organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di­benzyl-1,1′-(2,4,6-tri­methyl-m-phenyl­enedi­methyl­ene)diimidazol-3-ium dibromide

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 9 February 2011; accepted 11 February 2011; online 16 February 2011)

In the title molecular salt, C31H34N42+·2Br, the central benzene ring makes dihedral angles of 80.47 (12) and 82.78 (12)° with the adjacent imidazole rings. The dihedral angle between the two terminal phenyl rings is 79.16 (13)°. In the crystal, the cations and anions are linked via C—H⋯Br hydrogen bonds, forming supra­molecular chains along the c axis.

Related literature

For applications of N-heterocyclic carbenes (NHCs), see: Winkelmann & Navarro (2010[Winkelmann, O. H. & Navarro, O. (2010). Adv. Synth. Catal. 352, 212-214.]); Papini et al. (2008[Papini, G., Bandoli, G., Dolmella, A., Lobbia, G. G., Pellei, M. & Santini, C. (2008). Inorg. Chem. Commun. 11, 1103-1106.]); Marion et al. (2007[Marion, N., Diez-Gonzáles, S. & Nolan, S. P. (2007). Angew. Chem. Int. Ed. 46, 2988-3000.]); Burstein & Glorius (2004[Burstein, C. & Glorius, F. (2004). Angew. Chem. Int. Ed. 43, 6205-6208.]); Sohn et al. (2004[Sohn, S. S., Rosen, E. L. & Bode, J. W. (2004). J. Am. Chem. Soc. 126, 14370-14371.]); Grasa et al. (2002[Grasa, G. A., Kissling, R. M. & Nolan, S. P. (2002). Org. Lett. 4, 3583-3586.]); Singh & Nolan (2005[Singh, R. & Nolan, S. P. (2005). Chem. Commun. pp. 5456-5458.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C31H34N42+·2Br

  • Mr = 622.44

  • Monoclinic, P 21 /c

  • a = 8.9851 (2) Å

  • b = 12.8044 (2) Å

  • c = 25.6419 (5) Å

  • β = 102.611 (1)°

  • V = 2878.90 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.84 mm−1

  • T = 100 K

  • 0.49 × 0.43 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.337, Tmax = 0.585

  • 32884 measured reflections

  • 8490 independent reflections

  • 6550 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.101

  • S = 1.04

  • 8490 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯Br2 0.97 2.90 3.754 (2) 147
C7—H7B⋯Br1i 0.97 2.92 3.787 (2) 149
C8—H8A⋯Br2 0.93 2.81 3.496 (3) 132
C10—H10A⋯Br1i 0.93 2.74 3.565 (2) 148
C18—H18B⋯Br2ii 0.97 2.74 3.702 (2) 172
C19—H19A⋯Br1i 0.93 2.74 3.553 (2) 147
C21—H21A⋯Br2iii 0.93 2.83 3.603 (3) 141
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-Heterocyclic carbenes (NHCs) have found widespread applications as ligands in organometallic chemistry during recent years (Winkelmann & Navarro, 2010). They typically have strong σ-donor properties but poor π-acceptor character and have been widely employed as alternatives to phosphine ligands to stabilise transition metal complexes. NHCs are relatively inexpensive, non-toxic and easily prepared from azolium salts (Papini et al., 2008). Notably, NHCs also exhibit excellent catalytic activity in metal-free organocatalysis (Marion et al., 2007) including umpolung and condensation of carbonyl compounds (Burstein & Glorius, 2004; Sohn et al., 2004) and transesterification reactions (Grasa et al., 2002; Singh & Nolan, 2005).

The asymmetric unit of the title compound, (Fig. 1), consists of one 1,3-bis(3-benzylimidazolium-1-ylmethyl)mesitylene cation and two bromide anions. The central benzene ring (C12–C17) makes dihedral angles of 80.47 (12)° and 82.78 (12)° with the adjacent imidazole rings (N1/N2/C8–C10) and (N3/N4/C19–C21). The dihedral angle between the two terminal phenyl rings (C1–C6) and (C23–C28) is 79.16 (13)°.

In the crystal structure (Fig. 2), the cations and anions are linked together via intermolecular C—H···Br (Table 1) hydrogen bonds, forming one-dimensional supramolecular chains along the c-axis.

Related literature top

For applications of N-heterocyclic carbenes (NHCs), see: Winkelmann & Navarro (2010); Papini et al. (2008); Marion et al. (2007); Burstein & Glorius (2004); Sohn et al. (2004); Grasa et al. (2002); Singh & Nolan (2005). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of imidazole (1.0 g, 14.0 mmol) and sodium hydroxide (0.6 g, 15.0 mmol) in DMSO (20 ml) was heated to 363 K for 2 h. The mixture was cooled at room temperature then 1,3-bis(bromomethyl)mesitylene (2.0 g, 6.5 mmol) in 10 ml of DMSO was added, heated to 413 K for 1 h and poured into water (200 ml), then cooled in an ice bath. The resulting precipitate was collected by filtration, washed with water (3x10 ml), and recrystallised from methanol/water to give 1,3-bis(N-imidazole-1-ylmethyl)mesitylene as an off-white solid (1.45 g, 79 %). Further, a mixture of 1,3-bis(N-imidazole-1-ylmethyl)mesitylene (0.7 g, 2.5 mmol) and benzyl bromide (1.0 g, 5.8 mmol) in 30 ml of acetonitrile, was refluxed for 24 h, then cooled to room temperature and left standing overnight, giving the title compound as light brown crystals which were isolated by decantation and washed with diethyl ether (2x5 ml) and placed in a desiccator. The yield was (1.15 g, 74%). The resulting crystals were suitable for X-ray diffraction.

Refinement top

All H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. The highest peak in the final difference map was found at a distance of 0.77 Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) one-dimensional supramolecular chains along the c-axis.
3,3'-Dibenzyl-1,1'-(2,4,6-trimethyl-m- phenylenedimethylene)diimidazol-3-ium dibromide top
Crystal data top
C31H34N42+·2BrF(000) = 1272
Mr = 622.44Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9955 reflections
a = 8.9851 (2) Åθ = 2.3–29.9°
b = 12.8044 (2) ŵ = 2.84 mm1
c = 25.6419 (5) ÅT = 100 K
β = 102.611 (1)°Plate, colourless
V = 2878.90 (10) Å30.49 × 0.43 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8490 independent reflections
Radiation source: fine-focus sealed tube6550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 30.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.337, Tmax = 0.585k = 1718
32884 measured reflectionsl = 3036
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.6972P]
where P = (Fo2 + 2Fc2)/3
8490 reflections(Δ/σ)max = 0.003
337 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C31H34N42+·2BrV = 2878.90 (10) Å3
Mr = 622.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9851 (2) ŵ = 2.84 mm1
b = 12.8044 (2) ÅT = 100 K
c = 25.6419 (5) Å0.49 × 0.43 × 0.21 mm
β = 102.611 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8490 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6550 reflections with I > 2σ(I)
Tmin = 0.337, Tmax = 0.585Rint = 0.036
32884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 1.28 e Å3
8490 reflectionsΔρmin = 0.40 e Å3
337 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6565 (2)0.78480 (15)0.80723 (7)0.0240 (4)
N20.4998 (2)0.82215 (14)0.85747 (8)0.0235 (4)
N30.9596 (2)0.88648 (15)1.09775 (8)0.0244 (4)
N41.1823 (2)0.82656 (14)1.09554 (8)0.0242 (4)
C10.9744 (3)0.8645 (3)0.74204 (12)0.0452 (7)
H1A1.04120.80880.75170.054*
C21.0150 (4)0.9467 (3)0.71276 (14)0.0591 (9)
H2A1.10910.94610.70330.071*
C30.9160 (4)1.0297 (3)0.69757 (12)0.0504 (8)
H3A0.94251.08450.67760.060*
C40.7775 (3)1.0297 (2)0.71252 (11)0.0395 (6)
H4A0.71021.08500.70240.047*
C50.7372 (3)0.94820 (19)0.74249 (10)0.0309 (5)
H5A0.64410.94990.75270.037*
C60.8349 (3)0.86441 (19)0.75719 (9)0.0274 (5)
C70.7989 (3)0.77211 (19)0.78865 (9)0.0268 (5)
H7A0.79120.71010.76650.032*
H7B0.88220.76160.81930.032*
C80.5118 (3)0.76704 (19)0.77738 (10)0.0292 (5)
H8A0.48610.74280.74240.035*
C90.4139 (3)0.79170 (19)0.80890 (10)0.0298 (5)
H9A0.30800.78860.79930.036*
C100.6473 (2)0.81899 (16)0.85554 (9)0.0216 (4)
H10A0.72890.83740.88300.026*
C110.4391 (2)0.85726 (18)0.90348 (9)0.0248 (4)
H11A0.33430.83400.89890.030*
H11B0.43930.93300.90460.030*
C120.5310 (2)0.81582 (16)0.95579 (9)0.0226 (4)
C130.6366 (2)0.87950 (16)0.98984 (9)0.0225 (4)
C140.7047 (2)0.84395 (17)1.04123 (9)0.0236 (4)
C150.6774 (3)0.74111 (18)1.05665 (9)0.0261 (5)
C160.5809 (3)0.67784 (17)1.02034 (10)0.0272 (5)
H16A0.56680.60901.02980.033*
C170.5045 (2)0.71272 (17)0.97056 (9)0.0249 (5)
C180.7980 (3)0.91657 (17)1.08167 (10)0.0269 (5)
H18A0.79140.98651.06680.032*
H18B0.75470.91831.11320.032*
C191.0401 (2)0.83681 (17)1.06739 (9)0.0236 (4)
H19A1.00320.81341.03260.028*
C201.0534 (3)0.90914 (19)1.14621 (10)0.0322 (5)
H20A1.02580.94401.17450.039*
C211.1933 (3)0.87145 (19)1.14526 (10)0.0315 (5)
H21A1.28000.87501.17270.038*
C221.3042 (3)0.76808 (17)1.07770 (10)0.0268 (5)
H22A1.40300.79161.09760.032*
H22B1.29850.78161.04010.032*
C231.2878 (2)0.65205 (18)1.08634 (9)0.0236 (4)
C241.1996 (3)0.59206 (19)1.04611 (10)0.0307 (5)
H24A1.15540.62241.01340.037*
C251.1774 (3)0.4869 (2)1.05463 (12)0.0395 (6)
H25A1.11990.44641.02740.047*
C261.2404 (3)0.44214 (19)1.10336 (12)0.0385 (6)
H26A1.22180.37231.10950.046*
C271.3312 (3)0.5008 (2)1.14307 (11)0.0360 (6)
H27A1.37600.47011.17560.043*
C281.3553 (3)0.6056 (2)1.13442 (10)0.0304 (5)
H28A1.41710.64501.16110.036*
C290.6784 (3)0.98590 (17)0.97157 (10)0.0263 (5)
H29A0.78570.99750.98430.039*
H29B0.62241.03880.98560.039*
H29C0.65350.98880.93320.039*
C300.3955 (3)0.64136 (19)0.93407 (11)0.0315 (5)
H30A0.39170.57520.95130.047*
H30B0.42970.63140.90150.047*
H30C0.29560.67210.92620.047*
C310.7495 (3)0.69928 (19)1.11128 (10)0.0336 (5)
H31A0.70260.63411.11680.050*
H31B0.73520.74851.13800.050*
H31C0.85660.68871.11380.050*
Br10.03325 (2)0.815324 (18)0.928724 (9)0.02679 (7)
Br20.59309 (3)0.572410 (19)0.692096 (9)0.03010 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0227 (9)0.0246 (9)0.0250 (9)0.0029 (7)0.0060 (7)0.0007 (7)
N20.0216 (9)0.0207 (9)0.0288 (10)0.0030 (7)0.0070 (7)0.0024 (7)
N30.0271 (9)0.0217 (9)0.0264 (10)0.0038 (7)0.0100 (7)0.0010 (8)
N40.0245 (9)0.0191 (9)0.0306 (10)0.0010 (7)0.0095 (7)0.0012 (7)
C10.0230 (12)0.066 (2)0.0476 (16)0.0013 (13)0.0093 (11)0.0009 (15)
C20.0332 (15)0.089 (3)0.060 (2)0.0205 (16)0.0208 (14)0.0009 (19)
C30.0549 (19)0.0547 (19)0.0431 (17)0.0281 (16)0.0142 (14)0.0028 (14)
C40.0529 (17)0.0309 (14)0.0354 (14)0.0077 (12)0.0111 (12)0.0017 (11)
C50.0350 (13)0.0304 (13)0.0296 (12)0.0032 (10)0.0118 (10)0.0056 (10)
C60.0244 (11)0.0336 (13)0.0242 (11)0.0037 (9)0.0050 (9)0.0073 (9)
C70.0245 (11)0.0302 (12)0.0265 (11)0.0061 (9)0.0071 (9)0.0041 (9)
C80.0279 (11)0.0306 (13)0.0274 (12)0.0010 (9)0.0025 (9)0.0031 (10)
C90.0224 (11)0.0298 (12)0.0361 (13)0.0006 (9)0.0038 (9)0.0004 (10)
C100.0224 (10)0.0192 (10)0.0234 (10)0.0019 (8)0.0055 (8)0.0009 (8)
C110.0228 (10)0.0236 (11)0.0307 (12)0.0053 (8)0.0119 (9)0.0026 (9)
C120.0235 (10)0.0201 (10)0.0281 (11)0.0066 (8)0.0140 (8)0.0039 (9)
C130.0243 (10)0.0171 (10)0.0311 (12)0.0048 (8)0.0167 (9)0.0025 (8)
C140.0226 (10)0.0220 (11)0.0304 (12)0.0052 (8)0.0149 (9)0.0035 (9)
C150.0272 (11)0.0234 (11)0.0316 (12)0.0078 (9)0.0152 (9)0.0069 (9)
C160.0326 (12)0.0173 (11)0.0361 (13)0.0053 (9)0.0171 (10)0.0052 (9)
C170.0248 (10)0.0186 (10)0.0356 (12)0.0029 (8)0.0160 (9)0.0003 (9)
C180.0278 (11)0.0222 (11)0.0339 (12)0.0064 (9)0.0136 (9)0.0017 (9)
C190.0256 (11)0.0205 (11)0.0267 (11)0.0010 (8)0.0102 (9)0.0015 (8)
C200.0388 (13)0.0311 (13)0.0274 (12)0.0054 (10)0.0089 (10)0.0037 (10)
C210.0336 (13)0.0279 (13)0.0314 (13)0.0051 (10)0.0032 (10)0.0044 (10)
C220.0230 (10)0.0221 (11)0.0386 (13)0.0011 (8)0.0138 (9)0.0012 (9)
C230.0212 (10)0.0224 (11)0.0296 (11)0.0034 (8)0.0106 (8)0.0024 (9)
C240.0291 (12)0.0268 (12)0.0345 (13)0.0019 (9)0.0031 (10)0.0031 (10)
C250.0333 (13)0.0279 (13)0.0540 (17)0.0006 (10)0.0022 (12)0.0048 (12)
C260.0368 (14)0.0186 (12)0.0631 (19)0.0061 (10)0.0175 (13)0.0087 (11)
C270.0382 (14)0.0359 (14)0.0366 (14)0.0139 (11)0.0142 (11)0.0137 (11)
C280.0283 (12)0.0329 (13)0.0304 (12)0.0089 (10)0.0074 (9)0.0010 (10)
C290.0306 (11)0.0195 (11)0.0322 (12)0.0034 (9)0.0143 (9)0.0045 (9)
C300.0342 (13)0.0211 (11)0.0415 (14)0.0000 (10)0.0135 (11)0.0001 (10)
C310.0408 (14)0.0254 (12)0.0356 (14)0.0047 (10)0.0100 (11)0.0089 (10)
Br10.02077 (11)0.03140 (13)0.02841 (12)0.00005 (9)0.00584 (8)0.00150 (9)
Br20.03523 (13)0.02893 (13)0.02839 (13)0.00436 (9)0.01185 (9)0.00585 (9)
Geometric parameters (Å, º) top
N1—C101.333 (3)C14—C151.412 (3)
N1—C81.376 (3)C14—C181.504 (3)
N1—C71.468 (3)C15—C161.387 (4)
N2—C101.337 (3)C15—C311.507 (3)
N2—C91.371 (3)C16—C171.385 (3)
N2—C111.474 (3)C16—H16A0.9300
N3—C191.334 (3)C17—C301.506 (3)
N3—C201.371 (3)C18—H18A0.9700
N3—C181.472 (3)C18—H18B0.9700
N4—C191.330 (3)C19—H19A0.9300
N4—C211.382 (3)C20—C211.352 (3)
N4—C221.479 (3)C20—H20A0.9300
C1—C21.387 (4)C21—H21A0.9300
C1—C61.391 (3)C22—C231.514 (3)
C1—H1A0.9300C22—H22A0.9700
C2—C31.386 (5)C22—H22B0.9700
C2—H2A0.9300C23—C281.384 (3)
C3—C41.380 (4)C23—C241.388 (3)
C3—H3A0.9300C24—C251.385 (3)
C4—C51.390 (4)C24—H24A0.9300
C4—H4A0.9300C25—C261.379 (4)
C5—C61.385 (3)C25—H25A0.9300
C5—H5A0.9300C26—C271.380 (4)
C6—C71.505 (3)C26—H26A0.9300
C7—H7A0.9700C27—C281.384 (4)
C7—H7B0.9700C27—H27A0.9300
C8—C91.355 (3)C28—H28A0.9300
C8—H8A0.9300C29—H29A0.9600
C9—H9A0.9300C29—H29B0.9600
C10—H10A0.9300C29—H29C0.9600
C11—C121.510 (3)C30—H30A0.9600
C11—H11A0.9700C30—H30B0.9600
C11—H11B0.9700C30—H30C0.9600
C12—C131.402 (3)C31—H31A0.9600
C12—C171.408 (3)C31—H31B0.9600
C13—C141.402 (3)C31—H31C0.9600
C13—C291.515 (3)
C10—N1—C8109.14 (18)C17—C16—C15122.8 (2)
C10—N1—C7124.97 (19)C17—C16—H16A118.6
C8—N1—C7125.85 (19)C15—C16—H16A118.6
C10—N2—C9108.90 (18)C16—C17—C12118.1 (2)
C10—N2—C11125.60 (19)C16—C17—C30120.1 (2)
C9—N2—C11125.44 (19)C12—C17—C30121.8 (2)
C19—N3—C20109.00 (19)N3—C18—C14113.49 (18)
C19—N3—C18126.1 (2)N3—C18—H18A108.9
C20—N3—C18124.88 (19)C14—C18—H18A108.9
C19—N4—C21109.05 (19)N3—C18—H18B108.9
C19—N4—C22124.8 (2)C14—C18—H18B108.9
C21—N4—C22125.9 (2)H18A—C18—H18B107.7
C2—C1—C6120.8 (3)N4—C19—N3108.0 (2)
C2—C1—H1A119.6N4—C19—H19A126.0
C6—C1—H1A119.6N3—C19—H19A126.0
C3—C2—C1120.4 (3)C21—C20—N3107.3 (2)
C3—C2—H2A119.8C21—C20—H20A126.3
C1—C2—H2A119.8N3—C20—H20A126.3
C4—C3—C2119.0 (3)C20—C21—N4106.6 (2)
C4—C3—H3A120.5C20—C21—H21A126.7
C2—C3—H3A120.5N4—C21—H21A126.7
C3—C4—C5120.9 (3)N4—C22—C23110.43 (17)
C3—C4—H4A119.6N4—C22—H22A109.6
C5—C4—H4A119.6C23—C22—H22A109.6
C6—C5—C4120.4 (2)N4—C22—H22B109.6
C6—C5—H5A119.8C23—C22—H22B109.6
C4—C5—H5A119.8H22A—C22—H22B108.1
C5—C6—C1118.7 (2)C28—C23—C24119.5 (2)
C5—C6—C7123.8 (2)C28—C23—C22121.0 (2)
C1—C6—C7117.5 (2)C24—C23—C22119.5 (2)
N1—C7—C6113.04 (19)C25—C24—C23119.9 (2)
N1—C7—H7A109.0C25—C24—H24A120.0
C6—C7—H7A109.0C23—C24—H24A120.0
N1—C7—H7B109.0C26—C25—C24120.2 (3)
C6—C7—H7B109.0C26—C25—H25A119.9
H7A—C7—H7B107.8C24—C25—H25A119.9
C9—C8—N1106.7 (2)C25—C26—C27120.1 (2)
C9—C8—H8A126.6C25—C26—H26A119.9
N1—C8—H8A126.6C27—C26—H26A119.9
C8—C9—N2107.3 (2)C26—C27—C28119.8 (2)
C8—C9—H9A126.3C26—C27—H27A120.1
N2—C9—H9A126.3C28—C27—H27A120.1
N1—C10—N2107.92 (19)C23—C28—C27120.4 (2)
N1—C10—H10A126.0C23—C28—H28A119.8
N2—C10—H10A126.0C27—C28—H28A119.8
N2—C11—C12112.17 (17)C13—C29—H29A109.5
N2—C11—H11A109.2C13—C29—H29B109.5
C12—C11—H11A109.2H29A—C29—H29B109.5
N2—C11—H11B109.2C13—C29—H29C109.5
C12—C11—H11B109.2H29A—C29—H29C109.5
H11A—C11—H11B107.9H29B—C29—H29C109.5
C13—C12—C17120.6 (2)C17—C30—H30A109.5
C13—C12—C11120.90 (19)C17—C30—H30B109.5
C17—C12—C11118.5 (2)H30A—C30—H30B109.5
C12—C13—C14119.6 (2)C17—C30—H30C109.5
C12—C13—C29120.7 (2)H30A—C30—H30C109.5
C14—C13—C29119.7 (2)H30B—C30—H30C109.5
C13—C14—C15119.9 (2)C15—C31—H31A109.5
C13—C14—C18120.7 (2)C15—C31—H31B109.5
C15—C14—C18119.2 (2)H31A—C31—H31B109.5
C16—C15—C14118.6 (2)C15—C31—H31C109.5
C16—C15—C31119.7 (2)H31A—C31—H31C109.5
C14—C15—C31121.7 (2)H31B—C31—H31C109.5
C6—C1—C2—C30.7 (5)C13—C14—C15—C31179.4 (2)
C1—C2—C3—C40.7 (5)C18—C14—C15—C315.0 (3)
C2—C3—C4—C50.2 (4)C14—C15—C16—C173.1 (3)
C3—C4—C5—C61.0 (4)C31—C15—C16—C17176.5 (2)
C4—C5—C6—C10.9 (4)C15—C16—C17—C122.4 (3)
C4—C5—C6—C7178.8 (2)C15—C16—C17—C30177.1 (2)
C2—C1—C6—C50.1 (4)C13—C12—C17—C162.5 (3)
C2—C1—C6—C7179.7 (3)C11—C12—C17—C16175.25 (18)
C10—N1—C7—C696.1 (3)C13—C12—C17—C30178.02 (19)
C8—N1—C7—C681.5 (3)C11—C12—C17—C304.2 (3)
C5—C6—C7—N16.2 (3)C19—N3—C18—C1430.3 (3)
C1—C6—C7—N1174.1 (2)C20—N3—C18—C14152.4 (2)
C10—N1—C8—C90.2 (3)C13—C14—C18—N3116.1 (2)
C7—N1—C8—C9177.8 (2)C15—C14—C18—N368.3 (3)
N1—C8—C9—N21.0 (3)C21—N4—C19—N30.3 (3)
C10—N2—C9—C81.6 (3)C22—N4—C19—N3174.75 (19)
C11—N2—C9—C8179.0 (2)C20—N3—C19—N40.5 (3)
C8—N1—C10—N20.8 (2)C18—N3—C19—N4178.19 (19)
C7—N1—C10—N2178.76 (19)C19—N3—C20—C210.6 (3)
C9—N2—C10—N11.5 (2)C18—N3—C20—C21178.2 (2)
C11—N2—C10—N1178.90 (19)N3—C20—C21—N40.4 (3)
C10—N2—C11—C1242.9 (3)C19—N4—C21—C200.0 (3)
C9—N2—C11—C12140.1 (2)C22—N4—C21—C20175.0 (2)
N2—C11—C12—C13101.9 (2)C19—N4—C22—C2379.9 (3)
N2—C11—C12—C1780.3 (2)C21—N4—C22—C2394.4 (3)
C17—C12—C13—C146.5 (3)N4—C22—C23—C2888.0 (3)
C11—C12—C13—C14171.21 (18)N4—C22—C23—C2489.8 (3)
C17—C12—C13—C29173.11 (18)C28—C23—C24—C251.2 (3)
C11—C12—C13—C299.2 (3)C22—C23—C24—C25176.7 (2)
C12—C13—C14—C155.7 (3)C23—C24—C25—C261.2 (4)
C29—C13—C14—C15173.94 (18)C24—C25—C26—C272.7 (4)
C12—C13—C14—C18169.92 (18)C25—C26—C27—C281.8 (4)
C29—C13—C14—C1810.4 (3)C24—C23—C28—C272.1 (3)
C13—C14—C15—C161.0 (3)C22—C23—C28—C27175.7 (2)
C18—C14—C15—C16174.71 (19)C26—C27—C28—C230.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Br20.972.903.754 (2)147
C7—H7B···Br1i0.972.923.787 (2)149
C8—H8A···Br20.932.813.496 (3)132
C10—H10A···Br1i0.932.743.565 (2)148
C18—H18B···Br2ii0.972.743.702 (2)172
C19—H19A···Br1i0.932.743.553 (2)147
C21—H21A···Br2iii0.932.833.603 (3)141
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC31H34N42+·2Br
Mr622.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.9851 (2), 12.8044 (2), 25.6419 (5)
β (°) 102.611 (1)
V3)2878.90 (10)
Z4
Radiation typeMo Kα
µ (mm1)2.84
Crystal size (mm)0.49 × 0.43 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.337, 0.585
No. of measured, independent and
observed [I > 2σ(I)] reflections
32884, 8490, 6550
Rint0.036
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.04
No. of reflections8490
No. of parameters337
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Br20.972.903.754 (2)147
C7—H7B···Br1i0.972.923.787 (2)149
C8—H8A···Br20.932.813.496 (3)132
C10—H10A···Br1i0.932.743.565 (2)148
C18—H18B···Br2ii0.972.743.702 (2)172
C19—H19A···Br1i0.932.743.553 (2)147
C21—H21A···Br2iii0.932.833.603 (3)141
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH thanks Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), short term grant (304/PKIMIA/639001) and RU grants (1001/PKIMIA/813023 and 1001/PKIMIA/811157). AWS thanks USM for the RU grant (1001/PKIMIA/843090). HKF and MH thank the Malaysian Government and USM for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurstein, C. & Glorius, F. (2004). Angew. Chem. Int. Ed. 43, 6205–6208.  Web of Science CSD CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrasa, G. A., Kissling, R. M. & Nolan, S. P. (2002). Org. Lett. 4, 3583–3586.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarion, N., Diez-Gonzáles, S. & Nolan, S. P. (2007). Angew. Chem. Int. Ed. 46, 2988–3000.  Web of Science CrossRef CAS Google Scholar
First citationPapini, G., Bandoli, G., Dolmella, A., Lobbia, G. G., Pellei, M. & Santini, C. (2008). Inorg. Chem. Commun. 11, 1103–1106.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, R. & Nolan, S. P. (2005). Chem. Commun. pp. 5456–5458.  Web of Science CrossRef Google Scholar
First citationSohn, S. S., Rosen, E. L. & Bode, J. W. (2004). J. Am. Chem. Soc. 126, 14370–14371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinkelmann, O. H. & Navarro, O. (2010). Adv. Synth. Catal. 352, 212–214.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds