organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-2-cyclo­propyl-4-(tri­fluoro­meth­yl)quinoline

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Pharmaceutical Chemistry, GITAM Institute of Pharmacy, GITAM University, Visakhapatnam 530 045, Andhrapradesh, India, and cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 27 January 2011; accepted 29 January 2011; online 5 February 2011)

In the title compound, C13H9ClF3N, the quinoline ring system makes a dihedral angle of 88.8 (2)° with the cyclo­propyl ring.

Related literature

For general background to quinolines see: Kayser & Novak (1987[Kayser, F. H. & Novak, J. (1987). Am. J. Med. 82 (suppl. 4A), 33-39]); Rudin et al. (1984[Rudin, J. E., Norden, C. W. & Shinners, E. M. (1984). Antimicrob. Agents Chemother. 26, 597-598.]); Mao et al. (2009[Mao, J., Yuan, H., Wang, Y., Wan, B., Pieroni, M., Huang, Q., Breemen, R. B., Kozikowski, A. P. & Franzblau, S. G. (2009). J. Med. Chem. 52, 6966-6978.]); Bermudez et al. (2004[Bermudez, L. E., Kolonoski, P., Seitz, L. E., Petrofsky, M., Reynolds, R., Wu, M. & Young, L. S. (2004). Antimicrob. Agents Chemother. 48, 3556-3558.]); Jayaprakash et al. (2006[Jayaprakash, S., Iso, Y., Wan, B., Franzblau, S. G. & Kozikowski, A. P. (2006). ChemMedChem, 1, 593-597.]); Andries et al. (2005[Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., et al. (2005). Science, 307, 223-227.]). For related structures, see: Skörska et al. (2005[Skörska, A., Sliwinski, J. & Oleksyn, B. J. (2005). Bioorg. Med. Chem. Lett. 16, 850-853.]); Devarajegowda et al. (2010[Devarajegowda, H. C., Vepuri, S. B., VinduVahini, M., Kavitha, H. D. & Arunkashi, H. K. (2010). Acta Cryst. E66, o2237-o2238.]); Li et al. (2005[Li, X.-W., Zhi, F., Shen, J.-H. & Hu, Y.-Q. (2005). Acta Cryst. E61, o2235-o2236.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClF3N

  • Mr = 271.66

  • Monoclinic, P 21 /c

  • a = 13.8482 (19) Å

  • b = 5.0534 (8) Å

  • c = 18.048 (3) Å

  • β = 107.503 (17)°

  • V = 1204.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.942, Tmax = 0.961

  • 11631 measured reflections

  • 2105 independent reflections

  • 946 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.081

  • S = 0.78

  • 2105 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993)[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1-Cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)- 3-quinolinecarboxylic acid (ciprofloxacin) is a widely used broad-spectrum antibiotic, which is active against both Gram-positive and Gram-negative bacteria (Kayser & Novak, 1987; Rudin et al., 1984). 2,8-Bis(trifluoromethyl)quinolin-4-yl]-(2-piperidyl)methanol (mefloquin) is another popular quinoline derivative used in the treatment of malaria. Furthermore, studies have reported that it also possesses important structural features required for antimicrobial activity (Mao et al., 2009; Bermudez et al., 2004; Jayaprakash et al., 2006). Quinoline is the essential structural feature found in these drugs and recently developed antimycobacterial drugs (Andries et al., 2005). Thus, quinoline derivatives are good lead molecules to further develop drug candidates against mycobacterium tuberculosis and as antibacterial agents. On the basis of these observations, we have synthesized a quinoline derivative, with a cyclopropyl group and a trifluoromethyl group as substituents, expecting that the newly designed hybrid molecule would exhibit some antibacterial activity. In this paper we report the crystal structure of 6-chloro-2-cyclopropyl-4-(trifluoromethyl)quinoline.

The asymmetric unit of the 6-chloro-2-cyclopropyl-4-(trifluoromethyl) quinoline contains one molecule (Fig. 1). The quinoline ring system makes a dihedral angle of 88.8 (2)° with the cyclopropyl ring. Bond distances and bond angles in the quinoline ring system are in good agreement with those observed in related crystal structures (Skörska et al., 2005; Devarajegowda et al., 2010; Li et al., 2005). The packing of the molecules, when viewed along the b axis, is shown in Fig. 2.

Related literature top

For general background to quinolines see: Kayser & Novak (1987); Rudin et al. (1984); Mao et al. (2009); Bermudez et al. (2004); Jayaprakash et al. (2006); Andries et al. (2005). For related structures, see: Skörska et al. (2005); Devarajegowda et al. (2010); Li et al. (2005).

Experimental top

A mixture of cyclopropyl acetylene (0.012 mol), anhydrous zinc(II) (0.012 mol), triethylamine (1.67 ml, 0.012 mol), and toluene (25 ml) was stirred at 50°C for 2 h and cooled to 25°C. 4-Chloro- 2-trifluoroacetylaniline (0.01 mol) was added and the reaction mixture was stirred at 25°C for 4 h, then at 50°C for 4 h. After cooling to room temperature, the mixture was added to water (10 ml) and extracted three times with ethyl acetate (20 ml). The combined organic phase was washed with brine and dried over anhydrous sodium sulfate. After removal of solvent, the residue was purified by column chromatography on silica gel (hexane/ethyl acetate; 20:1). M.p. 335 K.

Refinement top

All H atoms were placed at calculated positions; C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H; C—H = 0.98 Å for methine H. They were refined using a riding model with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of molecules, viewed down the b axis.
6-Chloro-2-cyclopropyl-4-(trifluoromethyl)quinoline top
Crystal data top
C13H9ClF3NF(000) = 552
Mr = 271.66Dx = 1.498 Mg m3
Monoclinic, P21/cMelting point: 335 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.8482 (19) ÅCell parameters from 2105 reflections
b = 5.0534 (8) Åθ = 2.4–25.0°
c = 18.048 (3) ŵ = 0.33 mm1
β = 107.503 (17)°T = 293 K
V = 1204.5 (3) Å3Plate, colourless
Z = 40.22 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2105 independent reflections
Radiation source: Enhance (Mo) X-ray Source946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
Detector resolution: 16.0839 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
k = 66
Tmin = 0.942, Tmax = 0.961l = 2121
11631 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0334P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.78(Δ/σ)max = 0.004
2105 reflectionsΔρmax = 0.13 e Å3
164 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (8)
Crystal data top
C13H9ClF3NV = 1204.5 (3) Å3
Mr = 271.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8482 (19) ŵ = 0.33 mm1
b = 5.0534 (8) ÅT = 293 K
c = 18.048 (3) Å0.22 × 0.15 × 0.12 mm
β = 107.503 (17)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2105 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
946 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.961Rint = 0.092
11631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 0.78Δρmax = 0.13 e Å3
2105 reflectionsΔρmin = 0.17 e Å3
164 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24504 (7)0.53695 (16)0.14138 (5)0.0724 (3)
F10.53230 (12)0.2294 (4)0.43406 (12)0.1017 (8)
F20.49335 (13)0.1618 (4)0.31203 (13)0.0964 (7)
F30.49773 (12)0.1595 (4)0.38888 (11)0.0896 (7)
N90.15811 (17)0.2481 (4)0.35357 (14)0.0463 (6)
C10.1215 (2)0.4767 (6)0.49521 (17)0.0629 (9)
H1A0.08460.31370.47790.076*
H1B0.13000.52280.54900.076*
C20.2051 (2)0.5449 (6)0.46255 (18)0.0612 (9)
H20.26230.63980.49800.073*
C30.1078 (2)0.6908 (6)0.43962 (19)0.0695 (10)
H3A0.10770.87010.45880.083*
H3B0.06240.66100.38780.083*
C40.2319 (2)0.3623 (5)0.40752 (17)0.0486 (8)
C50.3343 (2)0.3113 (6)0.41542 (17)0.0542 (9)
H50.38430.39780.45400.065*
C60.3612 (2)0.1390 (6)0.36802 (17)0.0463 (8)
C70.2855 (2)0.0029 (5)0.30968 (16)0.0401 (7)
C80.1844 (2)0.0691 (5)0.30551 (16)0.0405 (7)
C100.4703 (3)0.0937 (8)0.3759 (2)0.0678 (10)
C110.3025 (2)0.1850 (5)0.25749 (16)0.0452 (8)
H110.36830.22900.25910.054*
C120.2229 (2)0.3017 (5)0.20490 (16)0.0456 (8)
C130.1232 (2)0.2394 (6)0.19959 (16)0.0489 (8)
H130.06990.32290.16300.059*
C140.1044 (2)0.0553 (6)0.24840 (16)0.0464 (8)
H140.03780.01050.24420.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0857 (7)0.0722 (6)0.0640 (6)0.0003 (5)0.0296 (5)0.0188 (5)
F10.0448 (12)0.1346 (18)0.1136 (18)0.0181 (12)0.0057 (12)0.0505 (15)
F20.0542 (13)0.148 (2)0.1014 (19)0.0123 (12)0.0445 (12)0.0029 (14)
F30.0516 (12)0.0939 (15)0.1143 (18)0.0143 (11)0.0113 (11)0.0095 (13)
N90.0436 (15)0.0528 (16)0.0448 (16)0.0020 (14)0.0165 (13)0.0026 (14)
C10.085 (3)0.058 (2)0.057 (2)0.0067 (19)0.0374 (19)0.0017 (19)
C20.049 (2)0.071 (2)0.066 (2)0.0092 (19)0.0205 (19)0.024 (2)
C30.095 (3)0.051 (2)0.068 (3)0.011 (2)0.032 (2)0.0001 (19)
C40.044 (2)0.055 (2)0.051 (2)0.0035 (17)0.0208 (18)0.0058 (17)
C50.044 (2)0.063 (2)0.054 (2)0.0126 (17)0.0135 (17)0.0157 (17)
C60.037 (2)0.055 (2)0.049 (2)0.0002 (16)0.0153 (17)0.0012 (16)
C70.036 (2)0.0463 (19)0.0404 (18)0.0017 (15)0.0158 (15)0.0033 (16)
C80.044 (2)0.0452 (18)0.0351 (18)0.0051 (16)0.0169 (16)0.0028 (15)
C100.051 (3)0.078 (3)0.077 (3)0.003 (2)0.023 (2)0.013 (2)
C110.0381 (19)0.0523 (19)0.049 (2)0.0010 (16)0.0191 (17)0.0017 (17)
C120.053 (2)0.0478 (19)0.0413 (19)0.0054 (17)0.0221 (17)0.0045 (15)
C130.045 (2)0.055 (2)0.046 (2)0.0110 (17)0.0128 (17)0.0012 (17)
C140.0364 (18)0.056 (2)0.048 (2)0.0007 (16)0.0144 (17)0.0033 (17)
Geometric parameters (Å, º) top
Cl1—C121.741 (3)C4—C51.406 (4)
F1—C101.329 (3)C5—C61.349 (3)
F2—C101.330 (4)C5—H50.9300
F3—C101.335 (3)C6—C71.420 (3)
N9—C41.314 (3)C6—C101.492 (4)
N9—C81.376 (3)C7—C111.406 (3)
C1—C31.449 (4)C7—C81.419 (3)
C1—C21.490 (4)C8—C141.413 (3)
C1—H1A0.9700C11—C121.354 (3)
C1—H1B0.9700C11—H110.9300
C2—C31.481 (4)C12—C131.392 (3)
C2—C41.482 (4)C13—C141.359 (3)
C2—H20.9800C13—H130.9300
C3—H3A0.9700C14—H140.9300
C3—H3B0.9700
C4—N9—C8117.5 (3)C5—C6—C10120.2 (3)
C3—C1—C260.5 (2)C7—C6—C10119.8 (3)
C3—C1—H1A117.7C11—C7—C8119.0 (3)
C2—C1—H1A117.7C11—C7—C6126.1 (3)
C3—C1—H1B117.7C8—C7—C6114.9 (3)
C2—C1—H1B117.7N9—C8—C14117.0 (3)
H1A—C1—H1B114.8N9—C8—C7124.4 (3)
C3—C2—C4120.8 (3)C14—C8—C7118.6 (3)
C3—C2—C158.35 (19)F1—C10—F2106.5 (3)
C4—C2—C1120.1 (3)F1—C10—F3105.9 (3)
C3—C2—H2115.3F2—C10—F3105.7 (3)
C4—C2—H2115.3F1—C10—C6113.0 (3)
C1—C2—H2115.3F2—C10—C6112.2 (3)
C1—C3—C261.12 (19)F3—C10—C6113.0 (3)
C1—C3—H3A117.7C12—C11—C7119.9 (3)
C2—C3—H3A117.7C12—C11—H11120.0
C1—C3—H3B117.7C7—C11—H11120.0
C2—C3—H3B117.7C11—C12—C13122.1 (3)
H3A—C3—H3B114.8C11—C12—Cl1119.5 (2)
N9—C4—C5122.0 (3)C13—C12—Cl1118.5 (2)
N9—C4—C2118.4 (3)C14—C13—C12119.3 (3)
C5—C4—C2119.6 (3)C14—C13—H13120.3
C6—C5—C4121.1 (3)C12—C13—H13120.3
C6—C5—H5119.4C13—C14—C8121.1 (3)
C4—C5—H5119.4C13—C14—H14119.5
C5—C6—C7120.0 (3)C8—C14—H14119.5
C3—C1—C2—C4109.7 (3)C6—C7—C8—N90.6 (4)
C4—C2—C3—C1108.6 (3)C11—C7—C8—C140.5 (4)
C8—N9—C4—C51.6 (4)C6—C7—C8—C14179.3 (2)
C8—N9—C4—C2176.8 (2)C5—C6—C10—F12.5 (5)
C3—C2—C4—N927.5 (4)C7—C6—C10—F1178.5 (3)
C1—C2—C4—N941.4 (4)C5—C6—C10—F2118.0 (3)
C3—C2—C4—C5154.1 (3)C7—C6—C10—F261.0 (4)
C1—C2—C4—C5137.1 (3)C5—C6—C10—F3122.6 (3)
N9—C4—C5—C60.8 (5)C7—C6—C10—F358.3 (4)
C2—C4—C5—C6177.6 (3)C8—C7—C11—C120.7 (4)
C4—C5—C6—C70.9 (4)C6—C7—C11—C12179.5 (3)
C4—C5—C6—C10178.2 (3)C7—C11—C12—C130.9 (4)
C5—C6—C7—C11178.7 (3)C7—C11—C12—Cl1179.23 (19)
C10—C6—C7—C112.2 (4)C11—C12—C13—C140.2 (4)
C5—C6—C7—C81.5 (4)Cl1—C12—C13—C14179.7 (2)
C10—C6—C7—C8177.6 (3)C12—C13—C14—C81.5 (4)
C4—N9—C8—C14179.1 (2)N9—C8—C14—C13178.4 (2)
C4—N9—C8—C70.9 (4)C7—C8—C14—C131.6 (4)
C11—C7—C8—N9179.5 (2)

Experimental details

Crystal data
Chemical formulaC13H9ClF3N
Mr271.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.8482 (19), 5.0534 (8), 18.048 (3)
β (°) 107.503 (17)
V3)1204.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
Tmin, Tmax0.942, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
11631, 2105, 946
Rint0.092
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.081, 0.78
No. of reflections2105
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank Professor T. N. Guru Row and Mr Venkatesha R. Hathwar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.

References

First citationAndries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., et al. (2005). Science, 307, 223–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBermudez, L. E., Kolonoski, P., Seitz, L. E., Petrofsky, M., Reynolds, R., Wu, M. & Young, L. S. (2004). Antimicrob. Agents Chemother. 48, 3556–3558.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDevarajegowda, H. C., Vepuri, S. B., VinduVahini, M., Kavitha, H. D. & Arunkashi, H. K. (2010). Acta Cryst. E66, o2237–o2238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJayaprakash, S., Iso, Y., Wan, B., Franzblau, S. G. & Kozikowski, A. P. (2006). ChemMedChem, 1, 593–597.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKayser, F. H. & Novak, J. (1987). Am. J. Med. 82 (suppl. 4A), 33–39  Google Scholar
First citationLi, X.-W., Zhi, F., Shen, J.-H. & Hu, Y.-Q. (2005). Acta Cryst. E61, o2235–o2236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMao, J., Yuan, H., Wang, Y., Wan, B., Pieroni, M., Huang, Q., Breemen, R. B., Kozikowski, A. P. & Franzblau, S. G. (2009). J. Med. Chem. 52, 6966–6978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRudin, J. E., Norden, C. W. & Shinners, E. M. (1984). Antimicrob. Agents Chemother. 26, 597–598.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkörska, A., Sliwinski, J. & Oleksyn, B. J. (2005). Bioorg. Med. Chem. Lett. 16, 850–853.  Web of Science PubMed Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds