organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 5,6,7-trimeth­­oxy-2-methyl-1,2-di­hydro­quinoline-2,4-di­carboxyl­ate

aDepartment of Chemistry, Çankırı Karatekin University, TR-18100 Çankırı, Turkey, bUniversitat Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, and cDepartment of Physics, Hacettepe University, 06800 Beytepe Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 27 January 2011; accepted 1 February 2011; online 5 February 2011)

In the title compound, C17H21NO7, the dihydro­pyridine ring assumes a screw-boat conformation. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules, forming supra­molecular chains running along the b axis.

Related literature

For the preparation of 1,2-dihydro­quinoline, see: Edwards et al. (1998[Edwards, J. P., Ringgenberg, J. D. & Jones, T. K. (1998). Tetrahedron Lett. 39, 5139-5142.]); Yan et al. (2004[Yan, M.-C., Tu, Z.-J., Lin, C.-C., Ko, S.-K., Hsu, J.-M. & Yao, C.-F. (2004). J. Org. Chem. 69, 1565-1570.]); Petasis & Butkevich (2009[Petasis, N. A. & Butkevich, A. N. (2009). J. Organomet. Chem. 694, 1747-1753.]); Johnson et al. (1989[Johnson, J. V., Rauckman, B. S., Baccanari, D. P. & Roth, B. (1989). J. Med. Chem. 32, 1942-1949.]); Gültekin et al. (2010[Gültekin, Z., Frey, W., Tercan, B. & Hökelek, T. (2010). Acta Cryst. E66, o2891-o2892.]); Waldmann et al. (2008[Waldmann, H., Karunakar, G. V. & Kumar, K. (2008). Org. Lett. 10, 2159-2162.]). For the biological activity of dihydro­quinolines, see: Elmore et al. (2001[Elmore, S. W., Coghlan, M. J., Anderson, D. D., Pratt, J. K., Green, B. E., Wang, A. X., Stashko, M. A., Lin, C. W., Tyree, C. M., Miner, J. N., Jacobson, P. B., Wilcox, D. M. & Lane, B. C. (2001). J. Med. Chem. 44, 4481-4491.]); Dillard et al. (1973[Dillard, R. D., Pavey, D. E. & Benslay, D. N. (1973). J. Med. Chem. 16, 251-253.]); Muren & Weissmann (1971[Muren, J. F. & Weissmann, A. (1971). J. Med. Chem. 14, 49-53.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21NO7

  • Mr = 351.35

  • Orthorhombic, P b c a

  • a = 10.476 (2) Å

  • b = 16.552 (4) Å

  • c = 20.238 (4) Å

  • V = 3509.2 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.6 × 0.4 × 0.15 mm

Data collection
  • Nicolet P3 diffractometer

  • 3447 measured reflections

  • 3447 independent reflections

  • 1839 reflections with I > 2σ(I)

  • 3 standard reflections every 50 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.156

  • S = 1.07

  • 3447 reflections

  • 237 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O1i 0.96 2.51 3.251 (6) 134
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Dihydroquinolines have been widely studied and found an important structural unit in synthetic organic and medicinal chemistry (Elmore et al., 2001; Dillard et al., 1973; Muren & Weissmann, 1971). Many dihydroquinoline derivatives have been reported in the literature (Edwards et al., 1998; Yan et al., 2004; Petasis & Butkevich, 2009; Gültekin et al., 2010) and some of them have biological effects. For example, 2,2,4-substituted 1,2-dihydroquinolines have been shown antibacterial activities (Johnson et al., 1989).

In the title compound, (I), (Fig. 1), the ring A (C1-C4/C9/N1) is not planar; the puckering parameters (Cremer & Pople, 1975) QT = 0.379 (3) Å, ϕ = 21.5 (6)° and θ = 66.4 (5)° suggesting a screw-boat conformation. In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules to form infinite chains along the b-axis (Fig. 2).

Related literature top

For the preparation of 1,2-dihydroquinoline, see: Edwards et al. (1998); Yan et al. (2004); Petasis & Butkevich (2009); Johnson et al. (1989); Gültekin et al. (2010); Waldmann et al., 2008). For the biological activity of dihydroquinolines, see: Elmore et al. (2001); Dillard et al. (1973); Muren & Weissmann (1971). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized by the literature method (Waldmann et al., 2008). 3,4,5-dimethoxyaniline (100 mg, 1 eq) was dissolved in chloroform (1.5 ml) in a screw-capped test tube and Bi(OTf)3 (5 mol%, 0.05 eq) was added to the mixture. The mixture was stirred at room temperature for 4 h until the starting material was completely consumed as monitored by TLC. The resultant residue was directly purified by flash chromatography on silica (EtOAc:Cylohexane 2:98) gave in 83% yield as a yellow solid. Recrystallized over pentane and ethyl acetate (70:30) gave yellow crystalline solid Rf 0.16 (2:1 Cyclohexane/EtOAc) mp 394-395 K.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram viewed down the c-axis. Hydrogen bonds are shown as dashed lines.
Dimethyl 5,6,7-trimethoxy-2-methyl-1,2-dihydroquinoline-2,4-dicarboxylate top
Crystal data top
C17H21NO7F(000) = 1488
Mr = 351.35Dx = 1.330 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 40 reflections
a = 10.476 (2) Åθ = 10–12°
b = 16.552 (4) ŵ = 0.10 mm1
c = 20.238 (4) ÅT = 294 K
V = 3509.2 (13) Å3Plates, colourless
Z = 80.6 × 0.4 × 0.15 mm
Data collection top
Nicolet P3
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.0°
Graphite monochromatorh = 012
Wyckoff scank = 020
3447 measured reflectionsl = 024
3447 independent reflections3 standard reflections every 50 reflections
1839 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0359P)2 + 3.112P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3447 reflectionsΔρmax = 0.18 e Å3
237 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (3)
Crystal data top
C17H21NO7V = 3509.2 (13) Å3
Mr = 351.35Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.476 (2) ŵ = 0.10 mm1
b = 16.552 (4) ÅT = 294 K
c = 20.238 (4) Å0.6 × 0.4 × 0.15 mm
Data collection top
Nicolet P3
diffractometer
Rint = 0.000
3447 measured reflections3 standard reflections every 50 reflections
3447 independent reflections intensity decay: 1%
1839 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.18 e Å3
3447 reflectionsΔρmin = 0.17 e Å3
237 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5908 (3)1.03546 (16)0.62717 (15)0.0881 (10)
O20.6233 (3)0.93649 (16)0.55547 (13)0.0713 (8)
O30.2547 (3)0.7747 (2)0.51994 (16)0.1002 (11)
O40.1503 (3)0.75844 (14)0.61564 (14)0.0745 (8)
O50.0584 (2)0.91803 (14)0.58046 (11)0.0540 (6)
O60.0366 (2)1.05816 (15)0.63970 (12)0.0637 (7)
O70.1046 (3)1.13852 (16)0.72647 (13)0.0736 (8)
N10.4420 (3)0.9400 (2)0.70665 (15)0.0590 (9)
H210.485 (4)0.973 (2)0.733 (2)0.091 (16)*
C10.5191 (3)0.9018 (2)0.65584 (19)0.0525 (9)
C20.4333 (3)0.8467 (2)0.61660 (18)0.0536 (9)
H20.46960.80310.59460.064*
C30.3086 (3)0.85768 (19)0.61218 (16)0.0479 (8)
C40.2492 (3)0.92839 (19)0.64312 (15)0.0445 (8)
C50.1281 (3)0.9578 (2)0.62794 (16)0.0457 (8)
C60.0824 (3)1.0285 (2)0.65599 (17)0.0489 (9)
C70.1567 (3)1.0694 (2)0.70186 (17)0.0541 (9)
C80.2776 (3)1.0412 (2)0.71861 (17)0.0566 (10)
H80.32721.06880.74930.068*
C90.3233 (3)0.9712 (2)0.68871 (16)0.0489 (9)
C100.6265 (4)0.8538 (2)0.6884 (2)0.0730 (12)
H10A0.68010.88990.71320.109*
H10B0.67630.82740.65500.109*
H10C0.59070.81410.71760.109*
C110.5798 (3)0.9663 (2)0.61161 (19)0.0528 (9)
C120.6849 (5)0.9931 (3)0.5108 (2)0.1013 (16)
H12A0.69740.96780.46860.152*
H12B0.76601.00880.52870.152*
H12C0.63191.04000.50550.152*
C130.2345 (4)0.7940 (2)0.5758 (2)0.0613 (10)
C140.0782 (5)0.6925 (3)0.5864 (3)0.118 (2)
H14A0.02600.66760.61970.177*
H14B0.13620.65320.56860.177*
H14C0.02490.71300.55170.177*
C150.0622 (3)0.8868 (2)0.6031 (2)0.0755 (12)
H15A0.10220.85690.56820.113*
H15B0.11640.93080.61600.113*
H15C0.04830.85190.64030.113*
C160.0349 (5)1.1165 (3)0.5882 (2)0.0906 (15)
H16A0.11791.14060.58420.136*
H16B0.01241.09070.54740.136*
H16C0.02681.15760.59840.136*
C170.1819 (4)1.1883 (2)0.7671 (2)0.0896 (15)
H17A0.13601.23670.77810.134*
H17B0.25871.20220.74380.134*
H17C0.20331.15970.80690.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.111 (3)0.0508 (17)0.103 (2)0.0080 (17)0.014 (2)0.0001 (16)
O20.0779 (19)0.0685 (17)0.0676 (18)0.0126 (15)0.0092 (15)0.0002 (15)
O30.101 (2)0.115 (3)0.085 (2)0.028 (2)0.012 (2)0.047 (2)
O40.0813 (18)0.0507 (15)0.092 (2)0.0248 (15)0.0035 (17)0.0025 (15)
O50.0507 (14)0.0598 (15)0.0516 (14)0.0123 (12)0.0065 (12)0.0034 (12)
O60.0493 (15)0.0704 (17)0.0712 (18)0.0042 (13)0.0024 (13)0.0002 (14)
O70.0750 (19)0.0670 (17)0.0789 (19)0.0009 (15)0.0051 (15)0.0253 (15)
N10.0520 (19)0.073 (2)0.0524 (19)0.0034 (18)0.0093 (16)0.0077 (17)
C10.050 (2)0.048 (2)0.060 (2)0.0010 (18)0.0078 (18)0.0047 (18)
C20.056 (2)0.0443 (19)0.060 (2)0.0016 (18)0.0018 (19)0.0009 (17)
C30.055 (2)0.0426 (19)0.046 (2)0.0088 (17)0.0019 (17)0.0038 (16)
C40.0478 (18)0.0465 (18)0.0391 (17)0.0091 (17)0.0019 (16)0.0005 (16)
C50.0453 (19)0.052 (2)0.0395 (18)0.0142 (17)0.0014 (16)0.0009 (16)
C60.0425 (19)0.053 (2)0.051 (2)0.0064 (17)0.0045 (17)0.0020 (17)
C70.055 (2)0.052 (2)0.055 (2)0.0057 (19)0.0102 (19)0.0077 (18)
C80.058 (2)0.063 (2)0.049 (2)0.013 (2)0.0029 (18)0.0144 (19)
C90.047 (2)0.056 (2)0.043 (2)0.0094 (18)0.0022 (17)0.0025 (17)
C100.064 (2)0.069 (3)0.086 (3)0.003 (2)0.017 (2)0.020 (2)
C110.045 (2)0.050 (2)0.063 (2)0.0026 (18)0.0061 (19)0.0045 (19)
C120.104 (4)0.115 (4)0.085 (3)0.029 (3)0.017 (3)0.027 (3)
C130.060 (2)0.054 (2)0.070 (3)0.008 (2)0.001 (2)0.009 (2)
C140.106 (4)0.072 (3)0.176 (6)0.041 (3)0.005 (4)0.029 (3)
C150.050 (2)0.075 (3)0.102 (3)0.016 (2)0.006 (2)0.009 (2)
C160.094 (3)0.072 (3)0.106 (4)0.006 (3)0.017 (3)0.021 (3)
C170.104 (4)0.073 (3)0.092 (4)0.006 (3)0.000 (3)0.038 (3)
Geometric parameters (Å, º) top
O1—C111.193 (4)C5—C61.386 (5)
O2—C111.320 (4)C6—C71.387 (5)
O2—C121.453 (5)C7—C81.391 (5)
O3—C131.194 (4)C8—C91.393 (5)
O4—C131.332 (4)C8—H80.9300
O4—C141.453 (5)C10—H10A0.9600
O5—C51.374 (4)C10—H10B0.9600
O5—C151.440 (4)C10—H10C0.9600
O6—C61.380 (4)C12—H12A0.9600
O6—C161.421 (5)C12—H12B0.9600
O7—C71.362 (4)C12—H12C0.9600
O7—C171.418 (4)C14—H14A0.9600
N1—C11.453 (4)C14—H14B0.9600
N1—C91.394 (4)C14—H14C0.9600
N1—H210.89 (4)C15—H15A0.9600
C1—C21.507 (5)C15—H15B0.9600
C1—C101.527 (5)C15—H15C0.9600
C1—C111.532 (5)C16—H16A0.9600
C2—C31.322 (4)C16—H16B0.9600
C2—H20.9300C16—H16C0.9600
C3—C41.466 (5)C17—H17A0.9600
C3—C131.502 (5)C17—H17B0.9600
C4—C51.393 (5)C17—H17C0.9600
C4—C91.399 (4)
C11—O2—C12116.6 (3)C1—C10—H10C109.5
C13—O4—C14115.5 (4)H10A—C10—H10B109.5
C5—O5—C15114.5 (3)H10A—C10—H10C109.5
C6—O6—C16113.9 (3)H10B—C10—H10C109.5
C7—O7—C17118.1 (3)O1—C11—O2123.6 (4)
C1—N1—H21114 (3)O1—C11—C1123.7 (4)
C9—N1—C1118.2 (3)O2—C11—C1112.7 (3)
C9—N1—H21112 (3)O2—C12—H12A109.5
N1—C1—C2107.7 (3)O2—C12—H12B109.5
N1—C1—C10109.3 (3)O2—C12—H12C109.5
N1—C1—C11109.9 (3)H12A—C12—H12B109.5
C2—C1—C10110.7 (3)H12A—C12—H12C109.5
C2—C1—C11111.2 (3)H12B—C12—H12C109.5
C10—C1—C11108.0 (3)O3—C13—O4124.9 (4)
C1—C2—H2118.6O3—C13—C3124.1 (4)
C3—C2—C1122.8 (3)O4—C13—C3110.9 (3)
C3—C2—H2118.6O4—C14—H14A109.5
C2—C3—C4120.1 (3)O4—C14—H14B109.5
C2—C3—C13116.6 (3)O4—C14—H14C109.5
C4—C3—C13123.4 (3)H14A—C14—H14B109.5
C5—C4—C3124.9 (3)H14A—C14—H14C109.5
C5—C4—C9118.3 (3)H14B—C14—H14C109.5
C9—C4—C3116.7 (3)O5—C15—H15A109.5
O5—C5—C4118.1 (3)O5—C15—H15B109.5
O5—C5—C6120.5 (3)O5—C15—H15C109.5
C6—C5—C4121.3 (3)H15A—C15—H15B109.5
O6—C6—C5120.9 (3)H15A—C15—H15C109.5
O6—C6—C7119.6 (3)H15B—C15—H15C109.5
C5—C6—C7119.5 (3)O6—C16—H16A109.5
O7—C7—C6115.4 (3)O6—C16—H16B109.5
O7—C7—C8123.9 (3)O6—C16—H16C109.5
C6—C7—C8120.7 (3)H16A—C16—H16B109.5
C7—C8—C9119.1 (3)H16A—C16—H16C109.5
C7—C8—H8120.5H16B—C16—H16C109.5
C9—C8—H8120.5O7—C17—H17A109.5
N1—C9—C4118.7 (3)O7—C17—H17B109.5
C8—C9—N1120.1 (3)O7—C17—H17C109.5
C8—C9—C4121.1 (3)H17A—C17—H17B109.5
C1—C10—H10A109.5H17A—C17—H17C109.5
C1—C10—H10B109.5H17B—C17—H17C109.5
C12—O2—C11—O11.3 (6)C2—C3—C4—C914.3 (5)
C12—O2—C11—C1178.8 (3)C13—C3—C4—C519.0 (5)
C14—O4—C13—O31.0 (6)C13—C3—C4—C9164.4 (3)
C14—O4—C13—C3176.6 (3)C2—C3—C13—O357.5 (6)
C15—O5—C5—C4120.6 (3)C2—C3—C13—O4118.1 (4)
C15—O5—C5—C664.2 (4)C4—C3—C13—O3123.8 (5)
C16—O6—C6—C594.5 (4)C4—C3—C13—O460.6 (4)
C16—O6—C6—C786.5 (4)C3—C4—C5—O50.1 (5)
C17—O7—C7—C6172.3 (3)C3—C4—C5—C6175.2 (3)
C17—O7—C7—C85.6 (5)C9—C4—C5—O5176.5 (3)
C9—N1—C1—C245.4 (4)C9—C4—C5—C61.3 (5)
C9—N1—C1—C10165.7 (3)C3—C4—C9—N16.3 (4)
C9—N1—C1—C1176.0 (4)C3—C4—C9—C8177.2 (3)
C1—N1—C9—C8145.0 (3)C5—C4—C9—N1176.8 (3)
C1—N1—C9—C438.5 (5)C5—C4—C9—C80.3 (5)
N1—C1—C2—C324.7 (5)O5—C5—C6—O63.6 (5)
C10—C1—C2—C3144.2 (4)O5—C5—C6—C7177.4 (3)
C11—C1—C2—C395.8 (4)C4—C5—C6—O6178.7 (3)
N1—C1—C11—O118.8 (5)C4—C5—C6—C72.3 (5)
N1—C1—C11—O2163.7 (3)C5—C6—C7—O7179.6 (3)
C2—C1—C11—O1138.0 (4)C5—C6—C7—C81.7 (5)
C2—C1—C11—O244.5 (4)O6—C6—C7—O71.4 (5)
C10—C1—C11—O1100.4 (4)O6—C6—C7—C8179.3 (3)
C10—C1—C11—O277.1 (4)O7—C7—C8—C9177.8 (3)
C1—C2—C3—C43.5 (5)C6—C7—C8—C90.0 (5)
C1—C2—C3—C13175.2 (3)C7—C8—C9—N1177.4 (3)
C2—C3—C4—C5162.3 (3)C7—C8—C9—C41.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.962.513.251 (6)134
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC17H21NO7
Mr351.35
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)10.476 (2), 16.552 (4), 20.238 (4)
V3)3509.2 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.6 × 0.4 × 0.15
Data collection
DiffractometerNicolet P3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3447, 3447, 1839
Rint0.000
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.156, 1.07
No. of reflections3447
No. of parameters237
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: XSCANS (Siemens, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.962.513.251 (6)134
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

This research was carried out at RWTH Aachen University. The authors thank Professor Magnus Rueping of RWTH Aachen University, Germany, for helpful discussions.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDillard, R. D., Pavey, D. E. & Benslay, D. N. (1973). J. Med. Chem. 16, 251–253.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEdwards, J. P., Ringgenberg, J. D. & Jones, T. K. (1998). Tetrahedron Lett. 39, 5139–5142.  Web of Science CrossRef CAS Google Scholar
First citationElmore, S. W., Coghlan, M. J., Anderson, D. D., Pratt, J. K., Green, B. E., Wang, A. X., Stashko, M. A., Lin, C. W., Tyree, C. M., Miner, J. N., Jacobson, P. B., Wilcox, D. M. & Lane, B. C. (2001). J. Med. Chem. 44, 4481–4491.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGültekin, Z., Frey, W., Tercan, B. & Hökelek, T. (2010). Acta Cryst. E66, o2891–o2892.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, J. V., Rauckman, B. S., Baccanari, D. P. & Roth, B. (1989). J. Med. Chem. 32, 1942–1949.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMuren, J. F. & Weissmann, A. (1971). J. Med. Chem. 14, 49–53.  CAS PubMed Web of Science Google Scholar
First citationPetasis, N. A. & Butkevich, A. N. (2009). J. Organomet. Chem. 694, 1747–1753.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWaldmann, H., Karunakar, G. V. & Kumar, K. (2008). Org. Lett. 10, 2159–2162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYan, M.-C., Tu, Z.-J., Lin, C.-C., Ko, S.-K., Hsu, J.-M. & Yao, C.-F. (2004). J. Org. Chem. 69, 1565–1570.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds