organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3,4-Di­acetyl-5-methyl-1H-pyrazol-1-yl)benzene­sulfonamide

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 February 2011; accepted 16 February 2011; online 23 February 2011)

In the title mol­ecule, C14H15N3O4S, the pyrazole ring is aligned at a dihedral angle of 55.5 (1)° with respect to the benzene ring; the mean planes of the acetyl substituents are twisted by 13.4 (3) and 30.1 (3)° with respect to the pyrazole ring. Inter­molecular classical N—H⋯O and weak C—H⋯O hydrogen bonding links the mol­ecules, forming a three-dimensional network architecture in the crystal structure.

Related literature

For background to the biological properties of aryl-substituted pyrazoles, see: Abdel-Aziz et al. (2010[Abdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427-2432.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15N3O4S

  • Mr = 321.35

  • Orthorhombic, P n a 21

  • a = 8.3716 (3) Å

  • b = 21.7722 (8) Å

  • c = 7.8915 (3) Å

  • V = 1438.37 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.952, Tmax = 0.988

  • 10477 measured reflections

  • 3087 independent reflections

  • 2634 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.095

  • S = 1.05

  • 3087 reflections

  • 210 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1337 Friedel pairs

  • Flack parameter: 0.08 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H31⋯O2i 0.88 (1) 2.03 (1) 2.864 (3) 159 (3)
N3—H32⋯O4ii 0.88 (1) 2.06 (1) 2.933 (3) 170 (3)
C1—H1C⋯O3i 0.98 2.55 3.446 (3) 151
C10—H10⋯O1iii 0.95 2.51 3.314 (3) 142
C14—H14⋯O1iv 0.95 2.54 3.414 (3) 153
Symmetry codes: (i) [-x+2, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) x-1, y, z; (iv) [-x+3, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have reported the antitumor activity of aryl-pyrazoles against CaCo-2 and HEP-2 cell lines (Abdel-Aziz et al., 2010). These compounds were synthesized by a cycloaddition under microwave conditions. The present study involves the synthesis of an aryl-pyrazole having a sulfonamide –SO2NH2 substituent (Scheme I) that is expected to improve aqueous solubility. The C14H15N3O4 molecule has two acetyl substitutents on the pyrazolyl ring along with a benzenesulfanomide group. The sulfonamido unit interacts with an adjacent acetyl and sulfonamido O-atoms to generate a three-dimensional network (Table 1).

Related literature top

For background to the biological properties of aryl-substituted pyrazoles, see: Abdel-Aziz et al. (2010).

Experimental top

1-Phenyl-2-(phenylsulfonyl)ethanone (0.26 g, 10 mmol) was dissolved in a sodium ethoxide solution (prepared by dissolving 0.23 g sodium metal in 50 ml absolute ethanol). To the solution was added (Z)-2-oxo-N'-(4-sulfamoylphenyl)propanehydrazonoyl chloride (0.28 g, 10 mmol). The mixture was stirred for 12 h. The mixuture was then poured into cold water; the solid product was collected and recrystallized from an ethanol-water (4:1) mixture.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5 times Ueq(C).

The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C14H15N3O4S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-(3,4-Diacetyl-5-methyl-1H-pyrazol-1-yl)benzenesulfonamide top
Crystal data top
C14H15N3O4SF(000) = 672
Mr = 321.35Dx = 1.484 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3291 reflections
a = 8.3716 (3) Åθ = 2.4–29.2°
b = 21.7722 (8) ŵ = 0.25 mm1
c = 7.8915 (3) ÅT = 100 K
V = 1438.37 (9) Å3Prism, colorless
Z = 40.20 × 0.15 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3087 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2634 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.056
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2827
Tmin = 0.952, Tmax = 0.988l = 109
10477 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0422P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3087 reflectionsΔρmax = 0.31 e Å3
210 parametersΔρmin = 0.39 e Å3
3 restraintsAbsolute structure: Flack (1983), 1337 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (8)
Crystal data top
C14H15N3O4SV = 1438.37 (9) Å3
Mr = 321.35Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.3716 (3) ŵ = 0.25 mm1
b = 21.7722 (8) ÅT = 100 K
c = 7.8915 (3) Å0.20 × 0.15 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3087 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2634 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.988Rint = 0.056
10477 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095Δρmax = 0.31 e Å3
S = 1.05Δρmin = 0.39 e Å3
3087 reflectionsAbsolute structure: Flack (1983), 1337 Friedel pairs
210 parametersAbsolute structure parameter: 0.08 (8)
3 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.69022 (7)0.29885 (3)0.49994 (9)0.01726 (16)
O11.5767 (2)0.55022 (9)0.1918 (3)0.0278 (5)
O21.3205 (2)0.68881 (8)0.5594 (3)0.0229 (5)
O30.7216 (2)0.27511 (9)0.6664 (3)0.0234 (5)
O40.5323 (2)0.31899 (7)0.4576 (3)0.0226 (5)
N11.0863 (2)0.56565 (9)0.4491 (3)0.0164 (5)
N21.1261 (2)0.50985 (9)0.3847 (3)0.0160 (5)
N30.7369 (3)0.24582 (10)0.3684 (3)0.0182 (5)
H310.726 (3)0.2569 (13)0.2624 (17)0.017 (8)*
H320.8310 (18)0.2289 (11)0.385 (4)0.021 (8)*
C11.5821 (3)0.64151 (12)0.3508 (4)0.0235 (7)
H1A1.69160.64380.30720.035*
H1B1.58450.64110.47500.035*
H1C1.52150.67730.31150.035*
C21.5041 (3)0.58395 (12)0.2877 (4)0.0196 (6)
C31.3404 (3)0.56637 (11)0.3441 (3)0.0149 (6)
C41.2165 (3)0.60007 (11)0.4274 (3)0.0157 (6)
C51.2032 (3)0.66253 (11)0.5028 (4)0.0179 (5)
C61.0404 (3)0.68993 (11)0.5136 (5)0.0252 (6)
H6A1.04660.72990.57040.038*
H6B0.97040.66250.57830.038*
H6C0.99720.69540.39920.038*
C71.2751 (3)0.50868 (12)0.3166 (3)0.0170 (6)
C81.3336 (3)0.45309 (12)0.2257 (4)0.0236 (7)
H8A1.24480.43390.16460.035*
H8B1.37770.42380.30770.035*
H8C1.41700.46500.14490.035*
C91.0197 (3)0.45957 (11)0.4118 (4)0.0160 (6)
C100.8629 (3)0.46375 (12)0.3568 (3)0.0176 (6)
H100.82610.49960.30020.021*
C110.7607 (3)0.41477 (12)0.3856 (4)0.0196 (6)
H110.65250.41680.34980.024*
C120.8176 (3)0.36269 (11)0.4670 (3)0.0172 (6)
C130.9744 (3)0.35924 (11)0.5236 (4)0.0178 (6)
H131.01120.32360.58100.021*
C141.0763 (3)0.40801 (11)0.4958 (4)0.0190 (6)
H141.18390.40630.53380.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0148 (3)0.0163 (3)0.0207 (4)0.0022 (2)0.0012 (3)0.0006 (3)
O10.0200 (10)0.0241 (10)0.0392 (13)0.0012 (8)0.0106 (10)0.0016 (10)
O20.0238 (11)0.0223 (10)0.0226 (12)0.0058 (8)0.0029 (8)0.0047 (9)
O30.0263 (10)0.0229 (10)0.0211 (12)0.0025 (9)0.0023 (9)0.0001 (9)
O40.0157 (9)0.0188 (9)0.0334 (14)0.0020 (7)0.0016 (8)0.0017 (9)
N10.0164 (11)0.0135 (10)0.0192 (13)0.0009 (8)0.0006 (9)0.0009 (9)
N20.0147 (11)0.0159 (10)0.0175 (12)0.0008 (9)0.0015 (9)0.0025 (10)
N30.0192 (12)0.0160 (11)0.0192 (14)0.0004 (9)0.0017 (10)0.0022 (11)
C10.0171 (13)0.0244 (14)0.0289 (18)0.0047 (11)0.0023 (12)0.0023 (14)
C20.0170 (13)0.0203 (14)0.0215 (16)0.0011 (11)0.0017 (12)0.0043 (14)
C30.0143 (12)0.0174 (13)0.0132 (15)0.0004 (10)0.0010 (10)0.0031 (11)
C40.0165 (12)0.0173 (12)0.0134 (14)0.0015 (10)0.0011 (11)0.0011 (12)
C50.0242 (13)0.0162 (12)0.0134 (13)0.0016 (10)0.0032 (13)0.0016 (14)
C60.0255 (14)0.0191 (13)0.0312 (18)0.0020 (11)0.0024 (15)0.0052 (14)
C70.0155 (13)0.0180 (13)0.0176 (15)0.0002 (10)0.0017 (11)0.0026 (12)
C80.0190 (13)0.0197 (14)0.0321 (19)0.0007 (11)0.0051 (12)0.0050 (13)
C90.0163 (12)0.0147 (12)0.0170 (15)0.0027 (10)0.0032 (11)0.0048 (11)
C100.0173 (13)0.0151 (12)0.0204 (16)0.0021 (10)0.0002 (11)0.0003 (12)
C110.0118 (12)0.0241 (13)0.0229 (16)0.0013 (11)0.0031 (11)0.0012 (14)
C120.0165 (12)0.0158 (12)0.0193 (17)0.0001 (10)0.0031 (11)0.0017 (12)
C130.0179 (12)0.0150 (12)0.0207 (16)0.0032 (10)0.0021 (11)0.0007 (12)
C140.0157 (12)0.0189 (12)0.0224 (15)0.0016 (10)0.0001 (13)0.0040 (13)
Geometric parameters (Å, º) top
S1—O41.4325 (18)C4—C51.489 (3)
S1—O31.436 (2)C5—C61.490 (3)
S1—N31.601 (3)C6—H6A0.9800
S1—C121.771 (2)C6—H6B0.9800
O1—C21.218 (3)C6—H6C0.9800
O2—C51.221 (3)C7—C81.490 (4)
N1—C41.334 (3)C8—H8A0.9800
N1—N21.358 (3)C8—H8B0.9800
N2—C71.358 (3)C8—H8C0.9800
N2—C91.427 (3)C9—C101.385 (3)
N3—H310.875 (10)C9—C141.387 (4)
N3—H320.879 (10)C10—C111.386 (4)
C1—C21.498 (4)C10—H100.9500
C1—H1A0.9800C11—C121.388 (4)
C1—H1B0.9800C11—H110.9500
C1—H1C0.9800C12—C131.388 (3)
C2—C31.491 (4)C13—C141.380 (3)
C3—C71.387 (3)C13—H130.9500
C3—C41.430 (4)C14—H140.9500
O4—S1—O3119.48 (11)C5—C6—H6B109.5
O4—S1—N3107.16 (12)H6A—C6—H6B109.5
O3—S1—N3106.79 (13)C5—C6—H6C109.5
O4—S1—C12106.35 (11)H6A—C6—H6C109.5
O3—S1—C12107.84 (12)H6B—C6—H6C109.5
N3—S1—C12108.90 (12)N2—C7—C3106.5 (2)
C4—N1—N2104.7 (2)N2—C7—C8120.5 (2)
N1—N2—C7112.94 (19)C3—C7—C8132.9 (2)
N1—N2—C9118.5 (2)C7—C8—H8A109.5
C7—N2—C9128.2 (2)C7—C8—H8B109.5
S1—N3—H31113 (2)H8A—C8—H8B109.5
S1—N3—H32115.2 (19)C7—C8—H8C109.5
H31—N3—H32110 (3)H8A—C8—H8C109.5
C2—C1—H1A109.5H8B—C8—H8C109.5
C2—C1—H1B109.5C10—C9—C14121.8 (2)
H1A—C1—H1B109.5C10—C9—N2119.6 (2)
C2—C1—H1C109.5C14—C9—N2118.6 (2)
H1A—C1—H1C109.5C9—C10—C11118.9 (2)
H1B—C1—H1C109.5C9—C10—H10120.6
O1—C2—C3119.3 (2)C11—C10—H10120.6
O1—C2—C1119.6 (2)C10—C11—C12119.5 (2)
C3—C2—C1121.1 (2)C10—C11—H11120.2
C7—C3—C4104.5 (2)C12—C11—H11120.2
C7—C3—C2123.3 (2)C11—C12—C13121.2 (2)
C4—C3—C2132.2 (2)C11—C12—S1120.17 (19)
N1—C4—C3111.3 (2)C13—C12—S1118.66 (19)
N1—C4—C5113.6 (2)C14—C13—C12119.5 (2)
C3—C4—C5135.0 (2)C14—C13—H13120.3
O2—C5—C4120.9 (2)C12—C13—H13120.3
O2—C5—C6121.8 (2)C13—C14—C9119.2 (2)
C4—C5—C6117.2 (2)C13—C14—H14120.4
C5—C6—H6A109.5C9—C14—H14120.4
C4—N1—N2—C72.5 (3)C4—C3—C7—C8174.8 (3)
C4—N1—N2—C9170.7 (2)C2—C3—C7—C83.5 (5)
O1—C2—C3—C711.2 (4)N1—N2—C9—C1057.7 (3)
C1—C2—C3—C7167.1 (3)C7—N2—C9—C10130.3 (3)
O1—C2—C3—C4166.6 (3)N1—N2—C9—C14121.2 (3)
C1—C2—C3—C415.0 (5)C7—N2—C9—C1450.9 (4)
N2—N1—C4—C31.4 (3)C14—C9—C10—C110.5 (4)
N2—N1—C4—C5175.3 (2)N2—C9—C10—C11179.4 (2)
C7—C3—C4—N10.1 (3)C9—C10—C11—C120.6 (4)
C2—C3—C4—N1178.3 (3)C10—C11—C12—C131.4 (4)
C7—C3—C4—C5175.9 (3)C10—C11—C12—S1178.3 (2)
C2—C3—C4—C56.0 (5)O4—S1—C12—C1110.3 (3)
N1—C4—C5—O2148.1 (3)O3—S1—C12—C11139.6 (2)
C3—C4—C5—O227.6 (5)N3—S1—C12—C11104.9 (2)
N1—C4—C5—C629.0 (4)O4—S1—C12—C13169.9 (2)
C3—C4—C5—C6155.3 (3)O3—S1—C12—C1340.7 (3)
N1—N2—C7—C32.7 (3)N3—S1—C12—C1374.9 (2)
C9—N2—C7—C3169.8 (2)C11—C12—C13—C141.1 (4)
N1—N2—C7—C8174.3 (2)S1—C12—C13—C14178.6 (2)
C9—N2—C7—C813.2 (4)C12—C13—C14—C90.0 (4)
C4—C3—C7—N21.6 (3)C10—C9—C14—C130.8 (4)
C2—C3—C7—N2179.9 (2)N2—C9—C14—C13179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···O2i0.88 (1)2.03 (1)2.864 (3)159 (3)
N3—H32···O4ii0.88 (1)2.06 (1)2.933 (3)170 (3)
C1—H1C···O3i0.982.553.446 (3)151
C10—H10···O1iii0.952.513.314 (3)142
C14—H14···O1iv0.952.543.414 (3)153
Symmetry codes: (i) x+2, y+1, z1/2; (ii) x+1/2, y+1/2, z; (iii) x1, y, z; (iv) x+3, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15N3O4S
Mr321.35
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)8.3716 (3), 21.7722 (8), 7.8915 (3)
V3)1438.37 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.20 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.952, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10477, 3087, 2634
Rint0.056
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.095, 1.05
No. of reflections3087
No. of parameters210
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.39
Absolute structureFlack (1983), 1337 Friedel pairs
Absolute structure parameter0.08 (8)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···O2i0.88 (1)2.03 (1)2.864 (3)159 (3)
N3—H32···O4ii0.88 (1)2.06 (1)2.933 (3)170 (3)
C1—H1C···O3i0.982.553.446 (3)151
C10—H10···O1iii0.952.513.314 (3)142
C14—H14···O1iv0.952.543.414 (3)153
Symmetry codes: (i) x+2, y+1, z1/2; (ii) x+1/2, y+1/2, z; (iii) x1, y, z; (iv) x+3, y+1, z+1/2.
 

Acknowledgements

We thank King Saud University and the University of Malaya for supporting this study.

References

First citationAbdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427–2432.  Web of Science CAS PubMed Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds