inorganic compounds
Redetermination of AgPO3
aDepartment of Inorganic Chemistry, Taras Shevchenko National University, 64 Volodymyrska Street, 01601 Kyiv, Ukraine, and bSTC `Institute for Single Crystals', NAS of Ukraine, 60 Lenin Avenue, 61001 Kharkiv, Ukraine
*Correspondence e-mail: tereb@bigmir.ru
Single crystals of silver(I) polyphosphate(V), AgPO3, were prepared via a phosphoric acid melt method using a solution of Ag3PO4 in H3PO4. In comparison with the previous study based on single-crystal Weissenberg photographs [Jost (1961). Acta Cryst. 14, 779–784], the results were mainly confirmed, but with much higher precision and with all displacement parameters refined anisotropically. The structure is built up from two types of distorted edge- and corner-sharing [AgO5] polyhedra, giving rise to multidirectional ribbons, and from two types of PO4 tetrahedra linked into meandering chains (PO3)n spreading parallel to the b axis with a repeat unit of four tetrahedra. The calculated bond-valence sum value of one of the two AgI ions indicates a significant strain of the structure.
Related literature
For a previous crystallographic study of AgPO3, see: Jost (1961). For the isotypic A-form of the Kurrol salt NaPO3, see: McAdam et al. (1968). Properties of glassy silver phosphates have been reported by Portier et al. (1990) and Novita et al. (2009). For long-chain polyphosphates AgMIII(PO3)4 (MIII = La, Gd, Eu), see: El Masloumi et al. (2005); Naıli et al. (2006); Ayadi et al. (2009). For AgMII (PO3)3 (MII = Mg, Zn, Ba), see: Belharouak et al. (1999); for AgMI(PO3)2 (MI = K, Rb, Cs, Tl), see: Averbuch-Pouchot (1993). For background to the bond-valence method, see: Brown & Altermatt (1985).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536811003977/wm2454sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811003977/wm2454Isup2.hkl
AgPO3 was prepared by crystallizing a solution of Ag3PO4 in H3PO4 (84 %wt) at a molar ratio Ag/P = 0.01. The thermal treatment included heating the mixture in a graphite crucible at 473 K for 6 h and then cooling to room temperature. After leaching with water, the product consisted of colorless prismatic crystals.
The highest peak and the deepest hole in the final difference map are located at 0.56 Å from Ag1 (1.432 e/Å3) and 0.56 Å from Ag1 (-1.858 e/Å3), respectively
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).Fig. 1. The connectivity of the Ag and P atoms in the structure of AgPO3 with displacement ellipsoids disolayed at the 50% probability level. [Symmetry codes: (i) 0.5 - x, 1/2 + y, 0.5 - z; (ii) -x, -1 + y, z; (iii) 0.5 - x,1/2 + y, 1.5 - z; (iv) -x, 1 - y, 1 - z; (v) x, y, 1 + z; (vi) -x, 2 - y, 1 - z;]. | |
Fig. 2. A view of the crystal structure of AgPO3 down the b-axis, emphasizing the tunnels with eight-sided windows where the helical polyphosphate chains reside. |
AgPO3 | F(000) = 688 |
Mr = 186.84 | Dx = 4.687 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 22720 reflections |
a = 11.9335 (3) Å | θ = 3.2–35.0° |
b = 6.0667 (1) Å | µ = 7.96 mm−1 |
c = 7.3278 (2) Å | T = 293 K |
β = 93.491 (2)° | Prism, colorless |
V = 529.53 (2) Å3 | 0.10 × 0.08 × 0.04 mm |
Z = 8 |
Oxford Diffraction Xcalibur-3 CCD diffractometer | 2333 independent reflections |
Radiation source: fine-focus sealed tube | 2208 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ϕ and ω scans | θmax = 35°, θmin = 3.2° |
Absorption correction: multi-scan (Blessing, 1995) | h = −19→19 |
Tmin = 0.465, Tmax = 0.733 | k = −9→9 |
22720 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0212P)2 + 1.7313P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.058 | (Δ/σ)max = 0.001 |
S = 1.08 | Δρmax = 1.43 e Å−3 |
2333 reflections | Δρmin = −1.86 e Å−3 |
92 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008) |
0 restraints | Extinction coefficient: 0.0034 (3) |
AgPO3 | V = 529.53 (2) Å3 |
Mr = 186.84 | Z = 8 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.9335 (3) Å | µ = 7.96 mm−1 |
b = 6.0667 (1) Å | T = 293 K |
c = 7.3278 (2) Å | 0.10 × 0.08 × 0.04 mm |
β = 93.491 (2)° |
Oxford Diffraction Xcalibur-3 CCD diffractometer | 2333 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 2208 reflections with I > 2σ(I) |
Tmin = 0.465, Tmax = 0.733 | Rint = 0.042 |
22720 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 92 parameters |
wR(F2) = 0.058 | 0 restraints |
S = 1.08 | Δρmax = 1.43 e Å−3 |
2333 reflections | Δρmin = −1.86 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.127313 (18) | 0.33468 (3) | 0.61230 (3) | 0.02461 (6) | |
Ag2 | 0.03023 (2) | 0.89757 (4) | 0.77035 (3) | 0.02748 (6) | |
P1 | 0.22766 (5) | 0.81768 (10) | 0.48624 (7) | 0.01372 (10) | |
P2 | 0.11152 (5) | 0.61417 (10) | 0.18002 (8) | 0.01331 (10) | |
O1 | 0.25346 (18) | 0.6554 (3) | 0.6355 (3) | 0.0241 (4) | |
O2 | 0.22388 (14) | 0.6980 (3) | 0.2909 (2) | 0.0179 (3) | |
O3 | 0.12509 (15) | 0.9578 (3) | 0.4956 (3) | 0.0218 (3) | |
O4 | 0.16402 (14) | 0.4679 (3) | 0.0265 (2) | 0.0169 (3) | |
O5 | 0.05294 (17) | 0.7997 (3) | 0.0843 (3) | 0.0234 (3) | |
O6 | 0.04724 (16) | 0.4744 (3) | 0.3047 (3) | 0.0220 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.02707 (10) | 0.02043 (10) | 0.02611 (10) | 0.00056 (7) | −0.00023 (7) | 0.00252 (7) |
Ag2 | 0.03883 (12) | 0.02340 (11) | 0.02121 (9) | 0.00423 (8) | 0.01011 (8) | 0.00068 (7) |
P1 | 0.0138 (2) | 0.0153 (2) | 0.0121 (2) | −0.00206 (17) | 0.00169 (16) | 0.00000 (17) |
P2 | 0.0124 (2) | 0.0141 (2) | 0.0134 (2) | 0.00133 (17) | 0.00096 (16) | −0.00069 (17) |
O1 | 0.0312 (9) | 0.0223 (9) | 0.0183 (7) | −0.0081 (7) | −0.0021 (7) | 0.0064 (6) |
O2 | 0.0155 (6) | 0.0225 (8) | 0.0157 (6) | −0.0010 (6) | 0.0008 (5) | −0.0059 (6) |
O3 | 0.0169 (7) | 0.0268 (9) | 0.0220 (8) | 0.0031 (6) | 0.0041 (6) | −0.0047 (7) |
O4 | 0.0161 (6) | 0.0200 (8) | 0.0145 (6) | 0.0058 (6) | 0.0000 (5) | −0.0042 (5) |
O5 | 0.0278 (9) | 0.0208 (8) | 0.0211 (8) | 0.0108 (7) | −0.0020 (6) | 0.0000 (6) |
O6 | 0.0218 (8) | 0.0243 (9) | 0.0204 (7) | −0.0050 (7) | 0.0061 (6) | 0.0000 (7) |
Ag1—O3i | 2.441 (2) | P1—O4vii | 1.5889 (17) |
Ag1—O1 | 2.460 (2) | P1—O2 | 1.6033 (17) |
Ag1—O6ii | 2.491 (2) | P2—O5 | 1.479 (2) |
Ag1—O1iii | 2.511 (2) | P2—O6 | 1.4924 (19) |
Ag1—O6 | 2.540 (2) | P2—O4 | 1.5909 (17) |
Ag1—Ag2i | 3.1431 (3) | P2—O2 | 1.6074 (18) |
Ag2—O5iv | 2.3708 (19) | O1—Ag1viii | 2.511 (2) |
Ag2—O5v | 2.3756 (19) | O3—Ag1vi | 2.441 (2) |
Ag2—O3 | 2.3968 (19) | O4—P1ix | 1.5889 (17) |
Ag2—O6ii | 2.487 (2) | O5—Ag2iv | 2.3708 (19) |
Ag2—O3iv | 2.750 (2) | O5—Ag2x | 2.3756 (19) |
Ag2—Ag1vi | 3.1431 (3) | O6—Ag2ii | 2.487 (2) |
P1—O1 | 1.490 (2) | O6—Ag1ii | 2.491 (2) |
P1—O3 | 1.4952 (19) | ||
O3i—Ag1—O1 | 139.36 (7) | O3—P1—O4vii | 110.36 (11) |
O3i—Ag1—O6ii | 121.99 (6) | O1—P1—O2 | 110.46 (11) |
O1—Ag1—O6ii | 97.63 (7) | O3—P1—O2 | 108.66 (10) |
O3i—Ag1—O1iii | 81.11 (6) | O4vii—P1—O2 | 100.72 (9) |
O1—Ag1—O1iii | 88.56 (4) | O5—P2—O6 | 118.48 (12) |
O6ii—Ag1—O1iii | 117.80 (6) | O5—P2—O4 | 106.52 (10) |
O3i—Ag1—O6 | 90.36 (7) | O6—P2—O4 | 110.79 (11) |
O1—Ag1—O6 | 89.59 (6) | O5—P2—O2 | 110.76 (12) |
O6ii—Ag1—O6 | 77.68 (6) | O6—P2—O2 | 108.33 (10) |
O1iii—Ag1—O6 | 164.51 (6) | O4—P2—O2 | 100.46 (9) |
O3i—Ag1—Ag2i | 48.87 (5) | P1—O1—Ag1 | 111.96 (11) |
O1—Ag1—Ag2i | 151.61 (4) | P1—O1—Ag1viii | 109.67 (10) |
O6ii—Ag1—Ag2i | 88.27 (5) | Ag1—O1—Ag1viii | 135.28 (8) |
O1iii—Ag1—Ag2i | 64.42 (5) | P1—O2—P2 | 124.88 (11) |
O6—Ag1—Ag2i | 118.78 (4) | P1—O3—Ag2 | 112.45 (11) |
O5iv—Ag2—O5v | 77.57 (7) | P1—O3—Ag1vi | 123.86 (11) |
O5iv—Ag2—O3 | 119.43 (7) | Ag2—O3—Ag1vi | 81.04 (6) |
O5v—Ag2—O3 | 145.04 (7) | P1ix—O4—P2 | 135.91 (11) |
O5iv—Ag2—O6ii | 129.94 (7) | P2—O5—Ag2iv | 125.12 (11) |
O5v—Ag2—O6ii | 90.36 (7) | P2—O5—Ag2x | 132.23 (11) |
O3—Ag2—O6ii | 98.10 (6) | Ag2iv—O5—Ag2x | 102.43 (7) |
O5iv—Ag2—Ag1vi | 71.68 (5) | P2—O6—Ag2ii | 125.33 (11) |
O5v—Ag2—Ag1vi | 123.01 (5) | P2—O6—Ag1ii | 110.73 (11) |
O3—Ag2—Ag1vi | 50.09 (5) | Ag2ii—O6—Ag1ii | 99.83 (6) |
O6ii—Ag2—Ag1vi | 145.52 (4) | P2—O6—Ag1 | 123.59 (11) |
O1—P1—O3 | 118.36 (12) | Ag2ii—O6—Ag1 | 90.46 (7) |
O1—P1—O4vii | 106.84 (10) | Ag1ii—O6—Ag1 | 102.32 (6) |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1; (iii) −x+1/2, y−1/2, −z+3/2; (iv) −x, −y+2, −z+1; (v) x, y, z+1; (vi) x, y+1, z; (vii) −x+1/2, y+1/2, −z+1/2; (viii) −x+1/2, y+1/2, −z+3/2; (ix) −x+1/2, y−1/2, −z+1/2; (x) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | AgPO3 |
Mr | 186.84 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 11.9335 (3), 6.0667 (1), 7.3278 (2) |
β (°) | 93.491 (2) |
V (Å3) | 529.53 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 7.96 |
Crystal size (mm) | 0.10 × 0.08 × 0.04 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur-3 CCD diffractometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.465, 0.733 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22720, 2333, 2208 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.807 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.058, 1.08 |
No. of reflections | 2333 |
No. of parameters | 92 |
Δρmax, Δρmin (e Å−3) | 1.43, −1.86 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).
Ag1—O3i | 2.441 (2) | Ag2—O3iv | 2.750 (2) |
Ag1—O1 | 2.460 (2) | P1—O1 | 1.490 (2) |
Ag1—O6ii | 2.491 (2) | P1—O3 | 1.4952 (19) |
Ag1—O1iii | 2.511 (2) | P1—O4vi | 1.5889 (17) |
Ag1—O6 | 2.540 (2) | P1—O2 | 1.6033 (17) |
Ag2—O5iv | 2.3708 (19) | P2—O5 | 1.479 (2) |
Ag2—O5v | 2.3756 (19) | P2—O6 | 1.4924 (19) |
Ag2—O3 | 2.3968 (19) | P2—O4 | 1.5909 (17) |
Ag2—O6ii | 2.487 (2) | P2—O2 | 1.6074 (18) |
P1—O2—P2 | 124.88 (11) | P1vii—O4—P2 | 135.91 (11) |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1; (iii) −x+1/2, y−1/2, −z+3/2; (iv) −x, −y+2, −z+1; (v) x, y, z+1; (vi) −x+1/2, y+1/2, −z+1/2; (vii) −x+1/2, y−1/2, −z+1/2. |
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Averbuch-Pouchot, M. T. (1993). J. Solid State Chem. 102, 93–99. CAS Google Scholar
Ayadi, M., Férid, M. & Moine, B. (2009). Acta Cryst. E65, i13. Web of Science CrossRef IUCr Journals Google Scholar
Belharouak, I., Aouad, H., Mesnaoui, M., Maazaz, M., Parent, C., Tanguy, B., Gravereau, P. & Le Flem, G. (1999). J. Solid State Chem. 145, 97–103. Web of Science CrossRef CAS Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
El Masloumi, M., Imaz, I., Chaminade, J.-P., Videau, J.-J., Couzi, M., Mesnaoui, M. & Maazaz, M. (2005). J. Solid State Chem. 178, 3581–3588. CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Jost, K. H. (1961). Acta Cryst. 14, 779–784. CrossRef CAS IUCr Journals Web of Science Google Scholar
McAdam, A., Jost, K. H. & Beagley, B. (1968). Acta Cryst. B24, 1621–1622. CrossRef CAS IUCr Journals Web of Science Google Scholar
Naıli, H., Ettis, H. & Mhiri, T. (2006). J. Alloys Compd, 424, 400–407. Google Scholar
Novita, D. I., Boolchand, P., Malki, M. & Micoulaut, M. (2009). J. Phys. Condens. Matter, 21, 205106. Web of Science CrossRef PubMed Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Portier, L. J., Tanguy, B., Videau, J. J., Allal, M. A. A., Morcos, J. & Salardenne, J. (1990). Active Passive Elec. Compd, 14, 81–94. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Glassy silver polyphosphates as a part of complex oxide-chalcogenide systems have various applications in the field of solid electrolytes (Portier et al., 1990; Novita et al., 2009). Much attention has therefore been paid to phase equilibrium studies within AgPO3–M(PO3)n systems, where M is a rare earth (Ayadi et al., 2009; Naili et al., 2006, El Masloumi et al., 2005), a divalent (Belharouak et al., 1999) or a monovalent metal (Averbuch-Pouchot, 1993).
The title compound is isotypic with the A-form of the Kurrol salt NaPO3 (McAdam et al., 1968). AgPO3 has been previously structurally studied based on single crystal Weissenberg photographs (Jost, 1961). The current study mainly confirms the previous results, but with significantly higher precision and with anisotropic displacement parameters refined for all atoms.
The structure of AgPO3 features two types of penta-coordinated AgI ions: Ag1 is located in a distorted trigonal bipyramid and Ag2 in a irregular tetragonal pyramid of oxygen atoms (Fig. 1). Calculated values of bond valence sums (BVS; Brown & Altermatt, 1985) were found to be quite different: 0.96 valence units (v.u.) for Ag2 and 0.87 v.u. for Ag1. The observed deviation of the BVS of the latter atom from its chemical valence (expected 1) is due to a high polyhedral distortion caused by the presence of rigid (PO3)n chains. In this case the BVS values may be seen as a degree of silver "underbonding" and have a concomitant effect on physical properties of the title compound or glassy materials containing silver polyphosphate. The next-nearest coordination spheres of Ag1 include six adjacent silver atoms, resulting in edge-sharing Ag1 and Ag2 polyhedra and other four polyhedra connected through corners. As a result of this linkage, two polyhedral ribbons appear. One spreads parallel to the a-axis through interconnected [Ag1O5] polyhedra by sharing a common edge and vertex alternatively, and another spreads parallel to the b-axis and consist of corner-sharing [Ag1O5] polyhedra. Ag2 is remotely surrounded by one Ag1 and two Ag2, resulting in a ribbon of edge-sharing [Ag2O5] polyhedra that run parallel to the c-axis. Intersecting these ribbons leads to a three-dimensional network penetrated with tunnels having eight-sided windows. Helical chains (PO3)n with a repeating unit of four phosphate tetrahedra are located within the tunnels and spiral along the 21 axes parallel to the b-axis. Due to the centrosymmetric nature of the structure, adjacent chains are left- and right-helices. As is characteristic for catena-polyphosphates (Averbuch-Pouchot, 1993), each of the two PO4 tetrahedra displays two types of P—O bond lengths: P—O terminal ranging from 1.479 (2) to 1.4952 (19) Å and P—O bridging from 1.5889 (17) to 1.6074 (18) Å. The corresponding BVS are 4.92 v.u. and 4.95 v.u. for P1 and P2, respectively. The BVS per doubled formula (corresponds to the crystallographically independent atoms in a cell) of positively charged atoms equals to 11.72 v.u., while the chemical charge of the remaining O atoms is equal to -12 valences. This difference is an additional indication of the strain in the structure caused by the presence of rigid phosphate chains.