organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-3-methyl­benzoic acid–1,2-bis­­(4-pyrid­yl)ethane (1/1)

aDepartment of General Education Center, Yuanpei University, HsinChu 30015, Taiwan, bDepartment of Medical Laboratory Science Biotechnology, Yuanpei University, HsinChu 30015, Taiwan, and cDepartment of Biotechnology, Yuanpei University, HsinChu 30015, Taiwan
*Correspondence e-mail: fmshen@mail.ypu.edu.tw

(Received 2 February 2011; accepted 14 February 2011; online 19 February 2011)

In the crystal structure of the title 1:1 adduct, C12H12N2·C8H9NO2, the 4-amino-3-methyl­benzoic acid mol­ecules and 1,2-bis­(4-pyrid­yl)ethane mol­ecules are linked by inter­molecular O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds, forming a two-dimensional supra­molecular network parallel to (001). In the 1,2-bis­(4-pyrid­yl)ethane mol­ecule, the two pyridine rings are twisted to each other by a dihedral angle of 12.12 (8)°. The non-H atoms of the 4-amino-3-methyl­benzoic acid mol­ecule are almost coplanar, the maximum atomic deviation being 0.029 (1) Å. Weak C—H⋯π inter­actions are present in the crystal structure.

Related literature

For related structures, see: Bowes et al. (2003[Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100-117.]); Ferguson et al. (1999[Ferguson, G., Glidewell, C., Gregson, R. M. & Lavender, E. S. (1999). Acta Cryst. B55, 573-590.]); Shen & Lush (2010[Shen, F. M. & Lush, S. F. (2010). Acta Cryst. E66, o1138.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2·C8H9NO2

  • Mr = 335.40

  • Monoclinic, P 21 /c

  • a = 8.0695 (3) Å

  • b = 13.0677 (5) Å

  • c = 17.6138 (10) Å

  • β = 99.501 (5)°

  • V = 1831.89 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 297 K

  • 0.60 × 0.18 × 0.12 mm

Data collection
  • Oxford Diffraction Gemini-S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.919, Tmax = 1.000

  • 8821 measured reflections

  • 4277 independent reflections

  • 1870 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.082

  • S = 1.03

  • 4277 reflections

  • 232 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2 0.821 (9) 1.826 (11) 2.6407 (18) 171.6 (15)
N1—H1B⋯O2i 0.860 (11) 2.113 (12) 2.951 (2) 164.5 (14)
N1—H1C⋯N3ii 0.860 (7) 2.288 (9) 3.084 (2) 153.8 (14)
C12—H12ACgiii 0.93 2.76 3.540 (2) 141
Symmetry codes: (i) x-1, y, z; (ii) x-2, y+1, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The 1,2-bis(4-pyridyl)ethane is a versatile building block for the purposes of crystal engineering. Each of the pyridyl N atoms acts as a hydrogen bond acceptor, forming linear hydrogen associations (Ferguson et al., 1999). Other structures related with 1,2-bis(4-pyridyl)ethane and Lewis acid were reported by Bowes et al. (2003) and Shen & Lush (2010). We present here the crystal structure of the 4-amino-3-methybenzoic acid and 1,2-bis(4-pyridyl)ethane 1:1 adduct.

The structure of the title compound comprises 4-amino-3-methybenzoic acid molecule and 1,2-bis(4-pyridyl)ethane molecule, with no proton transfer. In the structure, the molecules associate 4-amino-3-methybenzoic acid and 1,2-bis(4-pyridyl)ethane via carboxylic and pyridine group O—H···N [O···N 2.640 (18) Å] C22(19) (Etter et al., 1990), forming linear hydrogen bonding parallel to [0 0 1], further connect a two dimensional network via amine and carboxylic N—H···O and N—H···N [2.951 (2) and 3.084 (2) Å], respectively. Furthermore, C—H···π ring stacking interaction is present in the structure. The distance between C12—H(12 A)···Cg3 iii(C2—C7) is 3.540 (2) Å [symmetry code: (iii) = 1-X,-1/2+Y,3/2-Z].

Related literature top

For related structures, see: Bowes et al. (2003); Ferguson et al. (1999); Shen & Lush (2010). For hydrogen-bond motifs, see: Etter et al. (1990).

Experimental top

The 4-amino-3-methybenzoic acid (151 mg, 1 mmol) and 1,2-bis(4-pyridyl)ethane (184 mg, 1 mmol) were dissolved in 20 ml methanol, the solution was refluxed for 30 min. The filtered solution was transferred to a 25 ml tube, at room temperature colorless crystals were formed after several days (yield 59.12%).

Refinement top

Amino H atoms were located in a difference Fourier map and were refined with the distance constraints of N—H = 0.860±0.001 Å. Other H atoms were positioned geometrically with C—H = 0.93-0.97 Å, and refined using a riding model, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing for the title compound. Hydrogen bonds are shown as dashed lines.
4-Amino-3-methylbenzoic acid–1,2-bis(4-pyridyl)ethane (1/1) top
Crystal data top
C12H12N2·C8H9NO2F(000) = 712
Mr = 335.40Dx = 1.216 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2506 reflections
a = 8.0695 (3) Åθ = 3.0–29.0°
b = 13.0677 (5) ŵ = 0.08 mm1
c = 17.6138 (10) ÅT = 297 K
β = 99.501 (5)°Parallelepiped, colorless
V = 1831.89 (15) Å30.60 × 0.18 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD
diffractometer
4277 independent reflections
Radiation source: fine-focus sealed tube1870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 29.1°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1010
Tmin = 0.919, Tmax = 1.000k = 1716
8821 measured reflectionsl = 2420
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
4277 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.15 e Å3
3 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H12N2·C8H9NO2V = 1831.89 (15) Å3
Mr = 335.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0695 (3) ŵ = 0.08 mm1
b = 13.0677 (5) ÅT = 297 K
c = 17.6138 (10) Å0.60 × 0.18 × 0.12 mm
β = 99.501 (5)°
Data collection top
Oxford Diffraction Gemini-S CCD
diffractometer
4277 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1870 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 1.000Rint = 0.025
8821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0443 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.15 e Å3
4277 reflectionsΔρmin = 0.22 e Å3
232 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.63037 (17)0.47008 (10)0.62737 (9)0.0552 (6)
N31.58754 (19)0.08351 (11)0.60868 (10)0.0692 (7)
C90.7078 (2)0.47692 (12)0.56699 (11)0.0553 (7)
C100.8385 (2)0.41502 (12)0.55562 (10)0.0521 (7)
C110.8957 (2)0.34059 (12)0.60903 (11)0.0482 (7)
C120.8172 (2)0.33448 (13)0.67191 (11)0.0650 (8)
C130.6872 (2)0.39953 (15)0.67901 (11)0.0683 (8)
C141.0359 (2)0.26912 (12)0.59857 (12)0.0705 (8)
C151.2064 (2)0.30811 (12)0.62896 (11)0.0660 (7)
C161.3425 (2)0.23093 (12)0.62204 (11)0.0506 (7)
C171.4071 (2)0.16866 (14)0.68217 (11)0.0639 (8)
C181.5274 (2)0.09729 (14)0.67281 (12)0.0710 (8)
C191.5251 (2)0.14425 (15)0.55151 (12)0.0808 (9)
C201.4039 (2)0.21762 (13)0.55528 (11)0.0686 (8)
O10.34436 (14)0.56570 (8)0.63298 (7)0.0542 (5)
O20.47629 (14)0.71109 (8)0.61635 (7)0.0664 (5)
N10.25914 (19)0.86901 (13)0.64324 (10)0.0628 (7)
C10.34970 (19)0.66628 (12)0.62564 (9)0.0399 (4)
C20.18870 (19)0.71739 (11)0.63001 (9)0.0399 (4)
C30.04752 (18)0.66405 (11)0.64278 (9)0.0427 (6)
C40.09994 (19)0.71458 (11)0.64585 (9)0.0451 (6)
C50.11212 (19)0.82069 (12)0.63671 (9)0.0421 (6)
C60.0301 (2)0.87564 (11)0.62414 (9)0.0465 (6)
C70.17592 (19)0.82300 (11)0.62061 (9)0.0461 (6)
C80.0217 (2)0.99081 (11)0.61582 (12)0.0818 (9)
H9A0.671400.526600.530200.0660*
H10A0.888400.423200.512000.0620*
H12A0.851900.286100.710000.0780*
H13A0.636400.393700.722500.0820*
H14A1.019600.204900.623900.0850*
H14B1.029200.255000.544100.0850*
H15A1.211800.326400.682700.0790*
H15B1.226800.369600.601100.0790*
H17A1.369800.174600.729200.0770*
H18A1.569000.056100.714700.0850*
H19A1.565600.137200.505300.0970*
H20A1.364500.257700.512500.0820*
H1A0.4380 (9)0.5416 (12)0.6323 (10)0.082 (7)*
H1B0.3449 (12)0.8295 (10)0.6418 (10)0.075 (7)*
H1C0.2717 (19)0.9312 (4)0.6273 (8)0.055 (6)*
H3A0.052900.593400.649300.0510*
H4A0.193700.677600.654200.0540*
H7A0.269800.859300.611600.0550*
H8A0.128101.016200.606500.1230*
H8B0.004201.020600.662300.1230*
H8C0.064201.008700.573400.1230*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0437 (9)0.0556 (9)0.0657 (11)0.0178 (7)0.0069 (9)0.0008 (8)
N30.0678 (11)0.0797 (11)0.0613 (12)0.0363 (9)0.0146 (9)0.0079 (10)
C90.0509 (12)0.0498 (10)0.0631 (14)0.0097 (9)0.0032 (10)0.0069 (10)
C100.0460 (11)0.0559 (11)0.0560 (13)0.0066 (9)0.0135 (9)0.0026 (10)
C110.0385 (10)0.0426 (11)0.0617 (13)0.0093 (8)0.0030 (10)0.0118 (10)
C120.0609 (13)0.0670 (12)0.0668 (14)0.0282 (10)0.0097 (11)0.0173 (11)
C130.0588 (13)0.0887 (14)0.0608 (14)0.0230 (11)0.0196 (10)0.0105 (12)
C140.0474 (12)0.0566 (11)0.1053 (17)0.0179 (10)0.0062 (11)0.0171 (11)
C150.0442 (11)0.0605 (11)0.0922 (16)0.0139 (10)0.0082 (11)0.0143 (11)
C160.0388 (11)0.0516 (11)0.0611 (14)0.0114 (9)0.0077 (10)0.0091 (10)
C170.0597 (13)0.0812 (13)0.0535 (14)0.0216 (11)0.0173 (10)0.0002 (11)
C180.0713 (14)0.0834 (15)0.0572 (15)0.0318 (11)0.0071 (12)0.0163 (11)
C190.0877 (16)0.1022 (16)0.0580 (15)0.0442 (14)0.0285 (12)0.0109 (13)
C200.0699 (14)0.0747 (13)0.0617 (15)0.0361 (11)0.0127 (11)0.0150 (11)
O10.0387 (8)0.0491 (7)0.0761 (9)0.0153 (6)0.0130 (7)0.0007 (6)
O20.0306 (7)0.0689 (8)0.1025 (10)0.0004 (6)0.0192 (7)0.0135 (7)
N10.0418 (10)0.0476 (10)0.1012 (14)0.0112 (9)0.0184 (10)0.0012 (10)
C10.0324 (7)0.0430 (7)0.0442 (7)0.0040 (5)0.0058 (5)0.0032 (6)
C20.0324 (7)0.0430 (7)0.0442 (7)0.0040 (5)0.0058 (5)0.0032 (6)
C30.0354 (10)0.0332 (8)0.0604 (12)0.0031 (8)0.0109 (8)0.0035 (8)
C40.0313 (10)0.0403 (10)0.0651 (13)0.0011 (8)0.0123 (8)0.0038 (8)
C50.0316 (9)0.0430 (10)0.0519 (12)0.0085 (8)0.0072 (8)0.0072 (9)
C60.0411 (11)0.0378 (9)0.0606 (13)0.0039 (9)0.0088 (9)0.0002 (9)
C70.0354 (10)0.0444 (10)0.0594 (12)0.0042 (8)0.0109 (9)0.0003 (9)
C80.0647 (14)0.0445 (11)0.138 (2)0.0047 (9)0.0217 (13)0.0091 (11)
Geometric parameters (Å, º) top
O1—C11.3221 (19)C13—H13A0.9300
O2—C11.2118 (19)C14—H14A0.9700
O1—H1A0.821 (9)C14—H14B0.9700
N2—C131.323 (2)C15—H15B0.9700
N2—C91.322 (2)C15—H15A0.9700
N3—C181.313 (3)C17—H17A0.9300
N3—C191.315 (3)C18—H18A0.9300
N1—C51.366 (2)C19—H19A0.9300
N1—H1C0.860 (7)C20—H20A0.9300
N1—H1B0.860 (11)C1—C21.474 (2)
C9—C101.370 (2)C2—C31.385 (2)
C10—C111.379 (2)C2—C71.392 (2)
C11—C121.366 (3)C3—C41.370 (2)
C11—C141.502 (2)C4—C51.398 (2)
C12—C131.372 (2)C5—C61.402 (2)
C14—C151.482 (2)C6—C71.373 (2)
C15—C161.511 (2)C6—C81.513 (2)
C16—C171.369 (3)C3—H3A0.9300
C16—C201.360 (3)C4—H4A0.9300
C17—C181.376 (2)C7—H7A0.9300
C19—C201.379 (2)C8—H8A0.9600
C9—H9A0.9300C8—H8B0.9600
C10—H10A0.9300C8—H8C0.9600
C12—H12A0.9300
C1—O1—H1A109.6 (10)H15A—C15—H15B108.00
C9—N2—C13116.35 (14)C14—C15—H15A109.00
C18—N3—C19115.24 (16)C16—C17—H17A120.00
H1B—N1—H1C120.4 (14)C18—C17—H17A120.00
C5—N1—H1B115.2 (8)N3—C18—H18A118.00
C5—N1—H1C117.8 (10)C17—C18—H18A118.00
N2—C9—C10123.71 (16)C20—C19—H19A118.00
C9—C10—C11119.73 (16)N3—C19—H19A118.00
C10—C11—C12116.53 (15)C16—C20—H20A120.00
C10—C11—C14121.95 (16)C19—C20—H20A120.00
C12—C11—C14121.52 (16)O2—C1—C2123.92 (14)
C11—C12—C13120.11 (17)O1—C1—O2122.37 (14)
N2—C13—C12123.55 (17)O1—C1—C2113.71 (13)
C11—C14—C15114.53 (14)C1—C2—C7119.45 (14)
C14—C15—C16112.66 (14)C3—C2—C7118.13 (14)
C15—C16—C17121.57 (16)C1—C2—C3122.42 (13)
C15—C16—C20121.90 (16)C2—C3—C4120.46 (14)
C17—C16—C20116.51 (16)C3—C4—C5121.25 (14)
C16—C17—C18119.77 (17)N1—C5—C4119.65 (15)
N3—C18—C17124.36 (18)N1—C5—C6121.45 (15)
N3—C19—C20124.59 (18)C4—C5—C6118.85 (14)
C16—C20—C19119.53 (17)C5—C6—C8120.01 (14)
C10—C9—H9A118.00C7—C6—C8121.27 (14)
N2—C9—H9A118.00C5—C6—C7118.72 (14)
C9—C10—H10A120.00C2—C7—C6122.58 (14)
C11—C10—H10A120.00C2—C3—H3A120.00
C11—C12—H12A120.00C4—C3—H3A120.00
C13—C12—H12A120.00C3—C4—H4A119.00
C12—C13—H13A118.00C5—C4—H4A119.00
N2—C13—H13A118.00C2—C7—H7A119.00
C11—C14—H14A109.00C6—C7—H7A119.00
C11—C14—H14B109.00C6—C8—H8A109.00
H14A—C14—H14B108.00C6—C8—H8B109.00
C15—C14—H14A109.00C6—C8—H8C109.00
C15—C14—H14B109.00H8A—C8—H8B109.00
C16—C15—H15A109.00H8A—C8—H8C110.00
C14—C15—H15B109.00H8B—C8—H8C110.00
C16—C15—H15B109.00
C13—N2—C9—C100.9 (3)C16—C17—C18—N30.0 (3)
C9—N2—C13—C121.0 (3)N3—C19—C20—C160.6 (3)
C19—N3—C18—C170.4 (3)O1—C1—C2—C31.7 (2)
C18—N3—C19—C200.7 (3)O1—C1—C2—C7177.92 (14)
N2—C9—C10—C110.0 (3)O2—C1—C2—C3178.20 (16)
C9—C10—C11—C120.9 (2)O2—C1—C2—C72.2 (2)
C9—C10—C11—C14178.60 (16)C1—C2—C3—C4179.52 (15)
C10—C11—C12—C130.8 (3)C7—C2—C3—C40.1 (2)
C14—C11—C12—C13178.66 (16)C1—C2—C7—C6179.85 (15)
C10—C11—C14—C1587.8 (2)C3—C2—C7—C60.5 (2)
C12—C11—C14—C1592.8 (2)C2—C3—C4—C50.4 (2)
C11—C12—C13—N20.1 (3)C3—C4—C5—N1177.34 (16)
C11—C14—C15—C16176.12 (16)C3—C4—C5—C60.0 (2)
C14—C15—C16—C1796.3 (2)N1—C5—C6—C7177.88 (16)
C14—C15—C16—C2081.9 (2)N1—C5—C6—C81.3 (2)
C15—C16—C17—C18178.08 (16)C4—C5—C6—C70.6 (2)
C20—C16—C17—C180.1 (2)C4—C5—C6—C8178.64 (15)
C15—C16—C20—C19178.34 (16)C5—C6—C7—C20.9 (2)
C17—C16—C20—C190.1 (2)C8—C6—C7—C2178.32 (16)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.821 (9)1.826 (11)2.6407 (18)171.6 (15)
N1—H1B···O2i0.860 (11)2.113 (12)2.951 (2)164.5 (14)
N1—H1C···N3ii0.860 (7)2.288 (9)3.084 (2)153.8 (14)
C12—H12A···Cgiii0.932.763.540 (2)141
Symmetry codes: (i) x1, y, z; (ii) x2, y+1, z; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H12N2·C8H9NO2
Mr335.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)8.0695 (3), 13.0677 (5), 17.6138 (10)
β (°) 99.501 (5)
V3)1831.89 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.60 × 0.18 × 0.12
Data collection
DiffractometerOxford Diffraction Gemini-S CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.919, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8821, 4277, 1870
Rint0.025
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.082, 1.03
No. of reflections4277
No. of parameters232
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.821 (9)1.826 (11)2.6407 (18)171.6 (15)
N1—H1B···O2i0.860 (11)2.113 (12)2.951 (2)164.5 (14)
N1—H1C···N3ii0.860 (7)2.288 (9)3.084 (2)153.8 (14)
C12—H12A···Cgiii0.932.763.540 (2)141
Symmetry codes: (i) x1, y, z; (ii) x2, y+1, z; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationBowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Lavender, E. S. (1999). Acta Cryst. B55, 573–590.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, F. M. & Lush, S. F. (2010). Acta Cryst. E66, o1138.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds