metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(6,6′-Di­methyl-2,2′-bi­pyridine-κ2N,N′)di­iodidomercury(II)

aSchool of Chemistry, Damghan University, Damghan, Iran, and bIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: robabeh_alizadeh@yahoo.com

(Received 13 November 2010; accepted 1 February 2011; online 5 February 2011)

In the title complex, [HgI2(C12H12N2)], the HgII atom has a distorted tetra­hedral coordination formed by two N atoms of the 6,6′-dimethyl-2,2′-bipyridine ligand and two terminal I atoms [N—Hg—N = 70.1 (2) and I—Hg—I = 130.59 (3)°]. The crystal packing features ππ contacts between the pyridine rings of adjacent mol­ecules [centroid–centroid distance = 3.773 (5) Å] and also between a pyridine ring of one mol­ecule and the five-membered chelate ring of an adjacent mol­ecule [centroid–centroid distance = 3.668 (4) Å].

Related literature

For the structures of metal complexes with a 6,6′-dimethyl-2,2′-bipyridine ligand, see: Akbarzadeh Torbati et al. (2010[Akbarzadeh Torbati, N., Rezvani, A. R., Safari, N., Saravani, H. & Amani, V. (2010). Acta Cryst. E66, m1284.]); Alizadeh et al. (2010[Alizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m1024.]); Alizadeh, Kalateh, Ebadi et al. (2009[Alizadeh, R., Kalateh, K., Ebadi, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1250.]); Alizadeh, Kalateh, Khoshtarkib et al. (2009[Alizadeh, R., Kalateh, K., Khoshtarkib, Z., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1439-m1440.]); Alizadeh, Khoshtarkib et al. (2009[Alizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311.]); Itoh et al. (2005[Itoh, S., Kishikawa, N., Suzuki, T. & Takagi, H. D. (2005). J. Chem. Soc. Dalton Trans. pp. 1066-1078.]); Kou et al. (2008[Kou, H. Z., Hishiya, S. & Sato, O. (2008). Inorg. Chim. Acta, 361, 2396-2406.]); Onggo et al. (2005[Onggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct. 738, 129-136.]).

[Scheme 1]

Experimental

Crystal data
  • [HgI2(C12H12N2)]

  • Mr = 638.63

  • Monoclinic, P 21 /n

  • a = 8.8096 (18) Å

  • b = 12.025 (2) Å

  • c = 14.693 (3) Å

  • β = 101.88 (3)°

  • V = 1523.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 14.14 mm−1

  • T = 298 K

  • 0.16 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.128, Tmax = 0.186

  • 9361 measured reflections

  • 4057 independent reflections

  • 3409 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.095

  • S = 1.10

  • 4057 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 1.22 e Å−3

  • Δρmin = −1.23 e Å−3

Table 1
Selected bond lengths (Å)

N1—Hg1 2.380 (5)
N2—Hg1 2.381 (6)
I1—Hg1 2.6503 (10)
I2—Hg1 2.6876 (7)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

6,6'-Dimethyl-2,2'-bipyridine (6,6'-dmbipy) is a rather widely used bidentate ligand, and complexes of different metals with 6,6'-dmbipy have been prepared, e.g. those of cobalt (Akbarzadeh Torbati et al., 2010),cadmium (Alizadeh et al., 2010),zinc (Alizadeh, Kalateh, Ebadi et al., 2009; Alizadeh, Kalateh, Khoshtarkib et al., 2009; Alizadeh, Khoshtarkib et al., 2009), copper (Itoh et al., 2005), nickel (Kou et al., 2008), and ruthenium (Onggo et al., 2005). We report herein the synthesis and first crystal structure of the mercury complex of this ligand (Fig. 1).

The Hg1 atom has a distorted tetrahedral coordination formed by atoms N1 and N2 of the 6,6'-dimethyl-2,2'-bipyridine ligand and terminal I1 and I2 atoms [N—Hg—N 70.1 (2)°; I—Hg—I 130.59 (3)°; see Table 1 for bond lengths involving Hg1].

In the crystal structure, intermolecular /p-/p contacts (Fig. 2) between the pyridine rings and also between pyridine ring and chelate ring of the adjacent molecules may stabilize the structure: the centroid-centroid distances Cg1—Cg2i and Cg2—Cg3i are equal to 3.668 (4) and 3.773 (5)Å respectively [Cg1, Cg2 and Cg3 represent centroids of the rings (Hg1/N1/C6/C7/N2), (N1/C2—C6), and (N2/C7—C11); symmetry code (i): 2 - x,1 - y,-z].

Related literature top

For the structures of metal complexes with a 6,6'-dimethyl-2,2'-bipyridine ligand, see: Akbarzadeh Torbati et al. (2010); Alizadeh et al. (2010); Alizadeh, Kalateh, Ebadi et al. (2009); Alizadeh, Kalateh, Khoshtarkib et al. (2009); Alizadeh, Khoshtarkib et al. (2009); Itoh et al. (2005); Kou et al. (2008); Onggo et al. (2005).

Experimental top

For the preparation of the title compound, a solution of 6,6'-dimethyl-2,2'-bipyridine (0.28 g, 1.50 mmol) in acetonitrile (10 ml) was added to a solution of HgI2 (0.68 g, 1.50 mmol) in methanol (10 ml), and the resulting colorless mixture was stirred for 30 min at 313 K. It was then left to evaporate slowly at room temperature. After six days, colorless prismatic crystals of the title compound, suitable for X-ray diffraction experiment, were isolated (yield 0.71 g; 74.1%).

Refinement top

All H atoms were positioned geometrically, with C—H 0.93 and 0.96 Å for aromatics and methyl hydrogen atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq. The highest residual density peak and the deepest hole (1.22 and -1.23 e A°-3) are located at distances of 0.83 and 0.82 Å from the Hg1 atom respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound;. displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram for the crystal of the title compound viewed along the a axis.
(6,6'-Dimethyl-2,2'-bipyridine-κ2N,N')diiodidomercury(II) top
Crystal data top
[HgI2(C12H12N2)]F(000) = 1136
Mr = 638.63Dx = 2.785 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1223 reflections
a = 8.8096 (18) Åθ = 2.2–29.2°
b = 12.025 (2) ŵ = 14.14 mm1
c = 14.693 (3) ÅT = 298 K
β = 101.88 (3)°Prism, colorless
V = 1523.2 (5) Å30.16 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4057 independent reflections
Radiation source: fine-focus sealed tube3409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 29.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1112
Tmin = 0.128, Tmax = 0.186k = 1613
9361 measured reflectionsl = 2017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0397P)2 + 3.5854P]
where P = (Fo2 + 2Fc2)/3
4057 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 1.22 e Å3
0 restraintsΔρmin = 1.23 e Å3
Crystal data top
[HgI2(C12H12N2)]V = 1523.2 (5) Å3
Mr = 638.63Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8096 (18) ŵ = 14.14 mm1
b = 12.025 (2) ÅT = 298 K
c = 14.693 (3) Å0.16 × 0.15 × 0.12 mm
β = 101.88 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4057 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3409 reflections with I > 2σ(I)
Tmin = 0.128, Tmax = 0.186Rint = 0.051
9361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.10Δρmax = 1.22 e Å3
4057 reflectionsΔρmin = 1.23 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6805 (9)0.4904 (8)0.1498 (7)0.065 (2)
H1A0.62380.55600.15950.077*
H1B0.77490.48680.19600.077*
H1C0.61860.42580.15470.077*
C20.7174 (7)0.4943 (6)0.0569 (5)0.0493 (16)
C30.6678 (9)0.4111 (7)0.0091 (6)0.061 (2)
H30.60790.35200.00420.073*
C40.7097 (10)0.4188 (7)0.0941 (7)0.069 (2)
H40.67730.36440.13880.083*
C50.7983 (9)0.5055 (7)0.1137 (6)0.060 (2)
H50.82720.51000.17100.072*
C60.8444 (7)0.5869 (6)0.0461 (5)0.0478 (15)
C70.9441 (7)0.6807 (6)0.0608 (4)0.0445 (14)
C80.9964 (10)0.6955 (9)0.1438 (6)0.066 (2)
H80.96280.64770.19360.079*
C91.0961 (13)0.7794 (10)0.1518 (8)0.080 (3)
H91.12940.79000.20730.096*
C101.1474 (10)0.8489 (8)0.0772 (8)0.074 (3)
H101.21900.90460.08120.089*
C111.0915 (9)0.8353 (7)0.0045 (7)0.0592 (19)
C121.1391 (11)0.9092 (8)0.0862 (8)0.079 (3)
H12A1.18820.86590.13890.094*
H12B1.04930.94560.09980.094*
H12C1.21060.96400.07280.094*
N10.8032 (6)0.5792 (4)0.0366 (4)0.0399 (11)
N20.9903 (6)0.7526 (5)0.0104 (4)0.0452 (12)
I11.05284 (6)0.68838 (5)0.30203 (4)0.06506 (16)
I20.61128 (6)0.85868 (4)0.09788 (4)0.05659 (14)
Hg10.86805 (3)0.73253 (2)0.139654 (19)0.04718 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (4)0.060 (5)0.081 (6)0.010 (3)0.009 (4)0.019 (4)
C20.041 (3)0.037 (3)0.066 (4)0.003 (2)0.003 (3)0.005 (3)
C30.047 (3)0.045 (4)0.082 (6)0.004 (3)0.005 (4)0.010 (4)
C40.062 (4)0.056 (5)0.077 (6)0.008 (4)0.012 (4)0.027 (4)
C50.057 (4)0.068 (5)0.051 (4)0.014 (4)0.004 (3)0.018 (4)
C60.041 (3)0.058 (4)0.042 (3)0.019 (3)0.002 (2)0.005 (3)
C70.045 (3)0.051 (4)0.039 (3)0.014 (3)0.012 (2)0.006 (3)
C80.066 (5)0.088 (6)0.047 (4)0.020 (4)0.020 (4)0.009 (4)
C90.087 (6)0.094 (8)0.070 (6)0.019 (6)0.041 (5)0.034 (6)
C100.062 (5)0.065 (6)0.107 (8)0.009 (4)0.046 (5)0.028 (5)
C110.050 (4)0.045 (4)0.088 (6)0.003 (3)0.026 (4)0.017 (4)
C120.074 (6)0.053 (5)0.116 (8)0.016 (4)0.034 (6)0.012 (5)
N10.038 (2)0.036 (3)0.045 (3)0.005 (2)0.006 (2)0.002 (2)
N20.045 (3)0.040 (3)0.054 (3)0.006 (2)0.021 (2)0.006 (2)
I10.0656 (3)0.0743 (4)0.0493 (3)0.0076 (3)0.0020 (2)0.0064 (2)
I20.0534 (2)0.0536 (3)0.0609 (3)0.0024 (2)0.0073 (2)0.0054 (2)
Hg10.05023 (14)0.04953 (15)0.04286 (13)0.00229 (11)0.01209 (10)0.00399 (11)
Geometric parameters (Å, º) top
C1—C21.468 (12)C8—C91.359 (15)
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600C9—C101.379 (16)
C1—H1C0.9600C9—H90.9300
C2—N11.340 (9)C10—C111.398 (13)
C2—C31.399 (10)C10—H100.9300
C3—C41.377 (14)C11—N21.351 (9)
C3—H30.9300C11—C121.483 (14)
C4—C51.367 (13)C12—H12A0.9600
C4—H40.9300C12—H12B0.9600
C5—C61.394 (10)C12—H12C0.9600
C5—H50.9300N1—Hg12.380 (5)
C6—N11.341 (9)N2—Hg12.381 (6)
C6—C71.473 (11)I1—Hg12.6503 (10)
C7—N21.354 (9)I2—Hg12.6876 (7)
C7—C81.401 (10)
C2—C1—H1A109.5C8—C9—C10119.5 (9)
C2—C1—H1B109.5C8—C9—H9120.2
H1A—C1—H1B109.5C10—C9—H9120.2
C2—C1—H1C109.5C9—C10—C11119.8 (9)
H1A—C1—H1C109.5C9—C10—H10120.1
H1B—C1—H1C109.5C11—C10—H10120.1
N1—C2—C3120.0 (8)N2—C11—C10119.7 (9)
N1—C2—C1118.4 (7)N2—C11—C12118.1 (8)
C3—C2—C1121.6 (7)C10—C11—C12122.3 (8)
C4—C3—C2118.5 (8)C11—C12—H12A109.5
C4—C3—H3120.8C11—C12—H12B109.5
C2—C3—H3120.8H12A—C12—H12B109.5
C5—C4—C3120.9 (8)C11—C12—H12C109.5
C5—C4—H4119.5H12A—C12—H12C109.5
C3—C4—H4119.5H12B—C12—H12C109.5
C4—C5—C6118.7 (8)C2—N1—C6121.6 (6)
C4—C5—H5120.6C2—N1—Hg1121.4 (5)
C6—C5—H5120.6C6—N1—Hg1116.7 (5)
N1—C6—C5120.2 (8)C11—N2—C7121.2 (7)
N1—C6—C7117.8 (6)C11—N2—Hg1122.6 (6)
C5—C6—C7121.9 (7)C7—N2—Hg1116.0 (4)
N2—C7—C8119.4 (7)N1—Hg1—N270.1 (2)
N2—C7—C6118.0 (6)N1—Hg1—I1116.12 (12)
C8—C7—C6122.6 (7)N2—Hg1—I1116.33 (14)
C9—C8—C7120.3 (9)N1—Hg1—I2102.20 (12)
C9—C8—H8119.8N2—Hg1—I2104.98 (13)
C7—C8—H8119.8I1—Hg1—I2130.59 (3)
N1—C2—C3—C40.3 (10)C5—C6—N1—Hg1174.1 (5)
C1—C2—C3—C4178.5 (7)C7—C6—N1—Hg18.4 (7)
C2—C3—C4—C50.2 (12)C10—C11—N2—C71.4 (11)
C3—C4—C5—C60.7 (12)C12—C11—N2—C7178.7 (7)
C4—C5—C6—N10.6 (10)C10—C11—N2—Hg1173.7 (6)
C4—C5—C6—C7177.9 (6)C12—C11—N2—Hg16.2 (10)
N1—C6—C7—N21.0 (8)C8—C7—N2—C113.1 (10)
C5—C6—C7—N2176.4 (6)C6—C7—N2—C11174.8 (6)
N1—C6—C7—C8178.7 (6)C8—C7—N2—Hg1172.3 (5)
C5—C6—C7—C81.3 (10)C6—C7—N2—Hg19.8 (7)
N2—C7—C8—C91.8 (11)C2—N1—Hg1—N2176.3 (5)
C6—C7—C8—C9175.9 (8)C6—N1—Hg1—N29.7 (4)
C7—C8—C9—C101.1 (14)C2—N1—Hg1—I165.9 (5)
C8—C9—C10—C112.7 (15)C6—N1—Hg1—I1120.0 (4)
C9—C10—C11—N21.5 (13)C2—N1—Hg1—I282.0 (4)
C9—C10—C11—C12178.4 (9)C6—N1—Hg1—I292.1 (4)
C3—C2—N1—C60.4 (9)C11—N2—Hg1—N1174.6 (6)
C1—C2—N1—C6178.5 (6)C7—N2—Hg1—N110.1 (4)
C3—C2—N1—Hg1173.4 (5)C11—N2—Hg1—I164.5 (6)
C1—C2—N1—Hg17.8 (8)C7—N2—Hg1—I1120.2 (4)
C5—C6—N1—C20.1 (9)C11—N2—Hg1—I287.6 (5)
C7—C6—N1—C2177.5 (5)C7—N2—Hg1—I287.7 (4)

Experimental details

Crystal data
Chemical formula[HgI2(C12H12N2)]
Mr638.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.8096 (18), 12.025 (2), 14.693 (3)
β (°) 101.88 (3)
V3)1523.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)14.14
Crystal size (mm)0.16 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.128, 0.186
No. of measured, independent and
observed [I > 2σ(I)] reflections
9361, 4057, 3409
Rint0.051
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.095, 1.10
No. of reflections4057
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.22, 1.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
N1—Hg12.380 (5)I1—Hg12.6503 (10)
N2—Hg12.381 (6)I2—Hg12.6876 (7)
 

Acknowledgements

The authors are grateful to Damghan University for financial support.

References

First citationAkbarzadeh Torbati, N., Rezvani, A. R., Safari, N., Saravani, H. & Amani, V. (2010). Acta Cryst. E66, m1284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m1024.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Kalateh, K., Ebadi, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Kalateh, K., Khoshtarkib, Z., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1439–m1440.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationItoh, S., Kishikawa, N., Suzuki, T. & Takagi, H. D. (2005). J. Chem. Soc. Dalton Trans. pp. 1066–1078.  CrossRef Google Scholar
First citationKou, H. Z., Hishiya, S. & Sato, O. (2008). Inorg. Chim. Acta, 361, 2396–2406.  Web of Science CSD CrossRef CAS Google Scholar
First citationOnggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct. 738, 129–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds