organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-1-nitro­benzene

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 7527, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 January 2011; accepted 25 January 2011; online 2 February 2011)

The non-H atoms of the title mol­ecule, C6H4BrNO2, are essentially coplanar with an r.m.s. deviation of 0.040 Å. In the crystal, ππ stacking occurs between parallel benzene rings of adjacent mol­ecules with centroid–centroid distances of 3.643 (3) and 3.741 (3) Å. Weak inter­molecular C—H⋯O hydrogen bonding and short Br⋯O contacts [3.227 (4) 3.401 (4) Å] are also observed in the crystal structure. The crystal studied was a non-morohedral twin with a 26.1 (6)% minor component.

Related literature

For the structure of 2-bromo­nitro­benzene, see: Fronczek (2006[Fronczek, F. R. (2006). Private communication (refcode 264855). CCDC, Cambridge, England.]). For the structure of 3-bromo­nitro­benzene, see: Charlton & Trotter (1963[Charlton, T. L. & Trotter, J. (1963). Acta Cryst. 16, 313.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4BrNO2

  • Mr = 202.01

  • Triclinic, [P \overline 1]

  • a = 6.3676 (6) Å

  • b = 7.3635 (7) Å

  • c = 7.6798 (7) Å

  • α = 65.554 (9)°

  • β = 87.705 (8)°

  • γ = 88.884 (8)°

  • V = 327.54 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.20 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.414, Tmax = 1.000

  • 2142 measured reflections

  • 1443 independent reflections

  • 1365 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.07

  • 1443 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −1.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.52 3.359 (6) 147
C5—H5⋯O2ii 0.95 2.54 3.276 (6) 135
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z+2.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

4-Bromo-1-nitrobenzene (Scheme I) was synthesized as a precursor that will be used in the synthesis of 4,4'-bis(aminophenoxy)biphenyl (the compound is also commercially available: http://www.chemindustry.com/chemicals/815494.html). The molecule is flat (Fig. 1) as the nitro substituent is co-planar with the aromatic ring. π-π stacking occrs between parallel benzene rings of adjacent molecules, centroids distance between C1-ring and C1i-ring (symmetry code: (i) 1-x, -5, 1-z) is 3.643 (3) Å and that between C1-ring and C1ii-ring (symmetry code: (ii) 1-x, 1-y, 1-z) is 3.741 (3) Å. Intermolecular weak C—H···O hydrogen bonding (Table 1) and the short Br···O contacts [3.227 (4), 3.401 (4) Å] are observed in the crystal structure.

Related literature top

For the structure of 2-bromonitrobenzene, see: Fronczek (2006). For the structure of 3-bromonitrobenzene, see: Charlton & Trotter (1963).

Experimental top

The nitrating mixture cosisted of 5 ml conc. HNO3 and 5 ml conc. H2SO4 kept at 273 K. Bromobenzene (2.6 ml) was added. The temperature was then raised to about 333 K for 3 h. The mixture was added to water (200 ml); the organic compound was extracted by using dichloromethane. The solvent was dried and then alllowed to evaporate to yield the product in 70% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The crystal is a non-merohedral twin; the separation of the two domains was effected by CrysAlis PRO (Agilent, 2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C6H4BrNO2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-Bromo-1-nitrobenzene top
Crystal data top
C6H4BrNO2Z = 2
Mr = 202.01F(000) = 196
Triclinic, P1Dx = 2.048 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3676 (6) ÅCell parameters from 1590 reflections
b = 7.3635 (7) Åθ = 2.9–28.3°
c = 7.6798 (7) ŵ = 6.20 mm1
α = 65.554 (9)°T = 100 K
β = 87.705 (8)°Block, colorless
γ = 88.884 (8)°0.20 × 0.10 × 0.05 mm
V = 327.54 (5) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1443 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1365 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.052
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 99
Tmin = 0.414, Tmax = 1.000l = 99
2142 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.4717P]
where P = (Fo2 + 2Fc2)/3
1443 reflections(Δ/σ)max = 0.001
92 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 1.58 e Å3
Crystal data top
C6H4BrNO2γ = 88.884 (8)°
Mr = 202.01V = 327.54 (5) Å3
Triclinic, P1Z = 2
a = 6.3676 (6) ÅMo Kα radiation
b = 7.3635 (7) ŵ = 6.20 mm1
c = 7.6798 (7) ÅT = 100 K
α = 65.554 (9)°0.20 × 0.10 × 0.05 mm
β = 87.705 (8)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1443 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1365 reflections with I > 2σ(I)
Tmin = 0.414, Tmax = 1.000Rint = 0.052
2142 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.07Δρmax = 0.91 e Å3
1443 reflectionsΔρmin = 1.58 e Å3
92 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.83556 (7)0.24763 (7)0.14671 (6)0.01978 (19)
O10.0573 (5)0.3167 (6)0.7390 (5)0.0238 (8)
O20.3071 (6)0.2117 (6)0.9389 (5)0.0245 (8)
N10.2383 (6)0.2623 (6)0.7787 (5)0.0151 (7)
C60.7151 (7)0.1751 (7)0.5288 (7)0.0173 (9)
H60.85260.12120.55750.021*
C50.5810 (7)0.1811 (7)0.6722 (6)0.0146 (9)
H50.62510.13260.80040.018*
C20.4465 (7)0.3256 (7)0.2969 (7)0.0173 (9)
H20.40240.37500.16870.021*
C30.3121 (7)0.3291 (7)0.4408 (6)0.0159 (9)
H30.17310.37920.41300.019*
C10.6478 (7)0.2483 (6)0.3429 (6)0.0157 (9)
C40.3809 (7)0.2594 (6)0.6254 (6)0.0125 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0204 (3)0.0213 (3)0.0206 (3)0.00244 (19)0.00662 (18)0.0122 (2)
O10.0149 (16)0.038 (2)0.0232 (18)0.0024 (15)0.0001 (13)0.0174 (16)
O20.0299 (19)0.032 (2)0.0131 (16)0.0028 (16)0.0003 (14)0.0107 (15)
N10.0173 (18)0.0152 (18)0.0156 (18)0.0013 (14)0.0010 (14)0.0093 (15)
C60.015 (2)0.017 (2)0.021 (2)0.0008 (17)0.0000 (17)0.0089 (19)
C50.016 (2)0.015 (2)0.014 (2)0.0014 (16)0.0023 (16)0.0076 (17)
C20.020 (2)0.018 (2)0.016 (2)0.0004 (18)0.0001 (17)0.0094 (18)
C30.018 (2)0.016 (2)0.015 (2)0.0020 (17)0.0041 (17)0.0072 (17)
C10.019 (2)0.014 (2)0.019 (2)0.0005 (18)0.0015 (18)0.0113 (19)
C40.0133 (19)0.015 (2)0.012 (2)0.0005 (16)0.0005 (15)0.0090 (17)
Geometric parameters (Å, º) top
Br1—C11.887 (4)C5—C41.387 (6)
O1—N11.220 (5)C5—H50.9500
O2—N11.226 (5)C2—C31.379 (6)
N1—C41.464 (5)C2—C11.390 (6)
C6—C11.384 (6)C2—H20.9500
C6—C51.381 (6)C3—C41.380 (6)
C6—H60.9500C3—H30.9500
O1—N1—O2123.6 (4)C1—C2—H2120.6
O1—N1—C4117.9 (4)C4—C3—C2119.6 (4)
O2—N1—C4118.4 (4)C4—C3—H3120.2
C1—C6—C5119.5 (4)C2—C3—H3120.2
C1—C6—H6120.2C6—C1—C2121.5 (4)
C5—C6—H6120.2C6—C1—Br1119.2 (3)
C4—C5—C6118.7 (4)C2—C1—Br1119.3 (3)
C4—C5—H5120.6C3—C4—C5121.8 (4)
C6—C5—H5120.6C3—C4—N1119.7 (4)
C3—C2—C1118.8 (4)C5—C4—N1118.4 (4)
C3—C2—H2120.6
C1—C6—C5—C40.5 (7)C2—C3—C4—N1179.8 (4)
C1—C2—C3—C41.1 (7)C6—C5—C4—C30.7 (7)
C5—C6—C1—C20.9 (7)C6—C5—C4—N1179.0 (4)
C5—C6—C1—Br1177.9 (3)O1—N1—C4—C34.1 (6)
C3—C2—C1—C60.1 (7)O2—N1—C4—C3175.3 (4)
C3—C2—C1—Br1178.7 (3)O1—N1—C4—C5174.3 (4)
C2—C3—C4—C51.5 (7)O2—N1—C4—C56.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.523.359 (6)147
C5—H5···O2ii0.952.543.276 (6)135
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC6H4BrNO2
Mr202.01
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.3676 (6), 7.3635 (7), 7.6798 (7)
α, β, γ (°)65.554 (9), 87.705 (8), 88.884 (8)
V3)327.54 (5)
Z2
Radiation typeMo Kα
µ (mm1)6.20
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.414, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2142, 1443, 1365
Rint0.052
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 1.07
No. of reflections1443
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 1.58

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.523.359 (6)147
C5—H5···O2ii0.952.543.276 (6)135
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+2.
 

Acknowledgements

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCharlton, T. L. & Trotter, J. (1963). Acta Cryst. 16, 313.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationFronczek, F. R. (2006). Private communication (refcode 264855). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds