metal-organic compounds
Poly[[triaqua(μ3-4-oxidopyridine-2,6-dicarboxylato)terbium(III)] monohydrate]
aKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China, and bSchool of Chemistry and Biology Engineering, Taiyuan University of Science and Technology, Taiyuan 030021, People's Republic of China
*Correspondence e-mail: lvdy@lzu.edu.cn
In the title coordination polymer, {[Tb(C7H2NO5)(H2O)3]·H2O}n, the TbIII atom is eight-coordinated by a tridentate 4-oxidopyridine-2,6-dicarboxylate trianion, two adjacent monodentate anions and three water molecules, forming a distorted bicapped trigonal–prismatic TbNO7 coordination environment. The anions bridge adjacent TbIII ions into double chains. Adjacent chains are further connected into sheets parallel to (10). O—H⋯O hydrogen bonds involving both coordinated and uncoordinated water molecules generate a three-dimensional network.
Related literature
For structures and properties of luminescent lanthanide coordination compounds, see: Kustaryono et al. (2010); He et al. (2010); Li et al. (2008); Luo et al. (2008). For the use of multi-carboxylate and heterocyclic acids in coordination chemistry, see: Li et al. (2008); Luo et al. (2008). For the dicarboxylate ligand 4-oxido-pyridine-2,6-dicarboxylate, see: Gao et al. (2008). For the isotypic structures of the Dy and Eu analogues, see: Gao et al. (2006) and Lv et al. (2010), respectively. For bond lengths and angles in other complexes with eight-coordinate TbIII, see: Chen et al. (2008); Ramya et al. (2010).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811005447/wm2449sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811005447/wm2449Isup2.hkl
To a solution of terbium(III) nitrate hexahydrate (0.136 g, 0.3 mmol) in water (5 ml) was added an aqueous solution (5 ml) of the ligand (0.060 g, 0.3 mmol) and a drop of triethylamine. The reactants were sealed in a 25-ml Teflon-lined stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. The cool solution contained single crystals in ca 60% yield. Anal. Calcd for C7H10TbNO9: C, 20.45; H, 2.45; N, 3.41. Found: C, 20.16; H, 2.17; N, 3.74.
The coordinated water H atoms were located in a different Fourier map and refined with distance constraints of O–H = 0.83 (3) Å. The free water H atoms were placed at calculated positions and refined with a riding model, considering the position of oxygen atoms and the quantity of H atoms. The carbon-bound H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2 Ueq(C). The two highest remaining electron denstity peaks greater than one electron per Å3 are located at (0.4907 0.8249 0.2004) and (0.5006 0.8231 0.3054), repectively. The corresponding distances to the nearest atom (heavy atom Tb1) are ca 0.80 Å.
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Drawing of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. View along the b axis of the title compound, showing the double chain. | |
Fig. 3. View approximately along the a axis, showing the sheet structure of {[Tb(C7H2NO5)(H2O)3].H2O}. |
[Tb(C7H2NO5)(H2O)3]·H2O | F(000) = 784 |
Mr = 411.08 | Dx = 2.436 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5700 reflections |
a = 9.953 (2) Å | θ = 2.2–28.3° |
b = 7.5454 (16) Å | µ = 6.35 mm−1 |
c = 15.461 (3) Å | T = 293 K |
β = 105.126 (2)° | Block, colorless |
V = 1120.9 (4) Å3 | 0.30 × 0.25 × 0.22 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2080 independent reflections |
Radiation source: fine-focus sealed tube | 1929 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −12→11 |
Tmin = 0.162, Tmax = 0.247 | k = −9→8 |
7828 measured reflections | l = −18→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.019 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.051 | w = 1/[σ2(Fo2) + (0.0227P)2 + 0.941P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
2080 reflections | Δρmax = 1.34 e Å−3 |
196 parameters | Δρmin = −0.60 e Å−3 |
12 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0244 (6) |
[Tb(C7H2NO5)(H2O)3]·H2O | V = 1120.9 (4) Å3 |
Mr = 411.08 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.953 (2) Å | µ = 6.35 mm−1 |
b = 7.5454 (16) Å | T = 293 K |
c = 15.461 (3) Å | 0.30 × 0.25 × 0.22 mm |
β = 105.126 (2)° |
Bruker APEXII CCD diffractometer | 2080 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 1929 reflections with I > 2σ(I) |
Tmin = 0.162, Tmax = 0.247 | Rint = 0.032 |
7828 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 12 restraints |
wR(F2) = 0.051 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 1.34 e Å−3 |
2080 reflections | Δρmin = −0.60 e Å−3 |
196 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Tb1 | 0.499147 (11) | 0.823001 (18) | 0.253250 (7) | 0.01168 (10) | |
C1 | 0.5913 (3) | 0.8297 (4) | 0.06235 (18) | 0.0145 (6) | |
C2 | 0.4542 (3) | 0.7331 (4) | 0.03360 (17) | 0.0137 (6) | |
C3 | 0.3928 (3) | 0.6833 (4) | −0.05345 (18) | 0.0157 (6) | |
H3 | 0.4367 | 0.7069 | −0.0984 | 0.019* | |
C4 | 0.2628 (3) | 0.5961 (4) | −0.07393 (17) | 0.0150 (6) | |
C5 | 0.2059 (3) | 0.5615 (4) | −0.00148 (17) | 0.0166 (6) | |
H5 | 0.1218 | 0.5012 | −0.0109 | 0.020* | |
C6 | 0.2739 (3) | 0.6163 (4) | 0.08284 (17) | 0.0149 (6) | |
C7 | 0.2160 (3) | 0.5940 (4) | 0.16200 (17) | 0.0176 (6) | |
H1W | 0.685 (3) | 0.519 (5) | 0.3081 (14) | 0.033 (10)* | |
H2W | 0.678 (4) | 0.555 (5) | 0.2179 (17) | 0.049 (12)* | |
H3W | 0.507 (4) | 0.547 (2) | 0.394 (2) | 0.049 (13)* | |
H4W | 0.477 (4) | 0.706 (4) | 0.433 (2) | 0.039 (12)* | |
H5W | 0.378 (3) | 1.090 (5) | 0.1149 (12) | 0.032 (10)* | |
H6W | 0.339 (4) | 1.121 (5) | 0.196 (2) | 0.051 (13)* | |
H7W | 0.348 (2) | 0.664 (5) | 0.544 (3) | 0.051 (14)* | |
H8W | 0.457 (5) | 0.756 (7) | 0.608 (3) | 0.11 (2)* | |
N1 | 0.3970 (3) | 0.7017 (3) | 0.10190 (15) | 0.0144 (5) | |
O1 | 0.6315 (2) | 0.8714 (3) | 0.14414 (12) | 0.0198 (5) | |
O2 | 0.6576 (2) | 0.8598 (3) | 0.00587 (13) | 0.0232 (5) | |
O3 | 0.2780 (2) | 0.6745 (3) | 0.23225 (14) | 0.0273 (6) | |
O4 | 0.1088 (2) | 0.5009 (3) | 0.15414 (12) | 0.0222 (5) | |
O5 | 0.1971 (2) | 0.5510 (3) | −0.15625 (12) | 0.0191 (5) | |
O6 | 0.6360 (2) | 0.5619 (3) | 0.25964 (14) | 0.0286 (5) | |
O7 | 0.5014 (3) | 0.6624 (3) | 0.38879 (14) | 0.0254 (5) | |
O8 | 0.3974 (3) | 1.0761 (3) | 0.17129 (14) | 0.0294 (6) | |
O9 | 0.4360 (3) | 0.6777 (3) | 0.5670 (2) | 0.0376 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.00900 (13) | 0.01520 (14) | 0.01068 (12) | −0.00006 (5) | 0.00229 (7) | −0.00069 (4) |
C1 | 0.0132 (15) | 0.0153 (15) | 0.0153 (13) | 0.0025 (11) | 0.0043 (11) | 0.0017 (10) |
C2 | 0.0126 (15) | 0.0137 (14) | 0.0153 (12) | 0.0009 (12) | 0.0044 (11) | 0.0017 (11) |
C3 | 0.0146 (16) | 0.0195 (16) | 0.0137 (13) | 0.0016 (11) | 0.0047 (11) | 0.0008 (10) |
C4 | 0.0133 (15) | 0.0159 (15) | 0.0145 (12) | 0.0045 (12) | 0.0013 (10) | −0.0021 (10) |
C5 | 0.0121 (15) | 0.0184 (15) | 0.0186 (13) | −0.0034 (12) | 0.0030 (11) | −0.0012 (11) |
C6 | 0.0113 (14) | 0.0165 (15) | 0.0168 (13) | −0.0007 (12) | 0.0036 (11) | 0.0023 (11) |
C7 | 0.0136 (15) | 0.0219 (16) | 0.0170 (13) | 0.0004 (13) | 0.0035 (11) | 0.0018 (11) |
N1 | 0.0099 (13) | 0.0182 (13) | 0.0148 (11) | −0.0016 (10) | 0.0027 (9) | −0.0013 (9) |
O1 | 0.0145 (11) | 0.0288 (12) | 0.0164 (10) | −0.0054 (9) | 0.0048 (8) | −0.0030 (8) |
O2 | 0.0189 (12) | 0.0352 (13) | 0.0178 (10) | −0.0049 (10) | 0.0087 (8) | 0.0022 (9) |
O3 | 0.0229 (13) | 0.0446 (16) | 0.0165 (10) | −0.0167 (10) | 0.0087 (9) | −0.0084 (9) |
O4 | 0.0184 (12) | 0.0307 (13) | 0.0178 (9) | −0.0134 (10) | 0.0050 (8) | −0.0016 (8) |
O5 | 0.0155 (11) | 0.0272 (12) | 0.0126 (9) | 0.0033 (9) | −0.0001 (8) | −0.0052 (8) |
O6 | 0.0329 (14) | 0.0328 (14) | 0.0226 (11) | 0.0189 (11) | 0.0118 (10) | 0.0066 (10) |
O7 | 0.0338 (15) | 0.0226 (14) | 0.0218 (11) | 0.0025 (10) | 0.0107 (10) | 0.0009 (9) |
O8 | 0.0394 (15) | 0.0339 (14) | 0.0198 (11) | 0.0178 (11) | 0.0163 (10) | 0.0098 (10) |
O9 | 0.0222 (15) | 0.0273 (15) | 0.0595 (18) | 0.0038 (11) | 0.0041 (13) | 0.0031 (12) |
Tb1—O5i | 2.3035 (19) | C5—C6 | 1.367 (4) |
Tb1—O8 | 2.368 (2) | C5—H5 | 0.9300 |
Tb1—O6 | 2.383 (2) | C6—N1 | 1.347 (4) |
Tb1—O4ii | 2.4106 (19) | C6—C7 | 1.492 (4) |
Tb1—O3 | 2.415 (2) | C7—O4 | 1.256 (3) |
Tb1—O7 | 2.416 (2) | C7—O3 | 1.257 (3) |
Tb1—O1 | 2.424 (2) | O4—Tb1iii | 2.4106 (19) |
Tb1—N1 | 2.471 (2) | O5—Tb1iv | 2.3035 (19) |
C1—O2 | 1.245 (3) | O6—H1W | 0.85 (4) |
C1—O1 | 1.263 (3) | O6—H2W | 0.86 (4) |
C1—C2 | 1.508 (4) | O7—H3W | 0.875 (16) |
C2—N1 | 1.345 (4) | O7—H4W | 0.85 (4) |
C2—C3 | 1.377 (4) | O8—H5W | 0.849 (16) |
C3—C4 | 1.412 (4) | O8—H6W | 0.85 (4) |
C3—H3 | 0.9300 | O9—H7W | 0.86 (4) |
C4—O5 | 1.315 (3) | O9—H8W | 0.85 (4) |
C4—C5 | 1.405 (4) | ||
O5i—Tb1—O8 | 99.83 (8) | C3—C2—C1 | 123.8 (2) |
O5i—Tb1—O6 | 85.81 (8) | C2—C3—C4 | 119.5 (3) |
O8—Tb1—O6 | 148.11 (7) | C2—C3—H3 | 120.2 |
O5i—Tb1—O4ii | 81.52 (7) | C4—C3—H3 | 120.2 |
O8—Tb1—O4ii | 70.97 (7) | O5—C4—C5 | 121.4 (3) |
O6—Tb1—O4ii | 140.77 (7) | O5—C4—C3 | 122.2 (2) |
O5i—Tb1—O3 | 151.44 (7) | C5—C4—C3 | 116.4 (2) |
O8—Tb1—O3 | 93.13 (9) | C6—C5—C4 | 120.1 (3) |
O6—Tb1—O3 | 96.50 (8) | C6—C5—H5 | 120.0 |
O4ii—Tb1—O3 | 78.83 (7) | C4—C5—H5 | 120.0 |
O5i—Tb1—O7 | 82.37 (8) | N1—C6—C5 | 123.3 (3) |
O8—Tb1—O7 | 140.75 (8) | N1—C6—C7 | 113.5 (2) |
O6—Tb1—O7 | 70.95 (8) | C5—C6—C7 | 123.2 (3) |
O4ii—Tb1—O7 | 70.65 (7) | O4—C7—O3 | 124.5 (3) |
O3—Tb1—O7 | 71.68 (8) | O4—C7—C6 | 118.9 (2) |
O5i—Tb1—O1 | 80.00 (7) | O3—C7—C6 | 116.5 (3) |
O8—Tb1—O1 | 74.95 (7) | C2—N1—C6 | 117.4 (2) |
O6—Tb1—O1 | 75.22 (8) | C2—N1—Tb1 | 121.61 (19) |
O4ii—Tb1—O1 | 137.48 (7) | C6—N1—Tb1 | 120.69 (18) |
O3—Tb1—O1 | 128.19 (7) | C1—O1—Tb1 | 124.88 (18) |
O7—Tb1—O1 | 142.73 (8) | C7—O3—Tb1 | 124.41 (18) |
O5i—Tb1—N1 | 143.47 (8) | C7—O4—Tb1iii | 138.84 (17) |
O8—Tb1—N1 | 77.25 (8) | C4—O5—Tb1iv | 127.69 (17) |
O6—Tb1—N1 | 79.77 (8) | Tb1—O6—H1W | 123 (2) |
O4ii—Tb1—N1 | 129.18 (8) | Tb1—O6—H2W | 114 (3) |
O3—Tb1—N1 | 64.24 (7) | H1W—O6—H2W | 112 (3) |
O7—Tb1—N1 | 122.96 (8) | Tb1—O7—H3W | 124 (2) |
O1—Tb1—N1 | 63.95 (7) | Tb1—O7—H4W | 125 (2) |
O2—C1—O1 | 124.7 (3) | H3W—O7—H4W | 110 (3) |
O2—C1—C2 | 119.1 (2) | Tb1—O8—H5W | 127 (2) |
O1—C1—C2 | 116.2 (2) | Tb1—O8—H6W | 109 (3) |
N1—C2—C3 | 123.2 (3) | H5W—O8—H6W | 115 (3) |
N1—C2—C1 | 112.9 (2) | H7W—O9—H8W | 114 (3) |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x−1/2, −y+3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H1W···O1v | 0.85 (4) | 2.10 (3) | 2.799 (3) | 139 (3) |
O6—H2W···O5vi | 0.86 (4) | 1.93 (3) | 2.725 (3) | 154 (3) |
O7—H3W···O9vii | 0.88 (2) | 1.84 (2) | 2.687 (3) | 162 (4) |
O7—H4W···O9 | 0.85 (4) | 2.23 (3) | 2.995 (4) | 151 (3) |
O8—H5W···O2viii | 0.85 (2) | 1.85 (2) | 2.693 (3) | 175 (4) |
O8—H6W···O3ii | 0.85 (4) | 1.85 (4) | 2.680 (3) | 167 (4) |
O9—H7W···O2ix | 0.86 (4) | 1.84 (2) | 2.699 (3) | 175 (4) |
O9—H8W···O4i | 0.85 (4) | 2.37 (4) | 3.073 (4) | 141 (5) |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (v) −x+3/2, y−1/2, −z+1/2; (vi) −x+1, −y+1, −z; (vii) −x+1, −y+1, −z+1; (viii) −x+1, −y+2, −z; (ix) x−1/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Tb(C7H2NO5)(H2O)3]·H2O |
Mr | 411.08 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 9.953 (2), 7.5454 (16), 15.461 (3) |
β (°) | 105.126 (2) |
V (Å3) | 1120.9 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.35 |
Crystal size (mm) | 0.30 × 0.25 × 0.22 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.162, 0.247 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7828, 2080, 1929 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.051, 1.10 |
No. of reflections | 2080 |
No. of parameters | 196 |
No. of restraints | 12 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.34, −0.60 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010).
Tb1—O5i | 2.3035 (19) | Tb1—O3 | 2.415 (2) |
Tb1—O8 | 2.368 (2) | Tb1—O7 | 2.416 (2) |
Tb1—O6 | 2.383 (2) | Tb1—O1 | 2.424 (2) |
Tb1—O4ii | 2.4106 (19) | Tb1—N1 | 2.471 (2) |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H1W···O1iii | 0.85 (4) | 2.10 (3) | 2.799 (3) | 139 (3) |
O6—H2W···O5iv | 0.86 (4) | 1.93 (3) | 2.725 (3) | 154 (3) |
O7—H3W···O9v | 0.875 (16) | 1.84 (2) | 2.687 (3) | 162 (4) |
O7—H4W···O9 | 0.85 (4) | 2.23 (3) | 2.995 (4) | 151 (3) |
O8—H5W···O2vi | 0.849 (19) | 1.847 (19) | 2.693 (3) | 175 (4) |
O8—H6W···O3ii | 0.85 (4) | 1.85 (4) | 2.680 (3) | 167 (4) |
O9—H7W···O2vii | 0.86 (4) | 1.84 (2) | 2.699 (3) | 175 (4) |
O9—H8W···O4i | 0.85 (4) | 2.37 (4) | 3.073 (4) | 141 (5) |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+3/2, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y+2, −z; (vii) x−1/2, −y+3/2, z+1/2. |
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Z., Fang, M., Ren, P., Li, X. H., Zhao, B., Wei, S. & Cheng, P. (2008). Z. Anorg. Allg. Chem. 634, 382–386. Web of Science CSD CrossRef CAS Google Scholar
Gao, H. L., Yi, L., Zhao, B., Zhao, X. Q., Cheng, P., Liao, D. Z. & Yan, S. P. (2006). Inorg. Chem. 45, 5980–5988. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gao, H. L., Zhao, B., Zhao, X. Q., Zhao, X. Q., Song, Y., Cheng, P., Liao, D. Z. & Yan, S. P. (2008). Inorg. Chem. 47, 11057–11061. Web of Science CSD CrossRef PubMed CAS Google Scholar
He, H. Y., Yuan, D. Q., Ma, H. Q., Sun, D. F., Zhang, G. Q. & Zhou, H. C. (2010). Inorg. Chem. 49, 7605–7607. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775–781. Web of Science CSD CrossRef CAS Google Scholar
Li, X., Zhang, Y. B., Shi, W. & Li, P. Z. (2008). Inorg. Chem. Commun. 11, 869–872. Web of Science CSD CrossRef CAS Google Scholar
Luo, F., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2006–2010. Web of Science CrossRef CAS Google Scholar
Lv, D.-Y., Gao, Z.-Q. & Gu, J.-Z. (2010). Acta Cryst. E66, m1694–m1695. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ramya, A. R., Reddy, M. L. P., Cowley, A. H. & Vasudevant, K. V. (2010). Inorg. Chem. 49, 2407–2415. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and synthesis of luminescent lanthanide coordination polymers have achieved great progress during the last years owing to their potential applications in biomedical imaging, as luminescent sensors or as fluorescent probes (Kustaryono et al., 2010; He et al., 2010). Eu and Tb are the most useful lanthanides due to their good fluorescence properties (Li et al., 2008; Luo et al., 2008). Many multi-carboxylate or heterocylic carboxylic acids are used for designing such materials (Li et al., 2008; Luo et al., 2008). For lanthanide coordination polymers, 4-hydroxy-pyridine-2,6-dicarboxylic acid is an excellent bridging pyridine dicarboxylate ligand (Lv et al., 2010; Gao et al., 2008), which can provide at most one nitrogen atom and five O coordination sites. In order to extend the investigation in this field, we synthesized the lanthanide coordination polymer {[Tb(C7H2NO5)(H2O)3].H2O}, and report its structure here.
The title compound is isotypic with its Dy (Gao et al., 2006) and Eu (Lv et al., 2010) analogues. As shown in Fig.1, the asymmetric unit contains one Tb(III) ion, one 4-oxidopyridine-2,6-dicarboxylate anion, three coordinated water molecules, and one water molecule of crystallisation. The Tb atom is eight-coordinated by seven oxygen atoms from three anions and three coordinated water molecules and by one nitrogen atom from one tridentate anion (the other two anions are monodentate), forming a distorted bicapped trigonal-prismatic coordination environment.
Important bond distances and angles are presented in Table 1. The Tb—O bond lengths [2.3035 (19) to 2.424 (2) Å] are shorter than the Tb—N bond length [2.471 (2) Å], which is in agreement with the bond lengths observed in other Tb(III) complexes (Chen et al., 2008; Ramya et al., 2010). The anion adopts a µ3-pentadentate coordination mode, as shown in Fig. 1. The anions bridge adjacent TbIII ions to form infinite double chains (Fig. 2). Adjacent chains are further connected by the coordination of the anions and Tb(III) ions into a two-dimensional sheet parallel to (101) (Fig. 3), which are further extended into a three-dimensional framework through O—H···O hydrogen-bonding interactions including both coordinated and uncoordinated water molecules (Table 2).