organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­nitro-N-(1,3-thia­zol-2-yl)benzamide monohydrate

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, bDepartment of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR, People's Republic of China, and cNational Engineering & Scientific Commission, PO Box 2801, Islamabad, Pakistan
*Correspondence e-mail: sohail262001@yahoo.com

(Received 2 February 2011; accepted 11 February 2011; online 19 February 2011)

In the title compound, C10H6N4O5S·H2O, the thia­zole ring is twisted at a dihedral angle of 25.87 (7)° with respect to the benzene ring. The water mol­ecule is linked with the benzamide mol­ecules via N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds. In the crystal, ππ stacking is observed between nearly parallel [dihedral angle = 7.02 (7)°] thia­zole and benzene rings of adjacent mol­ecules, the centroid–centroid distances being 3.7107 (9) and 3.7158 (9) Å, respectively.

Related literature

For the effect of substituents on the structures of benzanilides, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1294.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6N4O5S·H2O

  • Mr = 312.26

  • Monoclinic, P 21 /c

  • a = 13.7075 (12) Å

  • b = 6.9734 (6) Å

  • c = 13.8507 (13) Å

  • β = 108.512 (1)°

  • V = 1255.45 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.28 × 0.07 × 0.06 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.922, Tmax = 0.983

  • 6750 measured reflections

  • 2214 independent reflections

  • 1937 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.088

  • S = 1.02

  • 2214 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O6 0.871 (19) 1.974 (19) 2.8313 (18) 167.9 (17)
O6—H6B⋯O1i 0.75 (3) 2.38 (2) 3.0350 (19) 147 (2)
O6—H6C⋯N1ii 0.84 (3) 2.14 (3) 2.964 (2) 168 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of 3,5-dinitro-N-thiazol-2-yl-benzamide monohydrate has been determined to explore the effect of substituents on the structure of benzanilides (Gowda et al., 2008).

The molecule is not planar. The thiazole ring is twisted to the benzene ring at a dihedral angle of 25.87 (7)°. The nitro groups are 12.30 (20)° and 15.68 (15)° from the phenyl ring plane of C5—C10. The thiazole ring is making a dihedral angle of 11.90 (2)° with the amido group which in turn makes a dihedral angle of 14.01 (4)° with the phenyl ring plane of C5—C10.

There are intermolecular N—H···O, O—H···N and O—H···O H-bond interactions, which link the molecules to form 2-D networks in the crystal lattice. There are also weak π···π interactions between neighbouring rings in the crystal lattice.

Related literature top

For the effect of substituents on the structures of benzanilides, see: Gowda et al. (2008).

Experimental top

A solution of 3,5-dinitrobenzoyl chloride (0.01 mol) and 2-aminothiazole (0.01 mol) in anhydrous acetone was refluxed for 4 h. After completion of the reaction, the crude solid product was filtered, washed with water and purified by re-crystallization from ethyl acetate/water.

Refinement top

All of the C-bound H atoms are observable from difference Fourier map but are all placed at geometrical positions with C—H = 0.93 Å for phenyl H-atoms. All C-bound H-atoms are refined using riding model with Uiso(H) = 1.2Ueq(C). Both the N– and O-bound H-atoms were located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006) and CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the compound was shown at 50% probability thermal ellipsoids.
3,5-Dinitro-N-(1,3-thiazol-2-yl)benzamide monohydrate top
Crystal data top
C10H6N4O5S·H2OF(000) = 640
Mr = 312.26Dx = 1.652 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9023 reflections
a = 13.7075 (12) Åθ = 1.8–25.0°
b = 6.9734 (6) ŵ = 0.30 mm1
c = 13.8507 (13) ÅT = 296 K
β = 108.512 (1)°Needle, colourless
V = 1255.45 (19) Å30.28 × 0.07 × 0.06 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2214 independent reflections
Radiation source: fine-focus sealed tube1937 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1615
Tmin = 0.922, Tmax = 0.983k = 88
6750 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.2612P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2214 reflectionsΔρmax = 0.19 e Å3
203 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0069 (14)
Crystal data top
C10H6N4O5S·H2OV = 1255.45 (19) Å3
Mr = 312.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7075 (12) ŵ = 0.30 mm1
b = 6.9734 (6) ÅT = 296 K
c = 13.8507 (13) Å0.28 × 0.07 × 0.06 mm
β = 108.512 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2214 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1937 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.983Rint = 0.015
6750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.19 e Å3
2214 reflectionsΔρmin = 0.21 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17423 (3)0.90512 (6)0.12088 (3)0.03884 (16)
O10.02312 (8)0.95294 (19)0.11971 (8)0.0469 (3)
O20.35736 (11)1.1250 (3)0.08520 (11)0.0793 (5)
O30.49514 (9)1.0180 (3)0.19517 (10)0.0669 (4)
O40.48076 (9)0.7824 (2)0.51780 (10)0.0590 (4)
O50.34262 (11)0.8314 (3)0.55577 (10)0.0777 (5)
N10.14748 (10)0.9651 (2)0.31080 (10)0.0403 (3)
N20.00921 (9)0.94048 (19)0.27755 (10)0.0351 (3)
H2N0.0335 (15)0.929 (3)0.3435 (15)0.046 (5)*
N30.40286 (11)1.0453 (2)0.16479 (11)0.0505 (4)
N40.39071 (10)0.8282 (2)0.49550 (10)0.0453 (4)
C10.28028 (12)0.9200 (2)0.16129 (13)0.0425 (4)
H10.34800.90690.11930.051*
C20.25176 (12)0.9531 (2)0.26157 (13)0.0429 (4)
H20.29960.96720.29600.052*
C30.09807 (11)0.9410 (2)0.24567 (11)0.0331 (3)
C40.06477 (11)0.9452 (2)0.21168 (11)0.0338 (3)
C50.17976 (11)0.9424 (2)0.25696 (11)0.0324 (3)
C60.23598 (11)0.9885 (2)0.19236 (12)0.0368 (4)
H60.20271.02300.12510.044*
C70.34216 (11)0.9820 (2)0.23006 (12)0.0379 (4)
C80.39520 (12)0.9255 (2)0.32777 (12)0.0382 (4)
H80.46650.91500.35070.046*
C90.33678 (11)0.8856 (2)0.38975 (11)0.0352 (3)
C100.23081 (11)0.8948 (2)0.35798 (11)0.0340 (3)
H100.19440.86980.40290.041*
O60.07962 (11)0.8457 (2)0.48713 (10)0.0503 (3)
H6B0.0571 (18)0.752 (4)0.4970 (18)0.076 (9)*
H6C0.0932 (18)0.912 (3)0.5399 (19)0.073 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0299 (2)0.0482 (3)0.0354 (2)0.00058 (15)0.00610 (16)0.00073 (16)
O10.0341 (6)0.0737 (9)0.0322 (6)0.0033 (5)0.0092 (5)0.0028 (5)
O20.0531 (8)0.1362 (15)0.0526 (8)0.0101 (8)0.0222 (7)0.0276 (9)
O30.0322 (7)0.1079 (12)0.0660 (9)0.0099 (7)0.0233 (6)0.0043 (8)
O40.0356 (6)0.0801 (10)0.0533 (7)0.0133 (6)0.0030 (5)0.0077 (7)
O50.0573 (9)0.1376 (15)0.0406 (7)0.0245 (9)0.0190 (6)0.0190 (8)
N10.0314 (7)0.0498 (8)0.0414 (7)0.0005 (6)0.0139 (6)0.0001 (6)
N20.0260 (7)0.0474 (8)0.0312 (7)0.0003 (5)0.0078 (5)0.0010 (6)
N30.0379 (8)0.0734 (11)0.0447 (8)0.0118 (7)0.0197 (7)0.0075 (7)
N40.0388 (8)0.0546 (9)0.0393 (7)0.0046 (6)0.0076 (6)0.0011 (6)
C10.0275 (8)0.0450 (9)0.0529 (10)0.0009 (6)0.0096 (7)0.0055 (7)
C20.0289 (8)0.0485 (10)0.0540 (10)0.0014 (6)0.0170 (7)0.0057 (8)
C30.0285 (7)0.0355 (8)0.0349 (8)0.0006 (6)0.0097 (6)0.0016 (6)
C40.0299 (8)0.0377 (8)0.0340 (8)0.0001 (6)0.0107 (6)0.0008 (6)
C50.0280 (8)0.0339 (8)0.0355 (8)0.0005 (5)0.0106 (6)0.0036 (6)
C60.0329 (8)0.0437 (9)0.0339 (8)0.0024 (6)0.0107 (6)0.0032 (7)
C70.0329 (8)0.0449 (9)0.0398 (8)0.0054 (6)0.0169 (7)0.0069 (7)
C80.0281 (7)0.0435 (9)0.0424 (9)0.0005 (6)0.0105 (6)0.0091 (7)
C90.0322 (8)0.0377 (8)0.0341 (8)0.0024 (6)0.0082 (6)0.0037 (6)
C100.0330 (8)0.0358 (8)0.0352 (8)0.0008 (6)0.0137 (6)0.0021 (6)
O60.0545 (8)0.0628 (9)0.0371 (7)0.0040 (7)0.0195 (6)0.0006 (6)
Geometric parameters (Å, º) top
S1—C11.7187 (16)C1—H10.9300
S1—C31.7304 (15)C2—H20.9300
O1—C41.2205 (18)C4—C51.500 (2)
O2—N31.215 (2)C5—C101.391 (2)
O3—N31.2147 (18)C5—C61.391 (2)
O4—N41.2162 (17)C6—C71.382 (2)
O5—N41.2171 (18)C6—H60.9300
N1—C31.299 (2)C7—C81.375 (2)
N1—C21.377 (2)C8—C91.376 (2)
N2—C41.3618 (19)C8—H80.9300
N2—C31.3947 (19)C9—C101.379 (2)
N2—H2N0.871 (19)C10—H100.9300
N3—C71.477 (2)O6—H6B0.75 (3)
N4—C91.471 (2)O6—H6C0.84 (3)
C1—C21.338 (2)
C1—S1—C388.30 (8)O1—C4—C5121.21 (13)
C3—N1—C2109.65 (14)N2—C4—C5117.15 (13)
C4—N2—C3123.06 (13)C10—C5—C6119.83 (13)
C4—N2—H2N126.6 (12)C10—C5—C4123.35 (13)
C3—N2—H2N110.2 (12)C6—C5—C4116.81 (13)
O3—N3—O2124.34 (15)C7—C6—C5118.77 (14)
O3—N3—C7117.90 (15)C7—C6—H6120.6
O2—N3—C7117.74 (14)C5—C6—H6120.6
O4—N4—O5123.90 (14)C8—C7—C6123.06 (14)
O4—N4—C9118.23 (13)C8—C7—N3117.61 (14)
O5—N4—C9117.87 (13)C6—C7—N3119.28 (14)
C2—C1—S1110.49 (12)C7—C8—C9116.21 (14)
C2—C1—H1124.8C7—C8—H8121.9
S1—C1—H1124.8C9—C8—H8121.9
C1—C2—N1116.08 (14)C8—C9—C10123.66 (14)
C1—C2—H2122.0C8—C9—N4117.92 (14)
N1—C2—H2122.0C10—C9—N4118.41 (13)
N1—C3—N2120.67 (14)C9—C10—C5118.33 (13)
N1—C3—S1115.47 (11)C9—C10—H10120.8
N2—C3—S1123.84 (11)C5—C10—H10120.8
O1—C4—N2121.63 (13)H6B—O6—H6C108 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O60.871 (19)1.974 (19)2.8313 (18)167.9 (17)
O6—H6B···O1i0.75 (3)2.38 (2)3.0350 (19)147 (2)
O6—H6C···N1ii0.84 (3)2.14 (3)2.964 (2)168 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC10H6N4O5S·H2O
Mr312.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.7075 (12), 6.9734 (6), 13.8507 (13)
β (°) 108.512 (1)
V3)1255.45 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.28 × 0.07 × 0.06
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.922, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
6750, 2214, 1937
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.088, 1.02
No. of reflections2214
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2006) and CrystalStructure (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O60.871 (19)1.974 (19)2.8313 (18)167.9 (17)
O6—H6B···O1i0.75 (3)2.38 (2)3.0350 (19)147 (2)
O6—H6C···N1ii0.84 (3)2.14 (3)2.964 (2)168 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+2, z+1.
Table 1. π···π interactions (Å, °)
Cg1 and Cg2 are centroids of the rings S1/N1/C1-C3 and C5-C10 respectively, CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgJ_Perp is the perpendicular distance of CgJ from ring I.
top
IJCgI···CgJDihedral angleCgI_PerpCgJ_Perp
12i3.7158 (9)7.02 (7)3.3718 (6)-3.4374 (6)
12ii3.7107 (9)7.02 (7)-3.3175 (6)3.4409 (6)
symmetry operators: i: -X,-1/2+Y,1/2-Z ii: -X,1/2+Y,1/2-Z
 

Acknowledgements

The authors are grateful to Allama Iqbal Open University, Islamabad, Pakistan, for the allocation of research and analytical laboratory facilities.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds