organic compounds
Bis(2,6-diaminopyridinium) bis(hydrogen oxalate) monohydrate
aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bVirginia Commonwealth University, Medicinal Chemistry, USA, cKampus Kesihatan, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
The 5H8N3+·2C2HO4−·H2O, contains two crystallographically independent 2,6-diaminopyridinium cations, a pair of hydrogen oxalate anions and a water molecule. Both 2,6-diaminopyridinium cations are planar, with maximum deviations of 0.011 (2) and 0.015 (1) Å, and are protonated at the pyridine N atoms. The hydrogen oxalate anions adopt twisted conformations and the dihedral angles between the planes of their carboxyl groups are 31.01 (11) and 63.48 (11)°. In the crystal, the cations, anions and water molecules are linked via O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional network.
of the title compound, 2CRelated literature
For applications of 2,6-diaminopyridine, see: Abu Zuhri & Cox (1989). For related structures, see; Schwalbe et al. (1987); Al-Dajani et al. (2009, 2010); Aghabozorg et al. (2005); Büyükgüngör & Odabaşoğlu (2006); Odabaşoğlu & Büyükgüngör (2006); Haddad & Al-Far (2003). For details of oxalic acid, see: Subha Nandhini et al. (2001); Bahadur et al. (2007); Athimoolam & Natarajan (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811004119/yk2001sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811004119/yk2001Isup2.hkl
Oxalic acid dihydrate (0.01 mol, 1.3 g) was dissolved in 50 ml of methanol in a round bottom flask. 2,6-diaminopyridine (0.01mol, 1.1 g) was dissolved in 50 ml of methanol in a flask and then added in small portions to the oxalic acid with stirring. The reaction mixture was left stirring for 3 hours at room temperature. Brown precipitate was formed, filtered, and washed with methanol. Recrystallization of the brown precipitate with water has yielded after 48 hours brown crystals which was washed with methanol and dried at 353 K.
The N- and O-bound H atoms were located in a difference map and refined freely [N–H = 0.87 (2)–0.93 (3) Å and O–H = 0.82 (3)– 0.95 (3) Å. The remaining H atoms were positioned geometrically [C–H = 0.93Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. | |
Fig. 2. The crystal packing of the title compound (I). |
2C5H8N3+·2C2HO4−·H2O | F(000) = 872 |
Mr = 416.36 | Dx = 1.484 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8066 reflections |
a = 8.1681 (1) Å | θ = 2.7–29.6° |
b = 34.8396 (4) Å | µ = 0.13 mm−1 |
c = 7.2031 (1) Å | T = 296 K |
β = 114.573 (1)° | Block, brown |
V = 1864.16 (4) Å3 | 0.29 × 0.27 × 0.15 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 4287 independent reflections |
Radiation source: fine-focus sealed tube | 3195 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −10→10 |
Tmin = 0.964, Tmax = 0.982 | k = −45→44 |
33926 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0544P)2 + 0.6267P] where P = (Fo2 + 2Fc2)/3 |
4287 reflections | (Δ/σ)max = 0.001 |
318 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
2C5H8N3+·2C2HO4−·H2O | V = 1864.16 (4) Å3 |
Mr = 416.36 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.1681 (1) Å | µ = 0.13 mm−1 |
b = 34.8396 (4) Å | T = 296 K |
c = 7.2031 (1) Å | 0.29 × 0.27 × 0.15 mm |
β = 114.573 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 4287 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3195 reflections with I > 2σ(I) |
Tmin = 0.964, Tmax = 0.982 | Rint = 0.037 |
33926 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.127 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.49 e Å−3 |
4287 reflections | Δρmin = −0.30 e Å−3 |
318 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1A | 0.4482 (2) | 0.61834 (4) | 0.9547 (3) | 0.0707 (5) | |
O2A | 0.17712 (17) | 0.59774 (4) | 0.7486 (2) | 0.0604 (4) | |
H2A | 0.149 (3) | 0.6230 (8) | 0.768 (4) | 0.086 (8)* | |
O3A | 0.57769 (16) | 0.55605 (3) | 0.8116 (2) | 0.0450 (3) | |
O4A | 0.32307 (17) | 0.52706 (3) | 0.7723 (2) | 0.0508 (3) | |
N1A | 0.24244 (19) | 0.73699 (4) | 0.8214 (2) | 0.0379 (3) | |
H1NA | 0.188 (3) | 0.7149 (6) | 0.820 (3) | 0.055 (6)* | |
N2A | 0.4866 (3) | 0.69987 (5) | 0.8523 (3) | 0.0532 (4) | |
H3NA | 0.591 (3) | 0.6973 (7) | 0.850 (3) | 0.067 (7)* | |
H2NA | 0.431 (3) | 0.6779 (7) | 0.862 (3) | 0.065 (7)* | |
N3A | −0.0132 (2) | 0.76858 (5) | 0.7974 (3) | 0.0530 (4) | |
H4NA | −0.063 (3) | 0.7457 (7) | 0.807 (4) | 0.074 (7)* | |
H5NA | −0.073 (3) | 0.7903 (6) | 0.783 (3) | 0.050 (6)* | |
C7A | 0.3497 (2) | 0.59436 (5) | 0.8417 (3) | 0.0426 (4) | |
C8A | 0.4205 (2) | 0.55548 (5) | 0.8045 (3) | 0.0366 (4) | |
C2A | 0.4143 (2) | 0.73481 (5) | 0.8371 (3) | 0.0395 (4) | |
C3A | 0.5024 (3) | 0.76876 (6) | 0.8363 (3) | 0.0486 (4) | |
H3A | 0.6205 | 0.7684 | 0.8493 | 0.058* | |
C4A | 0.4130 (3) | 0.80282 (6) | 0.8162 (3) | 0.0547 (5) | |
H4A | 0.4714 | 0.8255 | 0.8127 | 0.066* | |
C5A | 0.2398 (3) | 0.80454 (5) | 0.8011 (3) | 0.0516 (5) | |
H5A | 0.1820 | 0.8280 | 0.7876 | 0.062* | |
C6A | 0.1525 (2) | 0.77058 (5) | 0.8062 (3) | 0.0400 (4) | |
O3B | 1.06013 (16) | 0.66502 (3) | 0.7787 (2) | 0.0479 (3) | |
O4B | 0.83371 (18) | 0.69483 (4) | 0.8123 (2) | 0.0584 (4) | |
O1B | 0.7509 (2) | 0.61351 (4) | 0.5650 (2) | 0.0694 (5) | |
O2B | 0.7631 (2) | 0.61662 (5) | 0.8760 (2) | 0.0667 (5) | |
H2B | 0.690 (4) | 0.5942 (9) | 0.840 (4) | 0.104 (9)* | |
N1B | 0.72190 (18) | 0.48805 (4) | 0.7325 (2) | 0.0376 (3) | |
H1NB | 0.671 (3) | 0.5096 (6) | 0.750 (3) | 0.049 (5)* | |
N2B | 0.4688 (2) | 0.45485 (5) | 0.7030 (3) | 0.0493 (4) | |
H2NB | 0.423 (3) | 0.4775 (7) | 0.731 (3) | 0.062 (6)* | |
H3NB | 0.408 (3) | 0.4336 (7) | 0.672 (3) | 0.073 (7)* | |
N3B | 0.9553 (3) | 0.52718 (5) | 0.7489 (3) | 0.0582 (5) | |
H5NB | 1.071 (3) | 0.5308 (7) | 0.762 (3) | 0.069 (7)* | |
H4NB | 0.888 (4) | 0.5452 (7) | 0.739 (4) | 0.076 (8)* | |
C8B | 0.9063 (2) | 0.66636 (5) | 0.7784 (3) | 0.0371 (4) | |
C7B | 0.7974 (2) | 0.62902 (5) | 0.7277 (3) | 0.0376 (4) | |
C2B | 0.6357 (2) | 0.45385 (5) | 0.7121 (3) | 0.0383 (4) | |
C3B | 0.7258 (3) | 0.42076 (5) | 0.7024 (3) | 0.0498 (5) | |
H3B | 0.6709 | 0.3969 | 0.6882 | 0.060* | |
C4B | 0.8978 (3) | 0.42379 (6) | 0.7143 (3) | 0.0535 (5) | |
H4B | 0.9594 | 0.4015 | 0.7108 | 0.064* | |
C5B | 0.9815 (3) | 0.45863 (6) | 0.7310 (3) | 0.0497 (5) | |
H5B | 1.0976 | 0.4600 | 0.7379 | 0.060* | |
C6B | 0.8898 (2) | 0.49165 (5) | 0.7376 (3) | 0.0415 (4) | |
O1W | 0.8207 (2) | 0.65644 (5) | 0.2651 (3) | 0.0634 (4) | |
H2W | 0.798 (4) | 0.6437 (8) | 0.351 (4) | 0.096 (10)* | |
H1W | 0.759 (4) | 0.6459 (9) | 0.157 (5) | 0.098 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.0486 (9) | 0.0399 (8) | 0.1120 (13) | −0.0056 (6) | 0.0219 (8) | −0.0224 (8) |
O2A | 0.0372 (8) | 0.0412 (8) | 0.1012 (11) | 0.0008 (6) | 0.0271 (7) | −0.0223 (7) |
O3A | 0.0376 (7) | 0.0333 (6) | 0.0729 (8) | −0.0022 (5) | 0.0317 (6) | −0.0039 (6) |
O4A | 0.0405 (7) | 0.0302 (6) | 0.0870 (9) | −0.0055 (5) | 0.0319 (7) | −0.0086 (6) |
N1A | 0.0361 (8) | 0.0298 (7) | 0.0486 (8) | −0.0047 (6) | 0.0185 (6) | 0.0009 (6) |
N2A | 0.0470 (10) | 0.0429 (10) | 0.0781 (12) | 0.0037 (8) | 0.0344 (9) | 0.0017 (8) |
N3A | 0.0452 (10) | 0.0352 (9) | 0.0845 (12) | 0.0038 (8) | 0.0329 (9) | 0.0058 (8) |
C7A | 0.0373 (10) | 0.0314 (9) | 0.0640 (11) | −0.0022 (7) | 0.0259 (8) | −0.0030 (8) |
C8A | 0.0339 (9) | 0.0300 (8) | 0.0489 (9) | −0.0025 (7) | 0.0203 (7) | −0.0012 (7) |
C2A | 0.0387 (9) | 0.0389 (9) | 0.0416 (8) | −0.0012 (7) | 0.0172 (7) | −0.0007 (7) |
C3A | 0.0376 (10) | 0.0504 (11) | 0.0600 (11) | −0.0101 (8) | 0.0223 (8) | −0.0011 (8) |
C4A | 0.0553 (12) | 0.0384 (10) | 0.0720 (13) | −0.0147 (9) | 0.0279 (10) | −0.0001 (9) |
C5A | 0.0525 (12) | 0.0306 (9) | 0.0719 (12) | −0.0024 (8) | 0.0261 (10) | 0.0029 (8) |
C6A | 0.0409 (9) | 0.0331 (9) | 0.0463 (9) | −0.0012 (7) | 0.0186 (7) | 0.0014 (7) |
O3B | 0.0367 (7) | 0.0328 (6) | 0.0814 (9) | −0.0065 (5) | 0.0317 (6) | −0.0092 (6) |
O4B | 0.0447 (8) | 0.0325 (7) | 0.1075 (11) | −0.0017 (6) | 0.0412 (8) | −0.0090 (7) |
O1B | 0.0931 (12) | 0.0613 (9) | 0.0681 (9) | −0.0413 (8) | 0.0479 (9) | −0.0255 (7) |
O2B | 0.0829 (11) | 0.0623 (10) | 0.0626 (9) | −0.0404 (8) | 0.0379 (8) | −0.0107 (7) |
N1B | 0.0342 (8) | 0.0293 (7) | 0.0525 (8) | 0.0011 (6) | 0.0213 (6) | −0.0033 (6) |
N2B | 0.0404 (9) | 0.0338 (8) | 0.0799 (11) | −0.0065 (7) | 0.0314 (8) | −0.0075 (8) |
N3B | 0.0431 (10) | 0.0469 (10) | 0.0936 (14) | −0.0114 (8) | 0.0374 (10) | −0.0109 (9) |
C8B | 0.0321 (9) | 0.0299 (8) | 0.0500 (9) | −0.0009 (7) | 0.0179 (7) | −0.0007 (7) |
C7B | 0.0289 (8) | 0.0316 (8) | 0.0542 (10) | −0.0011 (7) | 0.0191 (7) | −0.0022 (7) |
C2B | 0.0387 (9) | 0.0327 (9) | 0.0454 (9) | −0.0015 (7) | 0.0194 (7) | −0.0007 (7) |
C3B | 0.0538 (12) | 0.0287 (9) | 0.0701 (12) | 0.0037 (8) | 0.0288 (10) | 0.0008 (8) |
C4B | 0.0526 (12) | 0.0430 (11) | 0.0678 (12) | 0.0168 (9) | 0.0279 (10) | 0.0014 (9) |
C5B | 0.0353 (10) | 0.0554 (12) | 0.0610 (11) | 0.0068 (8) | 0.0226 (8) | −0.0024 (9) |
C6B | 0.0348 (9) | 0.0430 (10) | 0.0487 (9) | −0.0026 (7) | 0.0194 (7) | −0.0052 (7) |
O1W | 0.0745 (11) | 0.0547 (9) | 0.0603 (10) | −0.0163 (8) | 0.0274 (9) | −0.0031 (8) |
O1A—C7A | 1.209 (2) | O4B—C8B | 1.231 (2) |
O2A—C7A | 1.290 (2) | O1B—C7B | 1.200 (2) |
O2A—H2A | 0.94 (3) | O2B—C7B | 1.286 (2) |
O3A—C8A | 1.2637 (19) | O2B—H2B | 0.95 (3) |
O4A—C8A | 1.2303 (19) | N1B—C2B | 1.360 (2) |
N1A—C6A | 1.362 (2) | N1B—C6B | 1.362 (2) |
N1A—C2A | 1.362 (2) | N1B—H1NB | 0.89 (2) |
N1A—H1NA | 0.89 (2) | N2B—C2B | 1.338 (2) |
N2A—C2A | 1.337 (2) | N2B—H2NB | 0.93 (2) |
N2A—H3NA | 0.87 (2) | N2B—H3NB | 0.87 (3) |
N2A—H2NA | 0.91 (2) | N3B—C6B | 1.338 (2) |
N3A—C6A | 1.330 (2) | N3B—H5NB | 0.92 (3) |
N3A—H4NA | 0.91 (3) | N3B—H4NB | 0.82 (3) |
N3A—H5NA | 0.88 (2) | C8B—C7B | 1.532 (2) |
C7A—C8A | 1.539 (2) | C2B—C3B | 1.385 (2) |
C2A—C3A | 1.386 (2) | C3B—C4B | 1.376 (3) |
C3A—C4A | 1.369 (3) | C3B—H3B | 0.9300 |
C3A—H3A | 0.9300 | C4B—C5B | 1.374 (3) |
C4A—C5A | 1.374 (3) | C4B—H4B | 0.9300 |
C4A—H4A | 0.9300 | C5B—C6B | 1.385 (3) |
C5A—C6A | 1.390 (2) | C5B—H5B | 0.9300 |
C5A—H5A | 0.9300 | O1W—H2W | 0.84 (3) |
O3B—C8B | 1.2567 (19) | O1W—H1W | 0.82 (3) |
C7A—O2A—H2A | 106.9 (16) | C2B—N1B—C6B | 123.62 (15) |
C6A—N1A—C2A | 123.88 (15) | C2B—N1B—H1NB | 120.2 (13) |
C6A—N1A—H1NA | 119.4 (14) | C6B—N1B—H1NB | 116.1 (13) |
C2A—N1A—H1NA | 116.8 (14) | C2B—N2B—H2NB | 120.2 (14) |
C2A—N2A—H3NA | 119.8 (16) | C2B—N2B—H3NB | 117.0 (16) |
C2A—N2A—H2NA | 123.8 (14) | H2NB—N2B—H3NB | 123 (2) |
H3NA—N2A—H2NA | 116 (2) | C6B—N3B—H5NB | 120.1 (15) |
C6A—N3A—H4NA | 121.2 (16) | C6B—N3B—H4NB | 117.6 (19) |
C6A—N3A—H5NA | 117.9 (13) | H5NB—N3B—H4NB | 122 (2) |
H4NA—N3A—H5NA | 121 (2) | O4B—C8B—O3B | 126.38 (15) |
O1A—C7A—O2A | 124.31 (16) | O4B—C8B—C7B | 116.86 (14) |
O1A—C7A—C8A | 122.17 (16) | O3B—C8B—C7B | 116.75 (14) |
O2A—C7A—C8A | 113.46 (15) | O1B—C7B—O2B | 124.77 (16) |
O4A—C8A—O3A | 125.94 (15) | O1B—C7B—C8B | 122.12 (16) |
O4A—C8A—C7A | 118.73 (14) | O2B—C7B—C8B | 113.11 (15) |
O3A—C8A—C7A | 115.33 (14) | N2B—C2B—N1B | 117.00 (15) |
N2A—C2A—N1A | 117.55 (16) | N2B—C2B—C3B | 124.81 (17) |
N2A—C2A—C3A | 124.36 (17) | N1B—C2B—C3B | 118.19 (16) |
N1A—C2A—C3A | 118.09 (16) | C4B—C3B—C2B | 118.91 (17) |
C4A—C3A—C2A | 119.02 (17) | C4B—C3B—H3B | 120.5 |
C4A—C3A—H3A | 120.5 | C2B—C3B—H3B | 120.5 |
C2A—C3A—H3A | 120.5 | C5B—C4B—C3B | 122.08 (17) |
C3A—C4A—C5A | 122.15 (18) | C5B—C4B—H4B | 119.0 |
C3A—C4A—H4A | 118.9 | C3B—C4B—H4B | 119.0 |
C5A—C4A—H4A | 118.9 | C4B—C5B—C6B | 118.73 (17) |
C4A—C5A—C6A | 118.93 (18) | C4B—C5B—H5B | 120.6 |
C4A—C5A—H5A | 120.5 | C6B—C5B—H5B | 120.6 |
C6A—C5A—H5A | 120.5 | N3B—C6B—N1B | 117.38 (17) |
N3A—C6A—N1A | 117.60 (16) | N3B—C6B—C5B | 124.22 (17) |
N3A—C6A—C5A | 124.52 (17) | N1B—C6B—C5B | 118.40 (16) |
N1A—C6A—C5A | 117.88 (16) | H2W—O1W—H1W | 103 (3) |
C7B—O2B—H2B | 112.3 (18) | ||
O1A—C7A—C8A—O4A | 147.14 (19) | O4B—C8B—C7B—O1B | 116.2 (2) |
O2A—C7A—C8A—O4A | −29.9 (2) | O3B—C8B—C7B—O1B | −62.9 (2) |
O1A—C7A—C8A—O3A | −32.5 (3) | O4B—C8B—C7B—O2B | −64.0 (2) |
O2A—C7A—C8A—O3A | 150.49 (17) | O3B—C8B—C7B—O2B | 116.95 (18) |
C6A—N1A—C2A—N2A | 179.59 (16) | C6B—N1B—C2B—N2B | −177.96 (16) |
C6A—N1A—C2A—C3A | −0.4 (2) | C6B—N1B—C2B—C3B | 2.1 (3) |
N2A—C2A—C3A—C4A | 178.82 (19) | N2B—C2B—C3B—C4B | −179.77 (18) |
N1A—C2A—C3A—C4A | −1.2 (3) | N1B—C2B—C3B—C4B | 0.2 (3) |
C2A—C3A—C4A—C5A | 1.4 (3) | C2B—C3B—C4B—C5B | −1.4 (3) |
C3A—C4A—C5A—C6A | 0.0 (3) | C3B—C4B—C5B—C6B | 0.5 (3) |
C2A—N1A—C6A—N3A | −178.21 (16) | C2B—N1B—C6B—N3B | 177.04 (17) |
C2A—N1A—C6A—C5A | 1.8 (3) | C2B—N1B—C6B—C5B | −3.0 (3) |
C4A—C5A—C6A—N3A | 178.47 (19) | C4B—C5B—C6B—N3B | −178.40 (19) |
C4A—C5A—C6A—N1A | −1.5 (3) | C4B—C5B—C6B—N1B | 1.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1NA···O3Bi | 0.89 (2) | 1.99 (2) | 2.8668 (19) | 172.5 (18) |
O1W—H1W···O1Aii | 0.82 (3) | 2.53 (3) | 3.219 (3) | 142 (3) |
O1W—H1W···O2Bii | 0.82 (3) | 2.28 (3) | 2.984 (2) | 145 (3) |
N2A—H3NA···O4B | 0.86 (3) | 2.11 (3) | 2.972 (3) | 173.3 (18) |
O2A—H2A···O3Bi | 0.94 (3) | 1.65 (3) | 2.5743 (18) | 169 (3) |
O2B—H2B···O3A | 0.95 (3) | 1.58 (3) | 2.525 (2) | 172 (3) |
O1W—H2W···O1B | 0.84 (3) | 2.03 (3) | 2.873 (2) | 178 (4) |
N2A—H2NA···O1A | 0.91 (2) | 2.17 (2) | 2.984 (2) | 150 (2) |
N3A—H4NA···O4Bi | 0.91 (2) | 1.97 (3) | 2.879 (2) | 176 (2) |
N3A—H5NA···O1Wiii | 0.88 (2) | 2.03 (2) | 2.908 (2) | 172.3 (18) |
N1B—H1NB···O3A | 0.89 (2) | 1.92 (2) | 2.8077 (19) | 175.0 (17) |
N2B—H2NB···O4A | 0.93 (2) | 1.98 (2) | 2.914 (2) | 176.2 (18) |
N2B—H3NB···O1Biv | 0.87 (2) | 2.34 (2) | 3.121 (2) | 150.8 (18) |
N3B—H5NB···O2Av | 0.92 (3) | 2.50 (2) | 3.054 (3) | 118.8 (19) |
N3B—H5NB···O4Av | 0.92 (3) | 2.03 (3) | 2.938 (3) | 168 (2) |
Symmetry codes: (i) x−1, y, z; (ii) x, y, z−1; (iii) x−1, −y+3/2, z+1/2; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | 2C5H8N3+·2C2HO4−·H2O |
Mr | 416.36 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 8.1681 (1), 34.8396 (4), 7.2031 (1) |
β (°) | 114.573 (1) |
V (Å3) | 1864.16 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.29 × 0.27 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.964, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33926, 4287, 3195 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.127, 1.03 |
No. of reflections | 4287 |
No. of parameters | 318 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.49, −0.30 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1NA···O3Bi | 0.89 (2) | 1.99 (2) | 2.8668 (19) | 172.5 (18) |
O1W—H1W···O1Aii | 0.82 (3) | 2.53 (3) | 3.219 (3) | 142 (3) |
O1W—H1W···O2Bii | 0.82 (3) | 2.28 (3) | 2.984 (2) | 145 (3) |
N2A—H3NA···O4B | 0.86 (3) | 2.11 (3) | 2.972 (3) | 173.3 (18) |
O2A—H2A···O3Bi | 0.94 (3) | 1.65 (3) | 2.5743 (18) | 169 (3) |
O2B—H2B···O3A | 0.95 (3) | 1.58 (3) | 2.525 (2) | 172 (3) |
O1W—H2W···O1B | 0.84 (3) | 2.03 (3) | 2.873 (2) | 178 (4) |
N2A—H2NA···O1A | 0.91 (2) | 2.17 (2) | 2.984 (2) | 150 (2) |
N3A—H4NA···O4Bi | 0.91 (2) | 1.97 (3) | 2.879 (2) | 176 (2) |
N3A—H5NA···O1Wiii | 0.88 (2) | 2.03 (2) | 2.908 (2) | 172.3 (18) |
N1B—H1NB···O3A | 0.89 (2) | 1.92 (2) | 2.8077 (19) | 175.0 (17) |
N2B—H2NB···O4A | 0.93 (2) | 1.98 (2) | 2.914 (2) | 176.2 (18) |
N2B—H3NB···O1Biv | 0.87 (2) | 2.34 (2) | 3.121 (2) | 150.8 (18) |
N3B—H5NB···O2Av | 0.92 (3) | 2.50 (2) | 3.054 (3) | 118.8 (19) |
N3B—H5NB···O4Av | 0.92 (3) | 2.03 (3) | 2.938 (3) | 168 (2) |
Symmetry codes: (i) x−1, y, z; (ii) x, y, z−1; (iii) x−1, −y+3/2, z+1/2; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z. |
Acknowledgements
SS gratefully acknowledges funding from Universiti Sains Malaysia under the University Research Grant (No. 1001/PPSK/815028). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Abu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta, 11, 277–283. CrossRef Google Scholar
Aghabozorg, H., Akbari Saei, A. & Ramezanipour, F. (2005). Acta Cryst. E61, o3242–o3244. Web of Science CSD CrossRef IUCr Journals Google Scholar
Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Rosli, M. M. & Fun, H.-K. (2010). Acta Cryst. E66, o2433–o2434. Web of Science CSD CrossRef IUCr Journals Google Scholar
Al-Dajani, M. T. M., Salhin, A., Mohamed, N., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2931–o2932. Web of Science CSD CrossRef IUCr Journals Google Scholar
Athimoolam, S. & Natarajan, S. (2007). Acta Cryst. E63, o963–o965. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bahadur, S. A., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o2387–o2389. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Büyükgüngör, O. & Odabąsoǧlu, M. (2006). Acta Cryst. E62, o3816–o3818. Web of Science CSD CrossRef IUCr Journals Google Scholar
Haddad, S. F. & Al-Far, R. H. (2003). Acta Cryst. E59, o1444–o1446. Web of Science CSD CrossRef IUCr Journals Google Scholar
Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4543–o4544. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schwalbe, C. H., Williams, G. J. B. & Koetzle, T. F. (1987). Acta Cryst. C43, 2191–2195. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Subha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001). Acta Cryst. C57, 115–116. CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2,6-Diaminopyridinium and diaminopyridine in general have an important role in the preparation of aromatic azo dyes, the subject of many polarographic investigations (Abu Zuhri & Cox, 1989). The crystal structures of 2,6-diaminopyridine (Schwalbe et al., 1987), tetrakis(2,6-diaminopyridinium) diphthalate 2,6-diaminopyridine (Al-Dajani et al., 2009), 2,6-diaminopyridinium pyridinium-2,6-dicarboxylate (Aghabozorg et al., 2005), 2,6-diaminopyridinium hydrogen fumarate (Büyükgüngör & Odabaşoğlu, 2006), bis(2,6-diaminopyridinium) oxalate dihydrate (Odabaşoğlu & Büyükgüngör, 2006), 2,6-diamino pyridinium bromide monohydrate (Haddad & Al-Far, 2003) and 2,6-diamino pyridinium 2-carboxybenzoate (Al-Dajani et al., 2010) have been reported in the literature. Oxalic acid, in principle, exists in three ionization states, viz. singly charged (semioxalate), doubly charged (oxalate) and neutral (oxalic acid). In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title compound, (I), is presented here.
The asymmetric unit of the title compound consists of two crystallographically independent 2,6-diaminopyridinium cations (A & B), two hydrogen oxalate anions (A & B) and a water molecule, as shown in Fig. 1. Each 2,6-diaminopyridinium cation is planar, with a maximum deviation of 0.011 (2)Å for atom C6A in cation A and 0.015 (1)Å for atom N1B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C2A—N1A—C6A [123.88 (15)°] and C2B—N1B—C6B [123.62 (15)°] angles compared to those observed in an unprotonated structure (Schwalbe et al., 1987). The oxalic acid molecule exists in a mono-ionized state in the crystals. Similar observations were also found in the crystal structure of glycinium hydrogen oxalate (Subha Nandhini et al., 2001), creatininium hydrogen oxalate monohydrate (Bahadur et al., 2007) and 3-carboxypyridinium hydrogen oxalate (Athimoolam & Natarajan, 2007). Here, the hydrogen oxalate anions adopt twisted conformations and the dihedral angles between planes of their carboxylic groups are 31.01 (11)° and 63.48 (11)° for anions A and B, respectively.
In the crystal structure, the carboxylate groups of each hydrogen oxalate anion interact with the corresponding 2,6-diaminopyridinium cations via a pair of N—H···O hydrogen bonds forming an R2 2(8) ring motif (Fig. 1) (Bernstein et al., 1995). The ionic units and water molecules are linked by O—H···O and N—H···O (Table 1) hydrogen bonds to form a three-dimensional network (Fig. 2).