metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m357-m358

Poly[[tri­aqua­(μ3-4-oxido­pyridine-2,6-di­carboxyl­ato)terbium(III)] monohydrate]

aKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China, and bSchool of Chemistry and Biology Engineering, Taiyuan University of Science and Technology, Taiyuan 030021, People's Republic of China
*Correspondence e-mail: lvdy@lzu.edu.cn

(Received 10 January 2011; accepted 14 February 2011; online 23 February 2011)

In the title coordination polymer, {[Tb(C7H2NO5)(H2O)3]·H2O}n, the TbIII atom is eight-coordinated by a tridentate 4-oxidopyridine-2,6-dicarboxyl­ate trianion, two adjacent monodentate anions and three water mol­ecules, forming a distorted bicapped trigonal–prismatic TbNO7 coordination environment. The anions bridge adjacent TbIII ions into double chains. Adjacent chains are further connected into sheets parallel to (10[\overline{1}]). O—H⋯O hydrogen bonds involving both coordinated and uncoordinated water mol­ecules generate a three-dimensional network.

Related literature

For structures and properties of luminescent lanthanide coordination compounds, see: Kustaryono et al. (2010[Kustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775-781.]); He et al. (2010[He, H. Y., Yuan, D. Q., Ma, H. Q., Sun, D. F., Zhang, G. Q. & Zhou, H. C. (2010). Inorg. Chem. 49, 7605-7607.]); Li et al. (2008[Li, X., Zhang, Y. B., Shi, W. & Li, P. Z. (2008). Inorg. Chem. Commun. 11, 869-872.]); Luo et al. (2008[Luo, F., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2006-2010.]). For the use of multi-carboxyl­ate and heterocyclic acids in coordination chemistry, see: Li et al. (2008[Li, X., Zhang, Y. B., Shi, W. & Li, P. Z. (2008). Inorg. Chem. Commun. 11, 869-872.]); Luo et al. (2008[Luo, F., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2006-2010.]). For the dicarboxyl­ate ligand 4-oxido-pyridine-2,6-dicarboxyl­ate, see: Gao et al. (2008[Gao, H. L., Zhao, B., Zhao, X. Q., Zhao, X. Q., Song, Y., Cheng, P., Liao, D. Z. & Yan, S. P. (2008). Inorg. Chem. 47, 11057-11061.]). For the isotypic structures of the Dy and Eu analogues, see: Gao et al. (2006[Gao, H. L., Yi, L., Zhao, B., Zhao, X. Q., Cheng, P., Liao, D. Z. & Yan, S. P. (2006). Inorg. Chem. 45, 5980-5988.]) and Lv et al. (2010[Lv, D.-Y., Gao, Z.-Q. & Gu, J.-Z. (2010). Acta Cryst. E66, m1694-m1695.]), respectively. For bond lengths and angles in other complexes with eight-coordinate TbIII, see: Chen et al. (2008[Chen, Z., Fang, M., Ren, P., Li, X. H., Zhao, B., Wei, S. & Cheng, P. (2008). Z. Anorg. Allg. Chem. 634, 382-386.]); Ramya et al. (2010[Ramya, A. R., Reddy, M. L. P., Cowley, A. H. & Vasudevant, K. V. (2010). Inorg. Chem. 49, 2407-2415.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb(C7H2NO5)(H2O)3]·H2O

  • Mr = 411.08

  • Monoclinic, P 21 /n

  • a = 9.953 (2) Å

  • b = 7.5454 (16) Å

  • c = 15.461 (3) Å

  • β = 105.126 (2)°

  • V = 1120.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.35 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.162, Tmax = 0.247

  • 7828 measured reflections

  • 2080 independent reflections

  • 1929 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.051

  • S = 1.10

  • 2080 reflections

  • 196 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.34 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected bond lengths (Å)

Tb1—O5i 2.3035 (19)
Tb1—O8 2.368 (2)
Tb1—O6 2.383 (2)
Tb1—O4ii 2.4106 (19)
Tb1—O3 2.415 (2)
Tb1—O7 2.416 (2)
Tb1—O1 2.424 (2)
Tb1—N1 2.471 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H1W⋯O1iii 0.85 (4) 2.10 (3) 2.799 (3) 139 (3)
O6—H2W⋯O5iv 0.86 (4) 1.93 (3) 2.725 (3) 154 (3)
O7—H3W⋯O9v 0.88 (2) 1.84 (2) 2.687 (3) 162 (4)
O7—H4W⋯O9 0.85 (4) 2.23 (3) 2.995 (4) 151 (3)
O8—H5W⋯O2vi 0.85 (2) 1.85 (2) 2.693 (3) 175 (4)
O8—H6W⋯O3ii 0.85 (4) 1.85 (4) 2.680 (3) 167 (4)
O9—H7W⋯O2vii 0.86 (4) 1.84 (2) 2.699 (3) 175 (4)
O9—H8W⋯O4i 0.85 (4) 2.37 (4) 3.073 (4) 141 (5)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+2, -z; (vii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The design and synthesis of luminescent lanthanide coordination polymers have achieved great progress during the last years owing to their potential applications in biomedical imaging, as luminescent sensors or as fluorescent probes (Kustaryono et al., 2010; He et al., 2010). Eu and Tb are the most useful lanthanides due to their good fluorescence properties (Li et al., 2008; Luo et al., 2008). Many multi-carboxylate or heterocylic carboxylic acids are used for designing such materials (Li et al., 2008; Luo et al., 2008). For lanthanide coordination polymers, 4-hydroxy-pyridine-2,6-dicarboxylic acid is an excellent bridging pyridine dicarboxylate ligand (Lv et al., 2010; Gao et al., 2008), which can provide at most one nitrogen atom and five O coordination sites. In order to extend the investigation in this field, we synthesized the lanthanide coordination polymer {[Tb(C7H2NO5)(H2O)3].H2O}, and report its structure here.

The title compound is isotypic with its Dy (Gao et al., 2006) and Eu (Lv et al., 2010) analogues. As shown in Fig.1, the asymmetric unit contains one Tb(III) ion, one 4-oxidopyridine-2,6-dicarboxylate anion, three coordinated water molecules, and one water molecule of crystallisation. The Tb atom is eight-coordinated by seven oxygen atoms from three anions and three coordinated water molecules and by one nitrogen atom from one tridentate anion (the other two anions are monodentate), forming a distorted bicapped trigonal-prismatic coordination environment.

Important bond distances and angles are presented in Table 1. The Tb—O bond lengths [2.3035 (19) to 2.424 (2) Å] are shorter than the Tb—N bond length [2.471 (2) Å], which is in agreement with the bond lengths observed in other Tb(III) complexes (Chen et al., 2008; Ramya et al., 2010). The anion adopts a µ3-pentadentate coordination mode, as shown in Fig. 1. The anions bridge adjacent TbIII ions to form infinite double chains (Fig. 2). Adjacent chains are further connected by the coordination of the anions and Tb(III) ions into a two-dimensional sheet parallel to (101) (Fig. 3), which are further extended into a three-dimensional framework through O—H···O hydrogen-bonding interactions including both coordinated and uncoordinated water molecules (Table 2).

Related literature top

For structures and properties of luminescent lanthanide coordination compounds, see: Kustaryono et al. (2010); He et al. (2010); Li et al. (2008); Luo et al. (2008). For the use of multi-carboxylate and heterocyclic acids in coordination chemistry, see: Li et al. (2008); Luo et al. (2008). For the dicarboxylate ligand 4-oxido-pyridine-2,6-dicarboxylate, see: Gao et al. (2008). For the isotypic structures of the Dy and Eu analogues, see: Gao et al. (2006) and Lv et al. (2010), respectively. For bond lengths and angles in other complexes with eight-coordinate TbIII, see: Chen et al. (2008); Ramya et al. (2010).

Experimental top

To a solution of terbium(III) nitrate hexahydrate (0.136 g, 0.3 mmol) in water (5 ml) was added an aqueous solution (5 ml) of the ligand (0.060 g, 0.3 mmol) and a drop of triethylamine. The reactants were sealed in a 25-ml Teflon-lined stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. The cool solution contained single crystals in ca 60% yield. Anal. Calcd for C7H10TbNO9: C, 20.45; H, 2.45; N, 3.41. Found: C, 20.16; H, 2.17; N, 3.74.

Refinement top

The coordinated water H atoms were located in a different Fourier map and refined with distance constraints of O–H = 0.83 (3) Å. The free water H atoms were placed at calculated positions and refined with a riding model, considering the position of oxygen atoms and the quantity of H atoms. The carbon-bound H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2 Ueq(C). The two highest remaining electron denstity peaks greater than one electron per Å3 are located at (0.4907 0.8249 0.2004) and (0.5006 0.8231 0.3054), repectively. The corresponding distances to the nearest atom (heavy atom Tb1) are ca 0.80 Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Drawing of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View along the b axis of the title compound, showing the double chain.
[Figure 3] Fig. 3. View approximately along the a axis, showing the sheet structure of {[Tb(C7H2NO5)(H2O)3].H2O}.
Poly[[triaqua(µ3-4-oxidopyridine-2,6-dicarboxylato)terbium(III)] monohydrate] top
Crystal data top
[Tb(C7H2NO5)(H2O)3]·H2OF(000) = 784
Mr = 411.08Dx = 2.436 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5700 reflections
a = 9.953 (2) Åθ = 2.2–28.3°
b = 7.5454 (16) ŵ = 6.35 mm1
c = 15.461 (3) ÅT = 293 K
β = 105.126 (2)°Block, colorless
V = 1120.9 (4) Å30.30 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2080 independent reflections
Radiation source: fine-focus sealed tube1929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1211
Tmin = 0.162, Tmax = 0.247k = 98
7828 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0227P)2 + 0.941P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2080 reflectionsΔρmax = 1.34 e Å3
196 parametersΔρmin = 0.60 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0244 (6)
Crystal data top
[Tb(C7H2NO5)(H2O)3]·H2OV = 1120.9 (4) Å3
Mr = 411.08Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.953 (2) ŵ = 6.35 mm1
b = 7.5454 (16) ÅT = 293 K
c = 15.461 (3) Å0.30 × 0.25 × 0.22 mm
β = 105.126 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2080 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1929 reflections with I > 2σ(I)
Tmin = 0.162, Tmax = 0.247Rint = 0.032
7828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01912 restraints
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 1.34 e Å3
2080 reflectionsΔρmin = 0.60 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.499147 (11)0.823001 (18)0.253250 (7)0.01168 (10)
C10.5913 (3)0.8297 (4)0.06235 (18)0.0145 (6)
C20.4542 (3)0.7331 (4)0.03360 (17)0.0137 (6)
C30.3928 (3)0.6833 (4)0.05345 (18)0.0157 (6)
H30.43670.70690.09840.019*
C40.2628 (3)0.5961 (4)0.07393 (17)0.0150 (6)
C50.2059 (3)0.5615 (4)0.00148 (17)0.0166 (6)
H50.12180.50120.01090.020*
C60.2739 (3)0.6163 (4)0.08284 (17)0.0149 (6)
C70.2160 (3)0.5940 (4)0.16200 (17)0.0176 (6)
H1W0.685 (3)0.519 (5)0.3081 (14)0.033 (10)*
H2W0.678 (4)0.555 (5)0.2179 (17)0.049 (12)*
H3W0.507 (4)0.547 (2)0.394 (2)0.049 (13)*
H4W0.477 (4)0.706 (4)0.433 (2)0.039 (12)*
H5W0.378 (3)1.090 (5)0.1149 (12)0.032 (10)*
H6W0.339 (4)1.121 (5)0.196 (2)0.051 (13)*
H7W0.348 (2)0.664 (5)0.544 (3)0.051 (14)*
H8W0.457 (5)0.756 (7)0.608 (3)0.11 (2)*
N10.3970 (3)0.7017 (3)0.10190 (15)0.0144 (5)
O10.6315 (2)0.8714 (3)0.14414 (12)0.0198 (5)
O20.6576 (2)0.8598 (3)0.00587 (13)0.0232 (5)
O30.2780 (2)0.6745 (3)0.23225 (14)0.0273 (6)
O40.1088 (2)0.5009 (3)0.15414 (12)0.0222 (5)
O50.1971 (2)0.5510 (3)0.15625 (12)0.0191 (5)
O60.6360 (2)0.5619 (3)0.25964 (14)0.0286 (5)
O70.5014 (3)0.6624 (3)0.38879 (14)0.0254 (5)
O80.3974 (3)1.0761 (3)0.17129 (14)0.0294 (6)
O90.4360 (3)0.6777 (3)0.5670 (2)0.0376 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.00900 (13)0.01520 (14)0.01068 (12)0.00006 (5)0.00229 (7)0.00069 (4)
C10.0132 (15)0.0153 (15)0.0153 (13)0.0025 (11)0.0043 (11)0.0017 (10)
C20.0126 (15)0.0137 (14)0.0153 (12)0.0009 (12)0.0044 (11)0.0017 (11)
C30.0146 (16)0.0195 (16)0.0137 (13)0.0016 (11)0.0047 (11)0.0008 (10)
C40.0133 (15)0.0159 (15)0.0145 (12)0.0045 (12)0.0013 (10)0.0021 (10)
C50.0121 (15)0.0184 (15)0.0186 (13)0.0034 (12)0.0030 (11)0.0012 (11)
C60.0113 (14)0.0165 (15)0.0168 (13)0.0007 (12)0.0036 (11)0.0023 (11)
C70.0136 (15)0.0219 (16)0.0170 (13)0.0004 (13)0.0035 (11)0.0018 (11)
N10.0099 (13)0.0182 (13)0.0148 (11)0.0016 (10)0.0027 (9)0.0013 (9)
O10.0145 (11)0.0288 (12)0.0164 (10)0.0054 (9)0.0048 (8)0.0030 (8)
O20.0189 (12)0.0352 (13)0.0178 (10)0.0049 (10)0.0087 (8)0.0022 (9)
O30.0229 (13)0.0446 (16)0.0165 (10)0.0167 (10)0.0087 (9)0.0084 (9)
O40.0184 (12)0.0307 (13)0.0178 (9)0.0134 (10)0.0050 (8)0.0016 (8)
O50.0155 (11)0.0272 (12)0.0126 (9)0.0033 (9)0.0001 (8)0.0052 (8)
O60.0329 (14)0.0328 (14)0.0226 (11)0.0189 (11)0.0118 (10)0.0066 (10)
O70.0338 (15)0.0226 (14)0.0218 (11)0.0025 (10)0.0107 (10)0.0009 (9)
O80.0394 (15)0.0339 (14)0.0198 (11)0.0178 (11)0.0163 (10)0.0098 (10)
O90.0222 (15)0.0273 (15)0.0595 (18)0.0038 (11)0.0041 (13)0.0031 (12)
Geometric parameters (Å, º) top
Tb1—O5i2.3035 (19)C5—C61.367 (4)
Tb1—O82.368 (2)C5—H50.9300
Tb1—O62.383 (2)C6—N11.347 (4)
Tb1—O4ii2.4106 (19)C6—C71.492 (4)
Tb1—O32.415 (2)C7—O41.256 (3)
Tb1—O72.416 (2)C7—O31.257 (3)
Tb1—O12.424 (2)O4—Tb1iii2.4106 (19)
Tb1—N12.471 (2)O5—Tb1iv2.3035 (19)
C1—O21.245 (3)O6—H1W0.85 (4)
C1—O11.263 (3)O6—H2W0.86 (4)
C1—C21.508 (4)O7—H3W0.875 (16)
C2—N11.345 (4)O7—H4W0.85 (4)
C2—C31.377 (4)O8—H5W0.849 (16)
C3—C41.412 (4)O8—H6W0.85 (4)
C3—H30.9300O9—H7W0.86 (4)
C4—O51.315 (3)O9—H8W0.85 (4)
C4—C51.405 (4)
O5i—Tb1—O899.83 (8)C3—C2—C1123.8 (2)
O5i—Tb1—O685.81 (8)C2—C3—C4119.5 (3)
O8—Tb1—O6148.11 (7)C2—C3—H3120.2
O5i—Tb1—O4ii81.52 (7)C4—C3—H3120.2
O8—Tb1—O4ii70.97 (7)O5—C4—C5121.4 (3)
O6—Tb1—O4ii140.77 (7)O5—C4—C3122.2 (2)
O5i—Tb1—O3151.44 (7)C5—C4—C3116.4 (2)
O8—Tb1—O393.13 (9)C6—C5—C4120.1 (3)
O6—Tb1—O396.50 (8)C6—C5—H5120.0
O4ii—Tb1—O378.83 (7)C4—C5—H5120.0
O5i—Tb1—O782.37 (8)N1—C6—C5123.3 (3)
O8—Tb1—O7140.75 (8)N1—C6—C7113.5 (2)
O6—Tb1—O770.95 (8)C5—C6—C7123.2 (3)
O4ii—Tb1—O770.65 (7)O4—C7—O3124.5 (3)
O3—Tb1—O771.68 (8)O4—C7—C6118.9 (2)
O5i—Tb1—O180.00 (7)O3—C7—C6116.5 (3)
O8—Tb1—O174.95 (7)C2—N1—C6117.4 (2)
O6—Tb1—O175.22 (8)C2—N1—Tb1121.61 (19)
O4ii—Tb1—O1137.48 (7)C6—N1—Tb1120.69 (18)
O3—Tb1—O1128.19 (7)C1—O1—Tb1124.88 (18)
O7—Tb1—O1142.73 (8)C7—O3—Tb1124.41 (18)
O5i—Tb1—N1143.47 (8)C7—O4—Tb1iii138.84 (17)
O8—Tb1—N177.25 (8)C4—O5—Tb1iv127.69 (17)
O6—Tb1—N179.77 (8)Tb1—O6—H1W123 (2)
O4ii—Tb1—N1129.18 (8)Tb1—O6—H2W114 (3)
O3—Tb1—N164.24 (7)H1W—O6—H2W112 (3)
O7—Tb1—N1122.96 (8)Tb1—O7—H3W124 (2)
O1—Tb1—N163.95 (7)Tb1—O7—H4W125 (2)
O2—C1—O1124.7 (3)H3W—O7—H4W110 (3)
O2—C1—C2119.1 (2)Tb1—O8—H5W127 (2)
O1—C1—C2116.2 (2)Tb1—O8—H6W109 (3)
N1—C2—C3123.2 (3)H5W—O8—H6W115 (3)
N1—C2—C1112.9 (2)H7W—O9—H8W114 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1W···O1v0.85 (4)2.10 (3)2.799 (3)139 (3)
O6—H2W···O5vi0.86 (4)1.93 (3)2.725 (3)154 (3)
O7—H3W···O9vii0.88 (2)1.84 (2)2.687 (3)162 (4)
O7—H4W···O90.85 (4)2.23 (3)2.995 (4)151 (3)
O8—H5W···O2viii0.85 (2)1.85 (2)2.693 (3)175 (4)
O8—H6W···O3ii0.85 (4)1.85 (4)2.680 (3)167 (4)
O9—H7W···O2ix0.86 (4)1.84 (2)2.699 (3)175 (4)
O9—H8W···O4i0.85 (4)2.37 (4)3.073 (4)141 (5)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (v) x+3/2, y1/2, z+1/2; (vi) x+1, y+1, z; (vii) x+1, y+1, z+1; (viii) x+1, y+2, z; (ix) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Tb(C7H2NO5)(H2O)3]·H2O
Mr411.08
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.953 (2), 7.5454 (16), 15.461 (3)
β (°) 105.126 (2)
V3)1120.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)6.35
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.162, 0.247
No. of measured, independent and
observed [I > 2σ(I)] reflections
7828, 2080, 1929
Rint0.032
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.051, 1.10
No. of reflections2080
No. of parameters196
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.34, 0.60

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Tb1—O5i2.3035 (19)Tb1—O32.415 (2)
Tb1—O82.368 (2)Tb1—O72.416 (2)
Tb1—O62.383 (2)Tb1—O12.424 (2)
Tb1—O4ii2.4106 (19)Tb1—N12.471 (2)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1W···O1iii0.85 (4)2.10 (3)2.799 (3)139 (3)
O6—H2W···O5iv0.86 (4)1.93 (3)2.725 (3)154 (3)
O7—H3W···O9v0.875 (16)1.84 (2)2.687 (3)162 (4)
O7—H4W···O90.85 (4)2.23 (3)2.995 (4)151 (3)
O8—H5W···O2vi0.849 (19)1.847 (19)2.693 (3)175 (4)
O8—H6W···O3ii0.85 (4)1.85 (4)2.680 (3)167 (4)
O9—H7W···O2vii0.86 (4)1.84 (2)2.699 (3)175 (4)
O9—H8W···O4i0.85 (4)2.37 (4)3.073 (4)141 (5)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+1, y+1, z; (v) x+1, y+1, z+1; (vi) x+1, y+2, z; (vii) x1/2, y+3/2, z+1/2.
 

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z., Fang, M., Ren, P., Li, X. H., Zhao, B., Wei, S. & Cheng, P. (2008). Z. Anorg. Allg. Chem. 634, 382–386.  Web of Science CSD CrossRef CAS Google Scholar
First citationGao, H. L., Yi, L., Zhao, B., Zhao, X. Q., Cheng, P., Liao, D. Z. & Yan, S. P. (2006). Inorg. Chem. 45, 5980–5988.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGao, H. L., Zhao, B., Zhao, X. Q., Zhao, X. Q., Song, Y., Cheng, P., Liao, D. Z. & Yan, S. P. (2008). Inorg. Chem. 47, 11057–11061.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHe, H. Y., Yuan, D. Q., Ma, H. Q., Sun, D. F., Zhang, G. Q. & Zhou, H. C. (2010). Inorg. Chem. 49, 7605–7607.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775–781.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Zhang, Y. B., Shi, W. & Li, P. Z. (2008). Inorg. Chem. Commun. 11, 869–872.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, F., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2006–2010.  Web of Science CrossRef CAS Google Scholar
First citationLv, D.-Y., Gao, Z.-Q. & Gu, J.-Z. (2010). Acta Cryst. E66, m1694–m1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamya, A. R., Reddy, M. L. P., Cowley, A. H. & Vasudevant, K. V. (2010). Inorg. Chem. 49, 2407–2415.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m357-m358
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds