metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m307-m308

Poly[[tetra­kis­(μ-2-anilinobenzoato-κ2O:O′)tetra-μ1,1,1-azido-tetra-μ1,1-azido-octa­methano­lhexa­nickel(II)] methanol hexa­solvate]

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: lxf_52@yeah.net

(Received 12 December 2010; accepted 26 January 2011; online 5 February 2011)

The crystal structure of the title compound, [Ni6(C13H10NO2)4(N3)8(CH3OH)8]·6CH3OH, consists of a centrosymmetric hexa­nuclear [NiII6(C13H10NO2)4(N3)8(CH3OH)8] mol­ecule and six methanol solvent mol­ecules. In the hexa­nuclear unit, the six octa­hedrally coordinated NiII atoms are linked by four μ1,1,1-azide and four μ1,1-azide bridges, forming a face-sharing Ni6N8 tetra­cubane-like unit with four missing corners. The NiII atoms are further bridged by four μ1,2-carboxalate groups. Neighbouring hexa­nuclear units are connected via N—H⋯O hydrogen-bonding inter­actions into a three-dimensional structure. Although the H atoms of the methanol OH groups could not be located, O⋯N/O contacts between 2.65 and 2.86 Å suggest that these mol­ecules participate in hydrogen bonding.

Related literature

For background to polynuclear complexes, see: Liu et al. (2008[Liu, T., Zhang, Y.-J., Wang, Z.-M. & Gao, S. (2008). J. Am. Chem. Soc. 130, 10500-10511.]). For transition metals bridged by mixed formate and azide anions, see: Liu et al. (2006[Liu, T., Zhang, Y.-J., Wang, Z.-M. & Gao, S. (2006). Inorg. Chem. 45, 2782-2784.]). For related nickel(II) complexes, see: Wang et al. (2008[Wang, X.-T., Wang, B.-W., Wang, Z.-M., Zhang, W. & Gao, S. (2008). Inorg. Chim. Acta, 361, 3895-3902.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni6(C13H10NO2)4(N3)8(CH4O)8]·6CH4O

  • Mr = 1985.97

  • Monoclinic, P 21 /c

  • a = 11.8230 (1) Å

  • b = 14.6051 (2) Å

  • c = 26.3997 (4) Å

  • β = 105.368 (1)°

  • V = 4395.6 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 293 K

  • 0.6 × 0.5 × 0.4 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.461, Tmax = 0.597

  • 51748 measured reflections

  • 7789 independent reflections

  • 4991 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.02

  • 7789 reflections

  • 557 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N9 2.052 (4)
Ni1—O4 2.054 (3)
Ni1—N12i 2.071 (4)
Ni1—N6 2.120 (3)
Ni1—N6i 2.133 (3)
Ni1—N3 2.165 (3)
Ni2—O1 2.014 (3)
Ni2—O6 2.054 (3)
Ni2—O5 2.094 (3)
Ni2—N12 2.102 (4)
Ni2—N6 2.103 (3)
Ni2—N3 2.104 (3)
Ni3—O3 2.000 (3)
Ni3—O2 2.002 (3)
Ni3—O8 2.068 (3)
Ni3—O7 2.074 (3)
Ni3—N9 2.075 (4)
Ni3—N3 2.133 (4)
Symmetry code: (i) -x, -y-1, -z-1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.05 2.666 (5) 128
N2—H2⋯O3 0.86 2.08 2.677 (5) 126

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The design and synthesis of new polynuclear metal complexes for single molecule magnets have attracted great interest in coordination chemsitry, because single molecule magnets not only show fascinating physical properties, but also have potential application in information storage and quantum computing at the molecular level (Liu et al., 2008). To date, although it is difficult to predict which kind of topology and structure will lead to high-nuclearity compounds in advance, many synthetic approaches have been employed to obtain well-isolated polynuclear complexes, e.g. by using new blocking ligands with short bridges. Many single molecule magnets are based on MnIII, FeIII, and NiII. In most of these compounds, magnetic exchange interactions are mainly propagated by bridging OH-, OR-, O2-, or RCO2- groups, which often transmit antiferromagnetic interactions. An attractive strategy to facilitate the formation of ferromagnetic coupled clusters is to utilize azide and carboxalate-containing ligands simultaneously (Liu et al., 2006). Herein, we report the synthesis and structure of the hexanuclear Ni(II) complex, [Ni6(C13H10NO2)4(N3)8(CH3OH)8].6CH3OH.

The structure of the title compound consists of neutral hexanuclear [NiII6(C13H10NO2)4(N3)8(CH3OH)8] molecules and six methanol solvate molecules situated between the hexanuclear units. The complete molecule has inversion symmetry. In the neutral hexanuclear unit, six octahedrally coordinated NiII atoms are linked by four µ1,1,1-azido and four µ1,1-azido bridges, forming face-sharing tetracubane units with four missing corners based on the Ni6N8 core. The NiII atoms are further bridged by four µ1,2-carboxalate ligands (Fig. 1). The Ni—O distances range between 2.000 (3)–2.094 (3) Å, and the Ni—N distances between 2.052 (4)–2.165 (3) Å. These bond lengths indicate that the NiII ions are in the divalent state, and are in agreement with other NiII complexes (Wang et al., 2008). The hexanuclear units are connected via N—H···O hydrogen bonding into a three-dimensional structure (Fig. 2). The N—H···O hydrogen bonding (Table 2) is accomplished through the N atoms of 2-phenylamino-benzoate and O atoms of carboxylate groups, with the N···O distances being 2.667···2.676 Å. Although the H atoms of the methanol OH groups could not be located, short O···N/O contacts suggest that these molecules participate in hydrogen bonding between O atoms of methanol as donors and acceptors, and between O atoms of methanol and N atoms of azido bridges, with O···O distances in the range of 2.65···2.72 Å, and O···N distances in the range of 2.79···2.86 Å.

Related literature top

For background to polynuclear complexes, see: Liu et al. (2008). For transition metals bridged by mixed formate and azide anions, see: Liu et al. (2006). For related nickel(II) complexes, see: Wang et al. (2008).

Experimental top

Under stirring, 2.0 mmol 2-phenylamino-benzoic acid, 4.0 mmol NaN3 were added, one after another, into a 20 ml methanol solution containing 1.0 mol Ni(ClO4)2.6H2O. The resulting solution was kept stirred for another hour, and then filtered off. The filtered solution was allowed to stand undisturbed in a sealed vessel. Crystallization took one week and gave block-shaped green crystals in a yield of 40% based on Ni(ClO4)2.6H2O. The product was washed with methanol and dried in air.

Refinement top

Hydrogen atoms bonded to C and N atoms were added geometrically and were refined using a riding model, with C—H = 0.96 Å (CH3), C—H = 0.93 Å (C—H) and N—H = 0.86 Å. The hydrogen atoms of the OH group of the methanol molecules could not be derived from Fourier maps and were eventually not included in the refinement.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The hexanuclear unit of the title structure. The non-C atoms are labelled; all atoms are shown with displacement ellipsoids at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the crystal packing along the b axis. Hydrogen bonding is indicated with dashed lines.
Poly[[tetrakis(µ-2-anilinobenzoato-κ2O:O')tetra-µ1,1,1- azido-tetra-µ1,1-azido-octamethanolhexanickel(II)] methanol hexasolvate] top
Crystal data top
[Ni6(C13H10NO2)4(N3)8(CH4O)8]·6CH4OF(000) = 2064
Mr = 1985.97Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 62970 reflections
a = 11.8230 (1) Åθ = 3.4–25.0°
b = 14.6051 (2) ŵ = 1.34 mm1
c = 26.3997 (4) ÅT = 293 K
β = 105.368 (1)°Block, green
V = 4395.6 (1) Å30.6 × 0.5 × 0.4 mm
Z = 2
Data collection top
Rigaku Saturn CCD
diffractometer
7789 independent reflections
Radiation source: fine-focus sealed tube4991 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
Detector resolution: 0.76 pixels mm-1θmax = 25.1°, θmin = 3.5°
ω and ϕ scansh = 1413
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1717
Tmin = 0.461, Tmax = 0.597l = 3131
51748 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0602P)2 + 3.7541P]
where P = (Fo2 + 2Fc2)/3
7789 reflections(Δ/σ)max = 0.001
557 parametersΔρmax = 0.84 e Å3
1 restraintΔρmin = 0.63 e Å3
Crystal data top
[Ni6(C13H10NO2)4(N3)8(CH4O)8]·6CH4OV = 4395.6 (1) Å3
Mr = 1985.97Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.8230 (1) ŵ = 1.34 mm1
b = 14.6051 (2) ÅT = 293 K
c = 26.3997 (4) Å0.6 × 0.5 × 0.4 mm
β = 105.368 (1)°
Data collection top
Rigaku Saturn CCD
diffractometer
7789 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4991 reflections with I > 2σ(I)
Tmin = 0.461, Tmax = 0.597Rint = 0.095
51748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.127H-atom parameters constrained
S = 1.02Δρmax = 0.84 e Å3
7789 reflectionsΔρmin = 0.63 e Å3
557 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.03270 (4)0.41612 (4)0.45991 (2)0.02905 (16)
Ni20.12781 (5)0.42241 (4)0.56219 (2)0.03106 (16)
Ni30.21549 (5)0.26552 (4)0.45100 (2)0.03523 (17)
O10.0920 (3)0.2905 (2)0.58242 (11)0.0373 (8)
O20.2149 (3)0.2093 (2)0.52023 (12)0.0451 (8)
O30.2404 (3)0.3091 (2)0.37703 (11)0.0441 (8)
O40.1078 (2)0.4196 (2)0.38032 (11)0.0349 (7)
O50.0386 (3)0.4489 (2)0.64055 (11)0.0460 (8)
O60.2908 (3)0.4162 (2)0.57582 (13)0.0519 (9)
O70.3963 (3)0.2654 (2)0.43819 (12)0.0455 (8)
O80.2376 (3)0.1355 (2)0.41891 (13)0.0499 (9)
N10.0332 (3)0.2038 (3)0.66782 (14)0.0429 (10)
H10.03600.24870.64710.051*
N20.2946 (4)0.2152 (3)0.28674 (15)0.0506 (11)
H20.26250.20800.31980.061*
N30.1967 (3)0.4019 (2)0.48097 (13)0.0303 (8)
N40.2806 (3)0.4517 (3)0.46086 (15)0.0410 (10)
N50.3583 (4)0.4983 (3)0.44295 (19)0.0636 (13)
N60.0316 (3)0.4379 (2)0.54194 (13)0.0261 (8)
N70.1158 (3)0.3975 (3)0.57064 (14)0.0364 (9)
N80.1899 (4)0.3606 (3)0.59810 (19)0.0667 (14)
N90.0354 (3)0.2757 (3)0.46261 (15)0.0368 (9)
N100.0368 (4)0.2270 (3)0.49112 (17)0.0455 (10)
N110.1037 (5)0.1781 (4)0.5168 (2)0.0810 (17)
N120.1322 (3)0.5651 (2)0.55169 (14)0.0347 (9)
N130.2120 (4)0.6185 (3)0.54439 (15)0.0413 (10)
N140.2878 (4)0.6697 (3)0.53838 (18)0.0626 (13)
C10.1398 (4)0.2160 (3)0.56424 (17)0.0356 (11)
C20.1097 (4)0.1303 (3)0.59541 (17)0.0349 (11)
C30.1651 (4)0.0493 (3)0.57447 (18)0.0425 (12)
H30.21980.05120.54180.051*
C40.1424 (5)0.0327 (3)0.5999 (2)0.0486 (13)
H40.18090.08560.58490.058*
C50.0605 (5)0.0357 (3)0.6486 (2)0.0492 (13)
H50.04470.09100.66660.059*
C60.0031 (4)0.0419 (3)0.67024 (18)0.0415 (12)
H60.05350.03800.70220.050*
C70.0274 (4)0.1275 (3)0.64536 (17)0.0379 (11)
C80.0906 (4)0.2160 (3)0.72137 (17)0.0376 (11)
C90.0428 (4)0.1844 (3)0.76057 (18)0.0430 (12)
H90.02830.15320.75190.052*
C100.1013 (5)0.1993 (3)0.81294 (18)0.0481 (13)
H100.06950.17720.83920.058*
C110.2053 (5)0.2463 (3)0.82626 (19)0.0479 (13)
H110.24420.25580.86140.057*
C120.2517 (4)0.2792 (3)0.7873 (2)0.0478 (13)
H120.32210.31140.79600.057*
C130.1938 (4)0.2645 (3)0.73482 (19)0.0419 (12)
H130.22520.28760.70860.050*
C140.1895 (4)0.3668 (3)0.35553 (17)0.0333 (11)
C150.2289 (4)0.3742 (3)0.29743 (16)0.0310 (10)
C160.2167 (4)0.4573 (3)0.27362 (18)0.0367 (11)
H160.18560.50720.29470.044*
C170.2492 (4)0.4680 (3)0.21992 (19)0.0424 (12)
H170.24330.52470.20480.051*
C180.2909 (4)0.3924 (3)0.18871 (18)0.0464 (13)
H180.30910.39790.15230.056*
C190.3054 (4)0.3103 (3)0.21058 (17)0.0437 (12)
H190.33330.26070.18870.052*
C200.2793 (4)0.2985 (3)0.26533 (17)0.0353 (11)
C210.3580 (4)0.1407 (3)0.25939 (17)0.0386 (11)
C220.4703 (4)0.1507 (4)0.2265 (2)0.0516 (13)
H220.50390.20870.22080.062*
C230.5326 (5)0.0757 (4)0.2021 (2)0.0607 (15)
H230.60730.08360.17980.073*
C240.4856 (6)0.0093 (4)0.2105 (2)0.0637 (16)
H240.52870.05980.19480.076*
C250.3750 (6)0.0205 (4)0.2420 (2)0.0659 (17)
H250.34230.07880.24710.079*
C260.3105 (5)0.0539 (4)0.2668 (2)0.0521 (14)
H260.23520.04520.28830.062*
C270.0697 (4)0.4277 (4)0.68775 (18)0.0486 (13)
H27A0.11570.37260.68280.073*
H27B0.00010.41890.71580.073*
H27C0.11470.47720.69650.073*
C280.3410 (5)0.4747 (4)0.6070 (2)0.0701 (17)
H28A0.28690.52290.62150.105*
H28B0.41230.50070.58560.105*
H28C0.35790.44000.63500.105*
C290.4840 (4)0.2829 (4)0.3909 (2)0.0619 (16)
H29A0.47210.24360.36370.093*
H29B0.55990.27140.39630.093*
H29C0.47930.34570.38090.093*
C300.1425 (5)0.0758 (4)0.4257 (3)0.0737 (19)
H30A0.10670.06740.46250.111*
H30B0.16940.01770.40990.111*
H30C0.08620.10100.40930.111*
O90.4740 (3)0.1887 (3)0.02231 (14)0.0596 (10)
C320.4755 (8)0.2635 (6)0.0553 (3)0.119 (3)
H32A0.39890.29070.06560.178*
H32B0.53130.30790.03690.178*
H32C0.49720.24310.08600.178*
O100.6812 (4)0.3749 (3)0.08285 (19)0.0796 (12)
C310.6724 (7)0.3549 (5)0.1353 (3)0.101 (2)
H31A0.64860.29230.14230.151*
H31B0.61530.39450.15740.151*
H31C0.74720.36410.14230.151*
O110.6012 (4)0.5314 (3)0.05491 (19)0.0812 (13)
C330.4822 (6)0.5423 (5)0.0710 (4)0.118 (3)
H33A0.45860.55320.10820.178*
H33B0.44460.48790.06310.178*
H33C0.45990.59350.05300.178*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0226 (3)0.0415 (3)0.0211 (3)0.0032 (2)0.0023 (2)0.0025 (3)
Ni20.0255 (3)0.0447 (4)0.0219 (3)0.0044 (3)0.0043 (2)0.0013 (3)
Ni30.0307 (3)0.0489 (4)0.0232 (3)0.0095 (3)0.0020 (2)0.0018 (3)
O10.0361 (18)0.0427 (19)0.0277 (17)0.0090 (15)0.0010 (14)0.0033 (14)
O20.0383 (19)0.063 (2)0.0272 (18)0.0167 (16)0.0030 (15)0.0032 (15)
O30.0429 (19)0.063 (2)0.0241 (17)0.0212 (17)0.0039 (15)0.0002 (16)
O40.0302 (16)0.0460 (19)0.0260 (16)0.0083 (15)0.0033 (13)0.0039 (14)
O50.051 (2)0.068 (2)0.0181 (16)0.0173 (17)0.0072 (15)0.0042 (15)
O60.0385 (19)0.075 (2)0.048 (2)0.0122 (18)0.0223 (17)0.0148 (19)
O70.0293 (17)0.067 (2)0.0338 (19)0.0079 (16)0.0031 (15)0.0019 (16)
O80.050 (2)0.052 (2)0.048 (2)0.0080 (18)0.0133 (17)0.0119 (17)
N10.048 (2)0.048 (2)0.025 (2)0.0151 (19)0.0039 (18)0.0071 (18)
N20.070 (3)0.047 (3)0.024 (2)0.019 (2)0.006 (2)0.0023 (18)
N30.0187 (18)0.046 (2)0.025 (2)0.0004 (16)0.0027 (15)0.0002 (17)
N40.031 (2)0.056 (3)0.035 (2)0.010 (2)0.0063 (19)0.003 (2)
N50.035 (3)0.070 (3)0.074 (3)0.010 (2)0.008 (2)0.013 (3)
N60.0207 (18)0.036 (2)0.0190 (18)0.0001 (16)0.0009 (15)0.0011 (15)
N70.030 (2)0.049 (2)0.026 (2)0.0042 (19)0.0006 (19)0.0003 (18)
N80.046 (3)0.078 (3)0.064 (3)0.006 (3)0.008 (3)0.014 (3)
N90.029 (2)0.042 (2)0.037 (2)0.0021 (18)0.0050 (18)0.0025 (19)
N100.040 (2)0.044 (3)0.050 (3)0.009 (2)0.008 (2)0.011 (2)
N110.065 (3)0.060 (3)0.094 (4)0.011 (3)0.020 (3)0.013 (3)
N120.026 (2)0.041 (2)0.037 (2)0.0000 (18)0.0088 (18)0.0004 (18)
N130.034 (2)0.052 (3)0.038 (2)0.005 (2)0.010 (2)0.0036 (19)
N140.044 (3)0.069 (3)0.072 (3)0.023 (3)0.010 (2)0.001 (3)
C10.031 (3)0.049 (3)0.029 (3)0.007 (2)0.012 (2)0.001 (2)
C20.030 (2)0.048 (3)0.029 (3)0.005 (2)0.010 (2)0.002 (2)
C30.045 (3)0.053 (3)0.030 (3)0.012 (2)0.010 (2)0.004 (2)
C40.061 (4)0.041 (3)0.049 (3)0.011 (3)0.023 (3)0.009 (3)
C50.063 (4)0.043 (3)0.051 (3)0.000 (3)0.030 (3)0.002 (3)
C60.041 (3)0.050 (3)0.032 (3)0.004 (2)0.007 (2)0.005 (2)
C70.042 (3)0.042 (3)0.031 (3)0.002 (2)0.014 (2)0.001 (2)
C80.036 (3)0.039 (3)0.030 (3)0.001 (2)0.004 (2)0.003 (2)
C90.039 (3)0.053 (3)0.035 (3)0.006 (2)0.006 (2)0.005 (2)
C100.060 (3)0.053 (3)0.030 (3)0.001 (3)0.008 (3)0.003 (2)
C110.051 (3)0.051 (3)0.032 (3)0.009 (3)0.006 (2)0.001 (2)
C120.036 (3)0.047 (3)0.050 (3)0.001 (2)0.007 (2)0.001 (2)
C130.037 (3)0.047 (3)0.037 (3)0.003 (2)0.003 (2)0.005 (2)
C140.029 (2)0.043 (3)0.026 (2)0.001 (2)0.003 (2)0.002 (2)
C150.024 (2)0.043 (3)0.025 (2)0.001 (2)0.0047 (19)0.003 (2)
C160.030 (2)0.042 (3)0.038 (3)0.001 (2)0.008 (2)0.003 (2)
C170.042 (3)0.044 (3)0.042 (3)0.002 (2)0.013 (2)0.012 (2)
C180.049 (3)0.060 (3)0.024 (3)0.004 (3)0.001 (2)0.009 (2)
C190.050 (3)0.052 (3)0.024 (3)0.011 (2)0.000 (2)0.009 (2)
C200.033 (2)0.046 (3)0.025 (2)0.006 (2)0.003 (2)0.001 (2)
C210.044 (3)0.047 (3)0.024 (2)0.009 (2)0.007 (2)0.002 (2)
C220.045 (3)0.055 (3)0.052 (3)0.001 (3)0.006 (3)0.003 (3)
C230.043 (3)0.081 (5)0.055 (4)0.017 (3)0.007 (3)0.011 (3)
C240.071 (4)0.065 (4)0.056 (4)0.029 (3)0.019 (3)0.018 (3)
C250.091 (5)0.043 (3)0.064 (4)0.001 (3)0.021 (4)0.008 (3)
C260.053 (3)0.053 (3)0.046 (3)0.001 (3)0.006 (3)0.003 (3)
C270.052 (3)0.066 (4)0.029 (3)0.003 (3)0.012 (2)0.001 (2)
C280.045 (3)0.095 (5)0.077 (4)0.001 (3)0.029 (3)0.009 (4)
C290.035 (3)0.098 (5)0.043 (3)0.001 (3)0.006 (3)0.004 (3)
C300.055 (4)0.071 (4)0.102 (5)0.012 (3)0.031 (4)0.038 (4)
O90.043 (2)0.087 (3)0.049 (2)0.0074 (19)0.0117 (18)0.007 (2)
C320.113 (7)0.132 (7)0.111 (7)0.041 (5)0.030 (5)0.032 (6)
O100.067 (3)0.081 (3)0.087 (3)0.007 (2)0.014 (2)0.002 (3)
C310.089 (6)0.118 (6)0.084 (6)0.008 (5)0.005 (4)0.005 (5)
O110.059 (3)0.074 (3)0.115 (4)0.019 (2)0.030 (3)0.009 (3)
C330.070 (5)0.079 (5)0.202 (10)0.013 (4)0.028 (6)0.012 (6)
Geometric parameters (Å, º) top
Ni1—N92.052 (4)C9—C101.390 (6)
Ni1—O42.054 (3)C9—H90.9300
Ni1—N12i2.071 (4)C10—C111.370 (7)
Ni1—N62.120 (3)C10—H100.9300
Ni1—N6i2.133 (3)C11—C121.375 (7)
Ni1—N32.165 (3)C11—H110.9300
Ni2—O12.014 (3)C12—C131.389 (6)
Ni2—O62.054 (3)C12—H120.9300
Ni2—O52.094 (3)C13—H130.9300
Ni2—N122.102 (4)C14—C151.484 (6)
Ni2—N62.103 (3)C15—C161.392 (6)
Ni2—N32.104 (3)C15—C201.424 (6)
Ni3—O32.000 (3)C16—C171.376 (6)
Ni3—O22.002 (3)C16—H160.9300
Ni3—O82.068 (3)C17—C181.387 (6)
Ni3—O72.074 (3)C17—H170.9300
Ni3—N92.075 (4)C18—C191.362 (6)
Ni3—N32.133 (4)C18—H180.9300
O1—C11.262 (5)C19—C201.406 (6)
O2—C11.265 (5)C19—H190.9300
O3—C141.255 (5)C21—C261.379 (7)
O4—C141.273 (5)C21—C221.388 (6)
O5—C271.424 (5)C22—C231.380 (7)
O6—C281.422 (6)C22—H220.9300
O7—C291.418 (5)C23—C241.354 (8)
O8—C301.396 (6)C23—H230.9300
N1—C71.371 (6)C24—C251.360 (8)
N1—C81.408 (5)C24—H240.9300
N1—H10.8601C25—C261.387 (7)
N2—C201.373 (6)C25—H250.9300
N2—C211.408 (6)C26—H260.9300
N2—H20.8602C27—H27A0.9600
N3—N41.231 (5)C27—H27B0.9600
N4—N51.140 (5)C27—H27C0.9600
N6—N71.231 (5)C28—H28A0.9600
N6—Ni1i2.133 (3)C28—H28B0.9600
N7—N81.116 (5)C28—H28C0.9600
N9—N101.209 (5)C29—H29A0.9600
N10—N111.145 (6)C29—H29B0.9600
N12—N131.199 (5)C29—H29C0.9600
N12—Ni1i2.071 (4)C30—H30A0.9600
N13—N141.146 (5)C30—H30B0.9600
C1—C21.488 (6)C30—H30C0.9600
C2—C31.394 (6)O9—C321.399 (7)
C2—C71.417 (6)C32—H32A0.9600
C3—C41.364 (7)C32—H32B0.9600
C3—H30.9300C32—H32C0.9600
C4—C51.391 (7)O10—C311.391 (8)
C4—H40.9300C31—H31A0.9600
C5—C61.366 (7)C31—H31B0.9600
C5—H50.9300C31—H31C0.9600
C6—C71.406 (6)O11—C331.367 (8)
C6—H60.9300C33—H33A0.9600
C8—C131.373 (6)C33—H33B0.9600
C8—C91.384 (6)C33—H33C0.9600
N9—Ni1—O493.08 (13)C6—C7—C2117.7 (4)
N9—Ni1—N12i99.26 (15)C13—C8—C9119.3 (4)
O4—Ni1—N12i90.83 (13)C13—C8—N1119.0 (4)
N9—Ni1—N696.84 (14)C9—C8—N1121.6 (4)
O4—Ni1—N6169.12 (12)C8—C9—C10119.8 (5)
N12i—Ni1—N691.98 (13)C8—C9—H9120.1
N9—Ni1—N6i179.03 (14)C10—C9—H9120.1
O4—Ni1—N6i87.46 (12)C11—C10—C9120.7 (5)
N12i—Ni1—N6i81.53 (14)C11—C10—H10119.6
N6—Ni1—N6i82.56 (13)C9—C10—H10119.6
N9—Ni1—N382.65 (14)C10—C11—C12119.5 (5)
O4—Ni1—N395.22 (12)C10—C11—H11120.3
N12i—Ni1—N3173.55 (14)C12—C11—H11120.3
N6—Ni1—N381.66 (12)C11—C12—C13120.2 (5)
N6i—Ni1—N396.51 (13)C11—C12—H12119.9
O1—Ni2—O693.00 (13)C13—C12—H12119.9
O1—Ni2—O584.23 (12)C8—C13—C12120.5 (5)
O6—Ni2—O594.91 (13)C8—C13—H13119.8
O1—Ni2—N12168.48 (13)C12—C13—H13119.8
O6—Ni2—N1294.32 (14)O3—C14—O4124.3 (4)
O5—Ni2—N1286.29 (14)O3—C14—C15117.3 (4)
O1—Ni2—N691.76 (13)O4—C14—C15118.3 (4)
O6—Ni2—N6174.19 (14)C16—C15—C20119.0 (4)
O5—Ni2—N688.87 (12)C16—C15—C14119.2 (4)
N12—Ni2—N681.51 (13)C20—C15—C14121.7 (4)
O1—Ni2—N397.55 (13)C17—C16—C15122.0 (4)
O6—Ni2—N392.54 (13)C17—C16—H16119.0
O5—Ni2—N3172.24 (13)C15—C16—H16119.0
N12—Ni2—N391.00 (14)C16—C17—C18118.7 (4)
N6—Ni2—N383.53 (13)C16—C17—H17120.6
O3—Ni3—O2170.33 (12)C18—C17—H17120.6
O3—Ni3—O885.53 (13)C19—C18—C17120.9 (4)
O2—Ni3—O888.09 (13)C19—C18—H18119.5
O3—Ni3—O787.85 (13)C17—C18—H18119.5
O2—Ni3—O784.40 (13)C18—C19—C20121.7 (4)
O8—Ni3—O785.37 (13)C18—C19—H19119.1
O3—Ni3—N990.07 (14)C20—C19—H19119.1
O2—Ni3—N998.02 (14)N2—C20—C19121.0 (4)
O8—Ni3—N998.04 (14)N2—C20—C15121.5 (4)
O7—Ni3—N9175.86 (14)C19—C20—C15117.4 (4)
O3—Ni3—N392.25 (13)C26—C21—C22118.1 (4)
O2—Ni3—N393.99 (13)C26—C21—N2119.8 (4)
O8—Ni3—N3177.59 (14)C22—C21—N2122.1 (5)
O7—Ni3—N393.61 (13)C23—C22—C21120.8 (5)
N9—Ni3—N382.89 (14)C23—C22—H22119.6
C1—O1—Ni2133.1 (3)C21—C22—H22119.6
C1—O2—Ni3129.7 (3)C24—C23—C22120.4 (5)
C14—O3—Ni3133.7 (3)C24—C23—H23119.8
C14—O4—Ni1125.1 (3)C22—C23—H23119.8
C27—O5—Ni2130.1 (3)C23—C24—C25119.8 (5)
C28—O6—Ni2129.1 (3)C23—C24—H24120.1
C29—O7—Ni3128.7 (3)C25—C24—H24120.1
C30—O8—Ni3120.7 (3)C24—C25—C26120.8 (6)
C7—N1—C8126.5 (4)C24—C25—H25119.6
C7—N1—H1116.7C26—C25—H25119.6
C8—N1—H1116.8C21—C26—C25120.1 (5)
C20—N2—C21125.7 (4)C21—C26—H26120.0
C20—N2—H2117.1C25—C26—H26120.0
C21—N2—H2117.2O5—C27—H27A109.5
N4—N3—Ni2113.9 (3)O5—C27—H27B109.5
N4—N3—Ni3113.6 (3)H27A—C27—H27B109.5
Ni2—N3—Ni3119.03 (16)O5—C27—H27C109.5
N4—N3—Ni1120.4 (3)H27A—C27—H27C109.5
Ni2—N3—Ni196.71 (13)H27B—C27—H27C109.5
Ni3—N3—Ni190.38 (13)O6—C28—H28A109.5
N5—N4—N3179.0 (5)O6—C28—H28B109.5
N7—N6—Ni2115.2 (3)H28A—C28—H28B109.5
N7—N6—Ni1124.7 (3)O6—C28—H28C109.5
Ni2—N6—Ni198.09 (13)H28A—C28—H28C109.5
N7—N6—Ni1i119.0 (3)H28B—C28—H28C109.5
Ni2—N6—Ni1i97.17 (13)O7—C29—H29A109.5
Ni1—N6—Ni1i97.44 (13)O7—C29—H29B109.5
N8—N7—N6177.4 (5)H29A—C29—H29B109.5
N10—N9—Ni1126.5 (3)O7—C29—H29C109.5
N10—N9—Ni3125.2 (3)H29A—C29—H29C109.5
Ni1—N9—Ni395.24 (16)H29B—C29—H29C109.5
N11—N10—N9177.3 (5)O8—C30—H30A109.5
N13—N12—Ni1i128.4 (3)O8—C30—H30B109.5
N13—N12—Ni2131.1 (3)H30A—C30—H30B109.5
Ni1i—N12—Ni299.16 (16)O8—C30—H30C109.5
N14—N13—N12178.7 (5)H30A—C30—H30C109.5
O1—C1—O2123.4 (4)H30B—C30—H30C109.5
O1—C1—C2119.9 (4)O9—C32—H32A109.5
O2—C1—C2116.7 (4)O9—C32—H32B109.5
C3—C2—C7118.7 (4)H32A—C32—H32B109.5
C3—C2—C1118.4 (4)O9—C32—H32C109.5
C7—C2—C1122.9 (4)H32A—C32—H32C109.5
C4—C3—C2122.7 (5)H32B—C32—H32C109.5
C4—C3—H3118.7O10—C31—H31A109.5
C2—C3—H3118.7O10—C31—H31B109.5
C3—C4—C5118.7 (5)H31A—C31—H31B109.5
C3—C4—H4120.6O10—C31—H31C109.5
C5—C4—H4120.6H31A—C31—H31C109.5
C6—C5—C4120.5 (5)H31B—C31—H31C109.5
C6—C5—H5119.8O11—C33—H33A109.5
C4—C5—H5119.8O11—C33—H33B109.5
C5—C6—C7121.7 (5)H33A—C33—H33B109.5
C5—C6—H6119.2O11—C33—H33C109.5
C7—C6—H6119.2H33A—C33—H33C109.5
N1—C7—C6120.1 (4)H33B—C33—H33C109.5
N1—C7—C2122.0 (4)
Symmetry code: (i) x, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.052.666 (5)128
N2—H2···O30.862.082.677 (5)126

Experimental details

Crystal data
Chemical formula[Ni6(C13H10NO2)4(N3)8(CH4O)8]·6CH4O
Mr1985.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.8230 (1), 14.6051 (2), 26.3997 (4)
β (°) 105.368 (1)
V3)4395.6 (1)
Z2
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.6 × 0.5 × 0.4
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.461, 0.597
No. of measured, independent and
observed [I > 2σ(I)] reflections
51748, 7789, 4991
Rint0.095
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.02
No. of reflections7789
No. of parameters557
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.63

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni1—N92.052 (4)Ni2—N122.102 (4)
Ni1—O42.054 (3)Ni2—N62.103 (3)
Ni1—N12i2.071 (4)Ni2—N32.104 (3)
Ni1—N62.120 (3)Ni3—O32.000 (3)
Ni1—N6i2.133 (3)Ni3—O22.002 (3)
Ni1—N32.165 (3)Ni3—O82.068 (3)
Ni2—O12.014 (3)Ni3—O72.074 (3)
Ni2—O62.054 (3)Ni3—N92.075 (4)
Ni2—O52.094 (3)Ni3—N32.133 (4)
Symmetry code: (i) x, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.052.666 (5)128
N2—H2···O30.862.082.677 (5)126
 

Acknowledgements

This study was supported by the Doctoral Research Fund of Henan Chinese Medicine (BSJJ2009–38) and the Science and Technology Department of Henan Province (082102330003).

References

First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, T., Zhang, Y.-J., Wang, Z.-M. & Gao, S. (2006). Inorg. Chem. 45, 2782–2784.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, T., Zhang, Y.-J., Wang, Z.-M. & Gao, S. (2008). J. Am. Chem. Soc. 130, 10500–10511.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-T., Wang, B.-W., Wang, Z.-M., Zhang, W. & Gao, S. (2008). Inorg. Chim. Acta, 361, 3895–3902.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m307-m308
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds