metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­tris­­(μ4-1,3-phenyl­enedi­acetato)­dineodymium(III)]

aSchool of Chemistry and Biology Engineering, Taiyuan University of Science and Technology, Taiyuan 030021, People's Republic of China, and bKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: zqgao2008@163.com

(Received 21 February 2011; accepted 22 February 2011; online 26 February 2011)

In the title coordination polymer, [Nd2(C10H8O4)3(H2O)2]n, each of the two NdIII ions is nine-coordinated by eight O atoms from six different 2,2′-(m-phenyl­ene)diacetate (pda) bivalent anions and by one O atom from a water mol­ecule, forming a distorted tricapped trigonal–prismatic coordination geometry. Eight NdIII ions and 12 pda ligands form a large [Nd8(pda)12] ring, and four NdIII ions and six pda ligands form a small [Nd4(pda)6] ring. These rings are further connected by the coordination inter­actions of pda ligands and NdIII, generating a three-dimensional supra­molecular framework.

Related literature

For the isotypic Ce analogue, see: Gao et al. (2011[Gao, Z.-Q., Li, H.-J. & Gu, J.-Z. (2011). Acta Cryst. E67, m310.]). For the structures and properties of lanthanide coordination compounds, see: Xiao et al. (2008[Xiao, F. X., Lu, J., Guo, Z. G., Li, T. H., Li, Y. F. & Cao, R. (2008). Inorg. Chem. Commun. 11, 105-109.]); Lv et al. (2010[Lv, D.-Y., Gao, Z.-Q. & Gu, J.-Z. (2010). Acta Cryst. E66, m1694-m1695.]). For bond lengths and angles in other complexes with nine-coordinate NdIII, see: Xiao et al. (2008[Xiao, F. X., Lu, J., Guo, Z. G., Li, T. H., Li, Y. F. & Cao, R. (2008). Inorg. Chem. Commun. 11, 105-109.]); Wang et al. (2009[Wang, P., Ma, J. P. & Dong, Y. B. (2009). Chem. Eur. J. 15, 10432-10445.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd2(C10H8O4)3(H2O)2]

  • Mr = 901.00

  • Triclinic, [P \overline 1]

  • a = 10.4846 (13) Å

  • b = 11.9660 (16) Å

  • c = 12.3514 (16) Å

  • α = 105.619 (5)°

  • β = 97.202 (5)°

  • γ = 92.625 (6)°

  • V = 1475.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.55 mm−1

  • T = 296 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.516, Tmax = 0.580

  • 7865 measured reflections

  • 5315 independent reflections

  • 4806 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.054

  • S = 1.03

  • 5315 reflections

  • 415 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H1W⋯O12i 0.88 2.39 2.838 (3) 112
O14—H4W⋯O7ii 0.86 2.26 2.829 (3) 124
O14—H4W⋯O2iii 0.86 2.41 3.177 (4) 148
O14—H3W⋯O7 0.87 2.25 3.024 (3) 149
O14—H3W⋯O14ii 0.87 2.53 3.100 (5) 123
Symmetry codes: (i) -x, -y, -z; (ii) -x, -y, -z+1; (iii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Lanthanide coordination polymers have shown versatile structural architectures, accompanied with desirable properties, like luminescence, magnetism, catalysis, gas adsorption and separation (Xiao et al., 2008; Lv et al., 2010). In order to extend our investigations in this field, we chose 1,3-phenylendiacetic acid (pda) as a functional ligand and synthesized the lanthanide coordination polymer [Nd2(pda)3(H2O)2]n, the structure of which is reported here.

The title compound is isotypic with its Ce analogue (Gao et al., 2011). The asymmetric unit of the title complex (Fig. 1) contains two crystallographically unique NdIII ions, three pda ligands, and two coordinated water molecules. Both Nd1 and Nd2 are nine-coordinated within a distorted tricapped trigonal-prismatic geometry. The nine coordination sites are occupied by one O atom from a water molecule and eight O atoms from six different pda anions. The Nd—O bond lengths in the title complex are in the range 2.377 (2)–2.749 (2) Å, which is comparable to those reported for other Nd complexes with oxygen environment around the central metal (Xiao et al., 2008; Wang et al., 2009). The pda ligands adopt two coordination modes, viz. µ4-hexadentate and µ4-pentadentate. Eight NdIII ions and twelve pda ligands form a large [Nd8(pda)12] ring, whereas four NdIII ions and six pda ligands form a small [Nd4(pda)6] ring (Fig. 2). These rings are further connected by the coordination interactions of pda ligands and NdIII to generate a three-dimensional supramolecular framework (Fig. 2).

Related literature top

For the isotypic Ce analogue, see: Gao et al. (2011). For the structures and properties of lanthanide coordination compounds, see: Xiao et al. (2008); Lv et al. (2010). For bond lengths and angles in other complexes with nine-coordinate NdIII, see: Xiao et al. (2008); Wang et al. (2009).

Experimental top

To a solution of neodymium nitrate hexahydrate (0.088 g, 0.2 mmol) in water (5 ml) was added an aqueous solution (5 ml) of the ligand (0.058 g, 0.3 mmol) and a drop of triethylamine. The reactants were sealed in a 25-ml Teflon-lined stainless-steel Parr bomb. The bomb was heated at 433 K for 3 d. Upon cooling, the solution yielded single crystals of the title complex in ca 75% yield. Anal./calc. for C30H28Nd2O14: C, 39.99; H, 3.13; found: C, 40.43; H, 3.47.

Refinement top

The H atoms of the water molecules were located in a difference Fourier map and were refined with distance constraints of O–H = 0.83 (5) Å. The C-bound H atoms were placed in geometrically idealized positions, with C–H = 0.93 and 0.97 Å for aryl and methylene H-atoms, respectively, and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A drawing of the asymmetric unit in the structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title complex showing the three-dimensional framework formed by a large [Nd8(pda)12] ring and a small [Nd4(pda)6] ring.
Poly[diaquatris[µ4-2,2'-(m-phenylene)diacetato]dineodymium(III)] top
Crystal data top
[Nd2(C10H8O4)3(H2O)2]Z = 2
Mr = 901.00F(000) = 880
Triclinic, P1Dx = 2.028 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4846 (13) ÅCell parameters from 5315 reflections
b = 11.9660 (16) Åθ = 1.7–25.3°
c = 12.3514 (16) ŵ = 3.55 mm1
α = 105.619 (5)°T = 296 K
β = 97.202 (5)°Block, colorless
γ = 92.625 (6)°0.24 × 0.22 × 0.20 mm
V = 1475.5 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
5315 independent reflections
Radiation source: fine-focus sealed tube4806 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 0 pixels mm-1θmax = 25.3°, θmin = 1.7°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
k = 1214
Tmin = 0.516, Tmax = 0.580l = 1414
7865 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0265P)2 + 1.487P]
where P = (Fo2 + 2Fc2)/3
5315 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.64 e Å3
3 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Nd2(C10H8O4)3(H2O)2]γ = 92.625 (6)°
Mr = 901.00V = 1475.5 (3) Å3
Triclinic, P1Z = 2
a = 10.4846 (13) ÅMo Kα radiation
b = 11.9660 (16) ŵ = 3.55 mm1
c = 12.3514 (16) ÅT = 296 K
α = 105.619 (5)°0.24 × 0.22 × 0.20 mm
β = 97.202 (5)°
Data collection top
Bruker SMART CCD
diffractometer
5315 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4806 reflections with I > 2σ(I)
Tmin = 0.516, Tmax = 0.580Rint = 0.013
7865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0213 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.03Δρmax = 0.64 e Å3
5315 reflectionsΔρmin = 0.76 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.029517 (16)0.026539 (14)0.183517 (13)0.01602 (6)
Nd20.306439 (16)0.036922 (15)0.455279 (14)0.01818 (6)
C10.0706 (3)0.8190 (3)0.2608 (3)0.0194 (7)
C20.1023 (4)0.7042 (3)0.2819 (3)0.0314 (9)
H2A0.17660.67870.24530.038*
H2B0.12700.71690.36290.038*
C30.0041 (4)0.6073 (3)0.2411 (3)0.0244 (8)
C40.1173 (4)0.6146 (3)0.2887 (3)0.0340 (9)
H40.12750.68020.34680.041*
C50.2149 (4)0.5267 (3)0.2516 (4)0.0368 (9)
H50.28970.53240.28530.044*
C60.2021 (4)0.4299 (3)0.1643 (3)0.0330 (9)
H60.26910.37140.13830.040*
C70.0910 (4)0.4192 (3)0.1154 (3)0.0265 (8)
C80.0082 (4)0.5078 (3)0.1549 (3)0.0252 (8)
H80.08430.50020.12300.030*
C90.0755 (4)0.3102 (3)0.0240 (3)0.0326 (9)
H9A0.15570.28840.02790.039*
H9B0.00920.32720.01880.039*
C100.0404 (3)0.2088 (3)0.0679 (3)0.0220 (7)
C110.2153 (3)0.7492 (3)0.5878 (3)0.0243 (7)
C120.1546 (4)0.6428 (3)0.6052 (4)0.0475 (12)
H12A0.07710.63530.56920.057*
H12B0.12800.65580.68600.057*
C130.2359 (4)0.5289 (3)0.5614 (3)0.0322 (9)
C140.3482 (4)0.5093 (3)0.6035 (3)0.0393 (10)
H140.37550.56810.65970.047*
C150.4198 (4)0.4044 (3)0.5636 (3)0.0334 (9)
H150.49550.39270.59240.040*
C160.3801 (3)0.3155 (3)0.4805 (3)0.0280 (8)
H160.43010.24490.45260.034*
C170.2661 (3)0.3315 (3)0.4388 (3)0.0232 (7)
C180.1952 (3)0.4387 (3)0.4794 (3)0.0258 (8)
H180.11900.45060.45120.031*
C190.2165 (3)0.2365 (3)0.3508 (3)0.0257 (8)
H19A0.14190.26900.32710.031*
H19B0.28250.21100.28480.031*
C200.1792 (3)0.1314 (3)0.3893 (3)0.0194 (7)
C210.4696 (3)0.1360 (3)0.3232 (3)0.0249 (8)
C220.5520 (3)0.2052 (3)0.2133 (3)0.0289 (8)
H22A0.62370.16090.19730.035*
H22B0.58730.27720.22380.035*
C230.4804 (3)0.2339 (3)0.1121 (3)0.0272 (8)
C240.3884 (5)0.3138 (4)0.1054 (4)0.0496 (12)
H240.37330.35070.16260.060*
H1W0.24060.02180.06350.060*
H2W0.24060.08020.11250.060*
H4W0.10940.09900.61100.060*
H3W0.02940.08960.50350.060*
C250.3193 (5)0.3397 (4)0.0164 (4)0.0574 (14)
H250.25610.39190.01460.069*
C260.3432 (4)0.2885 (4)0.0707 (3)0.0409 (10)
H260.29720.30750.13190.049*
C270.4349 (3)0.2093 (3)0.0676 (3)0.0270 (8)
C280.5025 (3)0.1825 (3)0.0248 (3)0.0261 (8)
H280.56410.12860.02780.031*
C290.4652 (4)0.1561 (4)0.1644 (3)0.0348 (9)
H29A0.50150.21830.23100.042*
H29B0.53240.10400.14590.042*
C300.3579 (3)0.0892 (3)0.1978 (3)0.0242 (7)
O10.1566 (2)0.9053 (2)0.2968 (2)0.0274 (5)
O20.0342 (2)0.8302 (2)0.2080 (2)0.0284 (6)
O30.0371 (3)0.10987 (19)0.0009 (2)0.0300 (6)
O40.0146 (3)0.2218 (2)0.1716 (2)0.0346 (6)
O50.1595 (2)0.84733 (19)0.64899 (19)0.0252 (5)
O60.3093 (2)0.7452 (2)0.5148 (2)0.0312 (6)
O70.0998 (2)0.0686 (2)0.3388 (2)0.0274 (5)
O80.2271 (3)0.1114 (2)0.4695 (2)0.0365 (6)
O90.5273 (2)0.1006 (2)0.41110 (18)0.0243 (5)
O100.3524 (3)0.1179 (3)0.3299 (2)0.0445 (7)
O110.3881 (2)0.0619 (2)0.2879 (2)0.0300 (6)
O120.2492 (2)0.0633 (2)0.1359 (2)0.0308 (6)
O130.2057 (2)0.0221 (2)0.1036 (2)0.0355 (6)
O140.1067 (2)0.1022 (2)0.5416 (2)0.0334 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.02272 (10)0.01120 (9)0.01384 (9)0.00192 (7)0.00258 (7)0.00292 (7)
Nd20.02183 (10)0.01863 (10)0.01494 (10)0.00167 (7)0.00283 (7)0.00602 (7)
C10.0306 (18)0.0139 (16)0.0136 (15)0.0028 (14)0.0065 (14)0.0017 (13)
C20.043 (2)0.0156 (18)0.037 (2)0.0046 (15)0.0013 (17)0.0105 (16)
C30.038 (2)0.0119 (16)0.0242 (18)0.0036 (14)0.0010 (15)0.0084 (14)
C40.060 (3)0.0161 (18)0.029 (2)0.0100 (17)0.0159 (19)0.0066 (15)
C50.044 (2)0.030 (2)0.046 (2)0.0107 (18)0.0183 (19)0.0189 (19)
C60.041 (2)0.0188 (19)0.040 (2)0.0011 (16)0.0013 (18)0.0131 (17)
C70.045 (2)0.0113 (17)0.0229 (18)0.0071 (15)0.0007 (16)0.0063 (14)
C80.037 (2)0.0177 (17)0.0242 (17)0.0095 (15)0.0074 (15)0.0093 (14)
C90.057 (3)0.0178 (18)0.0218 (18)0.0051 (17)0.0011 (17)0.0055 (15)
C100.0297 (18)0.0129 (17)0.0227 (18)0.0016 (13)0.0054 (14)0.0032 (14)
C110.0265 (18)0.0175 (18)0.0254 (18)0.0028 (14)0.0044 (15)0.0005 (14)
C120.039 (2)0.016 (2)0.073 (3)0.0030 (17)0.018 (2)0.0002 (19)
C130.034 (2)0.0155 (18)0.041 (2)0.0040 (15)0.0102 (17)0.0048 (16)
C140.048 (3)0.029 (2)0.036 (2)0.0154 (19)0.0028 (19)0.0006 (17)
C150.032 (2)0.030 (2)0.039 (2)0.0066 (16)0.0131 (17)0.0079 (17)
C160.0314 (19)0.0191 (18)0.033 (2)0.0000 (15)0.0033 (16)0.0077 (15)
C170.0307 (19)0.0192 (17)0.0210 (17)0.0042 (14)0.0007 (14)0.0087 (14)
C180.0224 (17)0.0199 (18)0.035 (2)0.0017 (14)0.0010 (15)0.0103 (15)
C190.0315 (19)0.0219 (18)0.0252 (18)0.0034 (15)0.0049 (15)0.0082 (15)
C200.0236 (17)0.0151 (16)0.0167 (16)0.0015 (13)0.0018 (13)0.0007 (13)
C210.0294 (19)0.030 (2)0.0158 (17)0.0037 (15)0.0031 (14)0.0064 (15)
C220.0305 (19)0.035 (2)0.0192 (18)0.0000 (16)0.0027 (15)0.0038 (16)
C230.033 (2)0.030 (2)0.0161 (17)0.0001 (15)0.0021 (15)0.0036 (15)
C240.069 (3)0.055 (3)0.039 (2)0.029 (2)0.026 (2)0.026 (2)
C250.077 (3)0.063 (3)0.050 (3)0.043 (3)0.037 (3)0.027 (2)
C260.056 (3)0.040 (2)0.030 (2)0.010 (2)0.0212 (19)0.0081 (18)
C270.0319 (19)0.0269 (19)0.0227 (18)0.0050 (15)0.0032 (15)0.0094 (15)
C280.0246 (18)0.0267 (19)0.0253 (18)0.0011 (14)0.0007 (15)0.0060 (15)
C290.030 (2)0.047 (2)0.030 (2)0.0072 (17)0.0004 (16)0.0188 (18)
C300.0282 (19)0.0257 (19)0.0193 (17)0.0035 (15)0.0082 (15)0.0046 (15)
O10.0361 (14)0.0165 (12)0.0282 (13)0.0012 (10)0.0038 (11)0.0079 (10)
O20.0297 (13)0.0205 (13)0.0363 (14)0.0001 (10)0.0006 (11)0.0126 (11)
O30.0495 (16)0.0138 (12)0.0258 (13)0.0040 (11)0.0117 (12)0.0010 (10)
O40.0642 (19)0.0190 (13)0.0199 (13)0.0106 (12)0.0007 (12)0.0060 (10)
O50.0326 (13)0.0158 (12)0.0228 (12)0.0005 (10)0.0011 (10)0.0001 (10)
O60.0322 (14)0.0198 (13)0.0356 (14)0.0023 (10)0.0064 (12)0.0035 (11)
O70.0340 (14)0.0250 (13)0.0264 (13)0.0103 (11)0.0121 (11)0.0080 (11)
O80.0593 (18)0.0261 (14)0.0353 (15)0.0142 (13)0.0287 (14)0.0160 (12)
O90.0316 (13)0.0260 (13)0.0162 (11)0.0074 (10)0.0064 (10)0.0050 (10)
O100.0263 (15)0.073 (2)0.0265 (14)0.0010 (14)0.0021 (12)0.0016 (14)
O110.0310 (14)0.0403 (15)0.0247 (13)0.0063 (11)0.0083 (11)0.0165 (12)
O120.0262 (13)0.0424 (16)0.0236 (13)0.0044 (11)0.0031 (11)0.0100 (12)
O130.0298 (14)0.0386 (16)0.0362 (15)0.0043 (12)0.0032 (12)0.0119 (12)
O140.0334 (14)0.0384 (16)0.0316 (14)0.0090 (12)0.0078 (11)0.0129 (12)
Geometric parameters (Å, º) top
Nd1—O3i2.415 (2)C15—C161.384 (5)
Nd1—O5ii2.416 (2)C15—H150.9300
Nd1—O42.441 (2)C16—C171.384 (5)
Nd1—O72.442 (2)C16—H160.9300
Nd1—O122.496 (2)C17—C181.387 (5)
Nd1—O132.519 (2)C17—C191.508 (5)
Nd1—O2iii2.520 (2)C18—H180.9300
Nd1—O1iii2.576 (2)C19—C201.510 (5)
Nd1—O32.749 (2)C19—H19A0.9700
Nd2—O8iv2.377 (2)C19—H19B0.9700
Nd2—O112.418 (2)C20—O81.239 (4)
Nd2—O9v2.462 (2)C20—O71.257 (4)
Nd2—O1iii2.475 (2)C21—O101.227 (4)
Nd2—O142.529 (3)C21—O91.290 (4)
Nd2—O6ii2.531 (2)C21—C221.519 (5)
Nd2—O10vi2.542 (3)C21—Nd2vii2.952 (3)
Nd2—O5ii2.571 (2)C22—C231.506 (5)
Nd2—O9vi2.621 (2)C22—H22A0.9700
C1—O21.237 (4)C22—H22B0.9700
C1—O11.282 (4)C23—C281.380 (5)
C1—C21.510 (4)C23—C241.383 (5)
C2—C31.506 (5)C24—C251.366 (6)
C2—H2A0.9700C24—H240.9300
C2—H2B0.9700C25—C261.377 (6)
C3—C41.385 (5)C25—H250.9300
C3—C81.392 (5)C26—C271.377 (5)
C4—C51.374 (6)C26—H260.9300
C4—H40.9300C27—C281.391 (5)
C5—C61.378 (5)C27—C291.507 (5)
C5—H50.9300C28—H280.9300
C6—C71.373 (5)C29—C301.512 (5)
C6—H60.9300C29—H29A0.9700
C7—C81.392 (5)C29—H29B0.9700
C7—C91.508 (5)C30—O111.251 (4)
C8—H80.9300C30—O121.266 (4)
C9—C101.499 (5)O1—Nd2viii2.475 (2)
C9—H9A0.9700O1—Nd1viii2.576 (2)
C9—H9B0.9700O2—Nd1viii2.520 (2)
C10—O41.241 (4)O3—Nd1i2.415 (2)
C10—O31.263 (4)O5—Nd1ii2.416 (2)
C11—O61.239 (4)O5—Nd2ii2.571 (2)
C11—O51.281 (4)O6—Nd2ii2.531 (2)
C11—C121.503 (5)O8—Nd2iv2.377 (2)
C12—C131.502 (5)O9—Nd2v2.462 (2)
C12—H12A0.9700O9—Nd2vii2.621 (2)
C12—H12B0.9700O10—Nd2vii2.542 (3)
C13—C141.381 (6)O13—H1W0.8758
C13—C181.391 (5)O13—H2W0.8110
C14—C151.367 (6)O14—H4W0.8644
C14—H140.9300O14—H3W0.8693
O3i—Nd1—O5ii144.23 (9)C7—C9—H9B108.7
O3i—Nd1—O4113.33 (8)H9A—C9—H9B107.6
O5ii—Nd1—O476.46 (8)O4—C10—O3119.9 (3)
O3i—Nd1—O7141.44 (8)O4—C10—C9120.3 (3)
O5ii—Nd1—O771.16 (8)O3—C10—C9119.9 (3)
O4—Nd1—O784.45 (8)O6—C11—O5120.5 (3)
O3i—Nd1—O1274.32 (8)O6—C11—C12123.3 (3)
O5ii—Nd1—O1271.68 (8)O5—C11—C12116.0 (3)
O4—Nd1—O1288.05 (9)C13—C12—C11117.0 (3)
O7—Nd1—O12142.83 (8)C13—C12—H12A108.0
O3i—Nd1—O1377.43 (9)C11—C12—H12A108.0
O5ii—Nd1—O13138.26 (8)C13—C12—H12B108.0
O4—Nd1—O1383.71 (9)C11—C12—H12B108.0
O7—Nd1—O1370.65 (8)H12A—C12—H12B107.3
O12—Nd1—O13144.46 (8)C14—C13—C18118.6 (3)
O3i—Nd1—O2iii75.03 (8)C14—C13—C12121.8 (4)
O5ii—Nd1—O2iii112.51 (8)C18—C13—C12119.6 (4)
O4—Nd1—O2iii153.02 (9)C15—C14—C13120.8 (4)
O7—Nd1—O2iii75.35 (8)C15—C14—H14119.6
O12—Nd1—O2iii118.83 (8)C13—C14—H14119.6
O13—Nd1—O2iii72.90 (8)C14—C15—C16120.4 (4)
O3i—Nd1—O1iii94.43 (8)C14—C15—H15119.8
O5ii—Nd1—O1iii69.57 (8)C16—C15—H15119.8
O4—Nd1—O1iii146.02 (8)C15—C16—C17120.1 (3)
O7—Nd1—O1iii85.44 (8)C15—C16—H16119.9
O12—Nd1—O1iii80.76 (8)C17—C16—H16119.9
O13—Nd1—O1iii122.85 (8)C16—C17—C18118.8 (3)
O2iii—Nd1—O1iii50.71 (7)C16—C17—C19122.3 (3)
O3i—Nd1—O364.78 (9)C18—C17—C19118.9 (3)
O5ii—Nd1—O3119.11 (7)C17—C18—C13121.2 (3)
O4—Nd1—O348.91 (7)C17—C18—H18119.4
O7—Nd1—O3119.10 (8)C13—C18—H18119.4
O12—Nd1—O380.67 (8)C17—C19—C20115.1 (3)
O13—Nd1—O367.92 (8)C17—C19—H19A108.5
O2iii—Nd1—O3128.34 (7)C20—C19—H19A108.5
O1iii—Nd1—O3155.25 (8)C17—C19—H19B108.5
O8iv—Nd2—O11140.87 (9)C20—C19—H19B108.5
O8iv—Nd2—O9v80.82 (8)H19A—C19—H19B107.5
O11—Nd2—O9v72.33 (8)O8—C20—O7123.0 (3)
O8iv—Nd2—O1iii74.90 (9)O8—C20—C19118.7 (3)
O11—Nd2—O1iii76.48 (8)O7—C20—C19118.3 (3)
O9v—Nd2—O1iii88.60 (8)O10—C21—O9120.9 (3)
O8iv—Nd2—O1471.83 (9)O10—C21—C22121.8 (3)
O11—Nd2—O14131.77 (8)O9—C21—C22117.3 (3)
O9v—Nd2—O14152.59 (8)C23—C22—C21114.1 (3)
O1iii—Nd2—O1485.98 (8)C23—C22—H22A108.7
O8iv—Nd2—O6ii140.58 (9)C21—C22—H22A108.7
O11—Nd2—O6ii77.47 (9)C23—C22—H22B108.7
O9v—Nd2—O6ii132.09 (8)C21—C22—H22B108.7
O1iii—Nd2—O6ii119.41 (8)H22A—C22—H22B107.6
O14—Nd2—O6ii72.89 (9)C28—C23—C24118.0 (3)
O8iv—Nd2—O10vi73.99 (10)C28—C23—C22122.3 (3)
O11—Nd2—O10vi139.31 (9)C24—C23—C22119.7 (3)
O9v—Nd2—O10vi103.61 (8)C25—C24—C23121.3 (4)
O1iii—Nd2—O10vi144.10 (9)C25—C24—H24119.4
O14—Nd2—O10vi67.60 (8)C23—C24—H24119.4
O6ii—Nd2—O10vi76.78 (9)C24—C25—C26120.1 (4)
O8iv—Nd2—O5ii123.39 (9)C24—C25—H25120.0
O11—Nd2—O5ii67.91 (8)C26—C25—H25120.0
O9v—Nd2—O5ii137.67 (7)C25—C26—C27120.4 (4)
O1iii—Nd2—O5ii68.79 (7)C25—C26—H26119.8
O14—Nd2—O5ii63.87 (8)C27—C26—H26119.8
O6ii—Nd2—O5ii50.79 (7)C26—C27—C28118.7 (3)
O10vi—Nd2—O5ii115.78 (9)C26—C27—C29120.8 (3)
O8iv—Nd2—O9vi99.49 (9)C28—C27—C29120.5 (3)
O11—Nd2—O9vi94.98 (8)C23—C28—C27121.6 (3)
O9v—Nd2—O9vi65.88 (9)C23—C28—H28119.2
O1iii—Nd2—O9vi154.47 (8)C27—C28—H28119.2
O14—Nd2—O9vi116.39 (8)C27—C29—C30119.0 (3)
O6ii—Nd2—O9vi80.98 (7)C27—C29—H29A107.6
O10vi—Nd2—O9vi50.17 (8)C30—C29—H29A107.6
O5ii—Nd2—O9vi130.65 (7)C27—C29—H29B107.6
O2—C1—O1120.1 (3)C30—C29—H29B107.6
O2—C1—C2121.6 (3)H29A—C29—H29B107.0
O1—C1—C2118.3 (3)O11—C30—O12125.0 (3)
C3—C2—C1115.8 (3)O11—C30—C29114.2 (3)
C3—C2—H2A108.3O12—C30—C29120.8 (3)
C1—C2—H2A108.3C1—O1—Nd2viii149.4 (2)
C3—C2—H2B108.3C1—O1—Nd1viii92.21 (19)
C1—C2—H2B108.3Nd2viii—O1—Nd1viii109.46 (8)
H2A—C2—H2B107.4C1—O2—Nd1viii96.0 (2)
C4—C3—C8118.0 (3)C10—O3—Nd1i155.9 (2)
C4—C3—C2120.9 (3)C10—O3—Nd187.89 (19)
C8—C3—C2121.1 (3)Nd1i—O3—Nd1115.22 (9)
C5—C4—C3121.1 (4)C10—O4—Nd1103.32 (19)
C5—C4—H4119.4C11—O5—Nd1ii153.8 (2)
C3—C4—H4119.4C11—O5—Nd2ii92.8 (2)
C4—C5—C6120.1 (4)Nd1ii—O5—Nd2ii111.55 (9)
C4—C5—H5120.0C11—O6—Nd2ii95.8 (2)
C6—C5—H5120.0C20—O7—Nd1147.9 (2)
C7—C6—C5120.5 (4)C20—O8—Nd2iv144.9 (2)
C7—C6—H6119.7C21—O9—Nd2v132.8 (2)
C5—C6—H6119.7C21—O9—Nd2vii91.54 (19)
C6—C7—C8119.0 (3)Nd2v—O9—Nd2vii114.12 (8)
C6—C7—C9120.0 (3)C21—O10—Nd2vii96.9 (2)
C8—C7—C9120.9 (3)C30—O11—Nd2143.5 (2)
C7—C8—C3121.3 (3)C30—O12—Nd1131.1 (2)
C7—C8—H8119.4Nd1—O13—H1W116.9
C3—C8—H8119.4Nd1—O13—H2W117.1
C10—C9—C7114.1 (3)H1W—O13—H2W125.7
C10—C9—H9A108.7Nd2—O14—H4W113.5
C7—C9—H9A108.7Nd2—O14—H3W123.7
C10—C9—H9B108.7H4W—O14—H3W113.8
O2—C1—C2—C33.6 (5)O1iii—Nd1—O3—C10137.8 (2)
O1—C1—C2—C3178.0 (3)C1iii—Nd1—O3—C10171.40 (19)
C1—C2—C3—C465.1 (5)O3i—Nd1—O3—Nd1i0.0
C1—C2—C3—C8115.0 (4)O5ii—Nd1—O3—Nd1i139.84 (10)
C8—C3—C4—C50.4 (5)O4—Nd1—O3—Nd1i172.57 (17)
C2—C3—C4—C5179.8 (3)O7—Nd1—O3—Nd1i136.64 (10)
C3—C4—C5—C61.1 (6)O12—Nd1—O3—Nd1i76.98 (11)
C4—C5—C6—C71.4 (6)O13—Nd1—O3—Nd1i86.07 (11)
C5—C6—C7—C80.2 (5)O2iii—Nd1—O3—Nd1i42.57 (15)
C5—C6—C7—C9176.9 (3)O1iii—Nd1—O3—Nd1i35.2 (2)
C6—C7—C8—C31.3 (5)C1iii—Nd1—O3—Nd1i15.6 (2)
C9—C7—C8—C3178.4 (3)O3—C10—O4—Nd10.8 (4)
C4—C3—C8—C71.6 (5)C9—C10—O4—Nd1179.2 (3)
C2—C3—C8—C7178.6 (3)O3i—Nd1—O4—C107.8 (3)
C6—C7—C9—C1078.4 (4)O5ii—Nd1—O4—C10151.4 (2)
C8—C7—C9—C1098.7 (4)O7—Nd1—O4—C10136.7 (2)
C7—C9—C10—O46.9 (5)O12—Nd1—O4—C1079.8 (2)
C7—C9—C10—O3173.1 (3)O13—Nd1—O4—C1065.6 (2)
O6—C11—C12—C1321.0 (6)O2iii—Nd1—O4—C1095.4 (3)
O5—C11—C12—C13162.9 (4)O1iii—Nd1—O4—C10150.0 (2)
C11—C12—C13—C1462.9 (6)O3—Nd1—O4—C100.4 (2)
C11—C12—C13—C18119.6 (4)C1iii—Nd1—O4—C10162.0 (3)
C18—C13—C14—C151.6 (6)O6—C11—O5—Nd1ii156.4 (4)
C12—C13—C14—C15179.1 (4)C12—C11—O5—Nd1ii27.5 (7)
C13—C14—C15—C160.5 (6)O6—C11—O5—Nd2ii2.8 (3)
C14—C15—C16—C171.3 (6)C12—C11—O5—Nd2ii173.3 (3)
C15—C16—C17—C181.9 (5)O5—C11—O6—Nd2ii2.9 (4)
C15—C16—C17—C19178.2 (3)C12—C11—O6—Nd2ii173.0 (4)
C16—C17—C18—C130.8 (5)O8—C20—O7—Nd1175.1 (3)
C19—C17—C18—C13179.3 (3)C19—C20—O7—Nd15.4 (6)
C14—C13—C18—C170.9 (5)O3i—Nd1—O7—C20105.2 (4)
C12—C13—C18—C17178.5 (3)O5ii—Nd1—O7—C2093.5 (4)
C16—C17—C19—C2065.2 (4)O4—Nd1—O7—C2015.9 (4)
C18—C17—C19—C20114.9 (4)O12—Nd1—O7—C2095.2 (4)
C17—C19—C20—O822.9 (5)O13—Nd1—O7—C2069.4 (4)
C17—C19—C20—O7156.6 (3)O2iii—Nd1—O7—C20146.1 (4)
O10—C21—C22—C238.0 (5)O1iii—Nd1—O7—C20163.4 (4)
O9—C21—C22—C23174.6 (3)O3—Nd1—O7—C2020.0 (4)
C21—C22—C23—C28109.6 (4)C1iii—Nd1—O7—C20170.7 (4)
C21—C22—C23—C2470.0 (5)O7—C20—O8—Nd2iv36.4 (6)
C28—C23—C24—C251.3 (7)C19—C20—O8—Nd2iv144.1 (3)
C22—C23—C24—C25178.3 (4)O10—C21—O9—Nd2v118.1 (3)
C23—C24—C25—C262.0 (8)C22—C21—O9—Nd2v64.4 (4)
C24—C25—C26—C271.3 (8)O10—C21—O9—Nd2vii7.5 (4)
C25—C26—C27—C280.1 (6)C22—C21—O9—Nd2vii170.0 (3)
C25—C26—C27—C29177.8 (4)O9—C21—O10—Nd2vii7.8 (4)
C24—C23—C28—C270.1 (6)C22—C21—O10—Nd2vii169.6 (3)
C22—C23—C28—C27179.5 (3)O12—C30—O11—Nd236.9 (6)
C26—C27—C28—C230.5 (5)C29—C30—O11—Nd2144.4 (3)
C29—C27—C28—C23177.2 (3)O8iv—Nd2—O11—C30100.6 (4)
C26—C27—C29—C3058.1 (5)O9v—Nd2—O11—C30149.5 (4)
C28—C27—C29—C30124.2 (4)O1iii—Nd2—O11—C3056.7 (4)
C27—C29—C30—O11170.9 (3)O14—Nd2—O11—C3015.2 (4)
C27—C29—C30—O1210.4 (5)O6ii—Nd2—O11—C3068.1 (4)
O2—C1—O1—Nd2viii126.3 (4)O10vi—Nd2—O11—C30120.0 (4)
C2—C1—O1—Nd2viii55.3 (6)O5ii—Nd2—O11—C3015.6 (4)
O2—C1—O1—Nd1viii9.9 (3)O9vi—Nd2—O11—C30147.7 (4)
C2—C1—O1—Nd1viii168.6 (3)C11ii—Nd2—O11—C3043.0 (4)
O1—C1—O2—Nd1viii10.1 (3)C21vi—Nd2—O11—C30134.6 (4)
C2—C1—O2—Nd1viii168.2 (3)O11—C30—O12—Nd127.9 (5)
O4—C10—O3—Nd1i163.6 (4)C29—C30—O12—Nd1153.5 (3)
C9—C10—O3—Nd1i16.4 (8)O3i—Nd1—O12—C30142.6 (3)
O4—C10—O3—Nd10.7 (3)O5ii—Nd1—O12—C3026.1 (3)
C9—C10—O3—Nd1179.3 (3)O4—Nd1—O12—C30102.4 (3)
O3i—Nd1—O3—C10173.0 (3)O7—Nd1—O12—C3024.3 (4)
O5ii—Nd1—O3—C1033.2 (2)O13—Nd1—O12—C30178.8 (3)
O4—Nd1—O3—C100.43 (19)O2iii—Nd1—O12—C3080.1 (3)
O7—Nd1—O3—C1050.4 (2)O1iii—Nd1—O12—C3045.4 (3)
O12—Nd1—O3—C1096.0 (2)O3—Nd1—O12—C30151.1 (3)
O13—Nd1—O3—C10100.9 (2)C1iii—Nd1—O12—C3063.8 (3)
O2iii—Nd1—O3—C10144.43 (19)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1; (iii) x, y1, z; (iv) x, y, z+1; (v) x+1, y, z; (vi) x, y, z+1; (vii) x, y, z1; (viii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H1W···O12i0.882.392.838 (3)112
O14—H4W···O7iv0.862.262.829 (3)124
O14—H4W···O2ii0.862.413.177 (4)148
O14—H3W···O70.872.253.024 (3)149
O14—H3W···O14iv0.872.533.100 (5)123
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Nd2(C10H8O4)3(H2O)2]
Mr901.00
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.4846 (13), 11.9660 (16), 12.3514 (16)
α, β, γ (°)105.619 (5), 97.202 (5), 92.625 (6)
V3)1475.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.55
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.516, 0.580
No. of measured, independent and
observed [I > 2σ(I)] reflections
7865, 5315, 4806
Rint0.013
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.03
No. of reflections5315
No. of parameters415
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.76

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H1W···O12i0.882.392.838 (3)112
O14—H4W···O7ii0.862.262.829 (3)124
O14—H4W···O2iii0.862.413.177 (4)148
O14—H3W···O70.872.253.024 (3)149
O14—H3W···O14ii0.872.533.100 (5)123
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x, y+1, z+1.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, Z.-Q., Li, H.-J. & Gu, J.-Z. (2011). Acta Cryst. E67, m310.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLv, D.-Y., Gao, Z.-Q. & Gu, J.-Z. (2010). Acta Cryst. E66, m1694–m1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, P., Ma, J. P. & Dong, Y. B. (2009). Chem. Eur. J. 15, 10432–10445.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, F. X., Lu, J., Guo, Z. G., Li, T. H., Li, Y. F. & Cao, R. (2008). Inorg. Chem. Commun. 11, 105–109.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds