109.5
O12B—W10—O4B84.7 (6)H4F—C4B—H4G108.1
O10T—W10—O15C101.9 (7)O2—C5B—C6B113.7 (19)
O12B—W10—O15C155.2 (6)O2—C5B—H5F108.8
O4B—W10—O15C88.9 (6)C6B—C5B—H5F108.8
O10T—W10—O14C102.1 (6)O2—C5B—H5G108.8
O12B—W10—O14C89.7 (6)C6B—C5B—H5G108.8
O4B—W10—O14C156.1 (6)H5F—C5B—H5G107.7
O15C—W10—O14C86.5 (6)N5B—C6B—C5B107.0 (16)
O10T—W10—O13C171.9 (6)N5B—C6B—H6C110.3
O12B—W10—O13C83.4 (6)C5B—C6B—H6C110.3
O4B—W10—O13C83.6 (6)N5B—C6B—H6D110.3
O15C—W10—O13C72.1 (6)C5B—C6B—H6D110.3
O14C—W10—O13C72.6 (5)H6C—C6B—H6D108.6
O11T—W11—O15C100.9 (7)N1C—C1C—N4C111 (2)
O11T—W11—O16C99.4 (7)N1C—C1C—C2C125 (2)
O15C—W11—O16C86.3 (7)N4C—C1C—C2C124 (2)
O11T—W11—O10B103.7 (7)C1C—C2C—N5C112.3 (19)
O15C—W11—O10B155.4 (7)C1C—C2C—H2E109.1
O16C—W11—O10B88.5 (7)N5C—C2C—H2E109.1
O11T—W11—O5B103.7 (7)C1C—C2C—H2F109.1
O15C—W11—O5B89.3 (6)N5C—C2C—H2F109.1
O16C—W11—O5B156.9 (6)H2E—C2C—H2F107.9
O10B—W11—O5B86.2 (6)C4C—C3C—N5C111.2 (18)
O11T—W11—O13C169.7 (6)C4C—C3C—H3E109.4
O15C—W11—O13C72.4 (6)N5C—C3C—H3E109.4
O16C—W11—O13C72.7 (6)C4C—C3C—H3F109.4
O10B—W11—O13C83.1 (6)N5C—C3C—H3F109.4
O5B—W11—O13C84.3 (5)H3E—C3C—H3F108.0
O12T—W12—O14C99.1 (7)O3—C4C—C3C112.5 (19)
O12T—W12—O11B105.3 (7)O3—C4C—H4H109.1
O14C—W12—O11B87.2 (6)C3C—C4C—H4H109.1
O12T—W12—O9B106.0 (7)O3—C4C—H4I109.1
O14C—W12—O9B154.9 (6)C3C—C4C—H4I109.1
O11B—W12—O9B86.3 (6)H4H—C4C—H4I107.8
O12T—W12—O16C101.9 (7)O3—C5C—C6C114 (2)
O14C—W12—O16C86.8 (6)O3—C5C—H5H108.7
O11B—W12—O16C152.8 (6)C6C—C5C—H5H108.7
O9B—W12—O16C87.9 (7)O3—C5C—H5I108.7
O12T—W12—O13C169.7 (6)C6C—C5C—H5I108.7
O14C—W12—O13C72.8 (5)H5H—C5C—H5I107.6
O11B—W12—O13C81.1 (6)C5C—C6C—N5C112.7 (19)
O9B—W12—O13C82.2 (5)C5C—C6C—H6E109.1
O16C—W12—O13C71.7 (6)N5C—C6C—H6E109.1
O9C—P1—O13C109.0 (9)C5C—C6C—H6F109.1
O9C—P1—O5C111.0 (9)N5C—C6C—H6F109.1
O13C—P1—O5C109.3 (8)H6E—C6C—H6F107.8
O9C—P1—O1C108.2 (8)H1W—O1W—H2W112.9
O13C—P1—O1C109.8 (8)H35—O2W—H3687.1
O5C—P1—O1C109.5 (9)H5W—O3W—H6W117.6
W1—O1B—W4151.8 (8)H7W—O4W—H8W115.8
W1—O2B—W7151.2 (8)H9W—O5W—H10W111.9
W2—O3B—W9150.1 (9)H71—O6W—H72102.9
C1A—N1A—N2A—N3A0 (2)N1B—C1B—C2B—N5B41 (3)
N1A—N2A—N3A—N4A1 (2)N4B—C1B—C2B—N5B143 (2)
N2A—N3A—N4A—C1A1 (2)C3B—N5B—C2B—C1B177.8 (18)
C1B—N1B—N2B—N3B4 (3)C6B—N5B—C2B—C1B54 (2)
N1B—N2B—N3B—N4B4 (2)C6B—N5B—C3B—C4B58 (2)
N2B—N3B—N4B—C1B2 (2)C2B—N5B—C3B—C4B174.7 (18)
C1C—N1C—N2C—N3C2 (3)C5B—O2—C4B—C3B58 (2)
N1C—N2C—N3C—N4C0 (3)N5B—C3B—C4B—O259 (3)
N2C—N3C—N4C—C1C1 (3)C4B—O2—C5B—C6B61 (2)
N2A—N1A—C1A—N4A1 (2)C3B—N5B—C6B—C5B55 (2)
N2A—N1A—C1A—C2A178 (2)C2B—N5B—C6B—C5B178.3 (17)
N3A—N4A—C1A—N1A1 (3)O2—C5B—C6B—N5B60 (2)
N3A—N4A—C1A—C2A178.3 (19)N2C—N1C—C1C—N4C2 (3)
C6A—N5A—C2A—C1A176.0 (18)N2C—N1C—C1C—C2C175 (2)
C3A—N5A—C2A—C1A58 (3)N3C—N4C—C1C—N1C2 (3)
N1A—C1A—C2A—N5A88 (3)N3C—N4C—C1C—C2C175 (2)
N4A—C1A—C2A—N5A89 (3)N1C—C1C—C2C—N5C66 (3)
C2A—N5A—C3A—C4A172.9 (19)N4C—C1C—C2C—N5C122 (2)
C6A—N5A—C3A—C4A60 (2)C3C—N5C—C2C—C1C52 (2)
C5A—O1—C4A—C3A60 (2)C6C—N5C—C2C—C1C176.0 (18)
N5A—C3A—C4A—O161 (2)C2C—N5C—C3C—C4C178.4 (19)
C4A—O1—C5A—C6A60 (2)C6C—N5C—C3C—C4C54 (2)
C2A—N5A—C6A—C5A176.0 (17)C5C—O3—C4C—C3C59 (2)
C3A—N5A—C6A—C5A55 (2)N5C—C3C—C4C—O360 (2)
O1—C5A—C6A—N5A56 (2)C4C—O3—C5C—C6C56 (3)
N2B—N1B—C1B—N4B3 (2)O3—C5C—C6C—N5C55 (3)
N2B—N1B—C1B—C2B179 (2)C2C—N5C—C6C—C5C179.4 (19)
N3B—N4B—C1B—N1B0 (3)C3C—N5C—C6C—C5C51 (2)
N3B—N4B—C1B—C2B177 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H4A···O2W0.881.902.77 (2)173
N5A—H5A···O5W0.901.882.76 (3)166
N4B—H4B···O1Wi0.881.842.71 (2)168
N5B—H5B···N2Aii0.902.312.97 (2)130
N4C—H4C···O2W0.882.092.87 (3)149
N5C—H5C···O4W0.872.012.71 (2)137
O1W—H1W···O3Ciii0.852.012.84 (2)164
O1W—H2W···O30.851.922.77 (2)180
O2W—H3W···O11Tiv0.852.432.87 (2)113
O2W—H4W···O9Tv0.852.182.96 (2)153
O2W—H4W···O2vi0.852.543.06 (2)121
O3W—H5W···N1Aii0.852.413.03 (3)130
O3W—H6W···N2C0.852.142.79 (3)134
O4W—H7W···O7T0.852.112.96 (2)180
O4W—H8W···O6Wvii0.852.002.82 (2)161
O5W—H9W···O2W0.851.992.82 (2)164
O5W—H10W···O6W0.851.932.78 (2)178
O6W—H11W···N2B0.852.112.85 (2)146
O6W—H12W···O2Tv0.852.252.91 (2)134
O6W—H12W···O1Wvi0.852.443.11 (2)137
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1, z1/2; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+2; (v) x, y+1, z; (vi) x+1, y+1/2, z+3/2; (vii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C6H12N5O)3[W12(PO4)O36]·6H2O
Mr3495.88
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)14.616 (3), 15.213 (3), 26.735 (6)
V3)5944 (2)
Z4
Radiation typeMo Kα
µ (mm1)23.27
Crystal size (mm)0.12 × 0.11 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.078, 0.246
No. of measured, independent and
observed [I > 2σ(I)] reflections
59635, 12321, 9617
Rint0.159
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.104, 1.00
No. of reflections12321
No. of parameters446
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.80, 2.72
Absolute structureFlack (1983), 5544 Friedel pairs
Absolute structure parameter0.041 (19)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H4A···O2W0.881.902.77 (2)173
N5A—H5A···O5W0.901.882.76 (3)166
N4B—H4B···O1Wi0.881.842.71 (2)168
N5B—H5B···N2Aii0.902.312.97 (2)130
N4C—H4C···O2W0.882.092.87 (3)149
N5C—H5C···O4W0.872.012.71 (2)137
O1W—H1W···O3Ciii0.852.012.84 (2)164
O1W—H2W···O30.851.922.77 (2)180
O2W—H3W···O11Tiv0.852.432.87 (2)113
O2W—H4W···O9Tv0.852.182.96 (2)153
O2W—H4W···O2vi0.852.543.06 (2)121
O3W—H5W···N1Aii0.852.413.03 (3)130
O3W—H6W···N2C0.852.142.79 (3)134
O4W—H7W···O7T0.852.112.96 (2)180
O4W—H8W···O6Wvii0.852.002.82 (2)161
O5W—H9W···O2W0.851.992.82 (2)164
O5W—H10W···O6W0.851.932.78 (2)178
O6W—H11W···N2B0.852.112.85 (2)146
O6W—H12W···O2Tv0.852.252.91 (2)134
O6W—H12W···O1Wvi0.852.443.11 (2)137
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1, z1/2; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+2; (v) x, y+1, z; (vi) x+1, y+1/2, z+3/2; (vii) x+1, y1/2, z+3/2.
 

Acknowledgements

The Islamic Azad University, Quchan Branch, Quchan, Iran is gratefully acknowledged for financial support of this research paper.

References

First citationAghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. R. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289–300.  CrossRef CAS Google Scholar
First citationAlizadeh, M. H., Eshtiagh-Hosseini, H., Mirzaei, M., Salimi, A. R. & Razavi, H. (2008b). Struct. Chem. 19, 155–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationAlizadeh, M. H., Razavi, H. & Mirzaei, M. (2008a). Mater. Res. Bull. 43, 546–555.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, R. G. (2003). J. Mol. Struct. 656, 5–15.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNikpour, M., Eshtiagh-Hosseini, H., Mirzaei, M., Aghaei Kaju, A., Chen, Y.-G. & Zarinabadi, S. (2010). Chin. Chem. Lett. 21, 501–505.  Web of Science CSD CrossRef CAS Google Scholar
First citationNikpour, M., Mirzaei, M., Chen, Y.-G., Aghaei Kaju, A. & Bakavoli, M. (2009). Inorg. Chem. Commun. 12, 879–882.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m301-m302
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds