organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o591-o592

Bis(2,6-di­amino­pyridinium) bis­­(hydrogen oxalate) monohydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bVirginia Commonwealth University, Medicinal Chemistry, USA, cKampus Kesihatan, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 13 January 2011; accepted 2 February 2011; online 9 February 2011)

The asymmetric unit of the title compound, 2C5H8N3+·2C2HO4·H2O, contains two crystallographically independent 2,6-diamino­pyridinium cations, a pair of hydrogen oxalate anions and a water mol­ecule. Both 2,6-diamino­pyridinium cations are planar, with maximum deviations of 0.011 (2) and 0.015 (1) Å, and are protonated at the pyridine N atoms. The hydrogen oxalate anions adopt twisted conformations and the dihedral angles between the planes of their carboxyl groups are 31.01 (11) and 63.48 (11)°. In the crystal, the cations, anions and water mol­ecules are linked via O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For applications of 2,6-diamino­pyridine, see: Abu Zuhri & Cox (1989[Abu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta, 11, 277-283.]). For related structures, see; Schwalbe et al. (1987[Schwalbe, C. H., Williams, G. J. B. & Koetzle, T. F. (1987). Acta Cryst. C43, 2191-2195.]); Al-Dajani et al. (2009[Al-Dajani, M. T. M., Salhin, A., Mohamed, N., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2931-o2932.], 2010[Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Rosli, M. M. & Fun, H.-K. (2010). Acta Cryst. E66, o2433-o2434.]); Aghabozorg et al. (2005[Aghabozorg, H., Akbari Saei, A. & Ramezanipour, F. (2005). Acta Cryst. E61, o3242-o3244.]); Büyükgüngör & Odabaşoğlu (2006[Büyükgüngör, O. & Odabąsoǧlu, M. (2006). Acta Cryst. E62, o3816-o3818.]); Odabaşoğlu & Büyükgüngör (2006[Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4543-o4544.]); Haddad & Al-Far (2003[Haddad, S. F. & Al-Far, R. H. (2003). Acta Cryst. E59, o1444-o1446.]). For details of oxalic acid, see: Subha Nandhini et al. (2001[Subha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001). Acta Cryst. C57, 115-116.]); Bahadur et al. (2007[Bahadur, S. A., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o2387-o2389.]); Athimoolam & Natarajan (2007[Athimoolam, S. & Natarajan, S. (2007). Acta Cryst. E63, o963-o965.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H8N3+·2C2HO4·H2O

  • Mr = 416.36

  • Monoclinic, P 21 /c

  • a = 8.1681 (1) Å

  • b = 34.8396 (4) Å

  • c = 7.2031 (1) Å

  • β = 114.573 (1)°

  • V = 1864.16 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.29 × 0.27 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.964, Tmax = 0.982

  • 33926 measured reflections

  • 4287 independent reflections

  • 3195 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.127

  • S = 1.03

  • 4287 reflections

  • 318 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O3Bi 0.89 (2) 1.99 (2) 2.8668 (19) 172.5 (18)
O1W—H1W⋯O1Aii 0.82 (3) 2.53 (3) 3.219 (3) 142 (3)
O1W—H1W⋯O2Bii 0.82 (3) 2.28 (3) 2.984 (2) 145 (3)
N2A—H3NA⋯O4B 0.86 (3) 2.11 (3) 2.972 (3) 173.3 (18)
O2A—H2A⋯O3Bi 0.94 (3) 1.65 (3) 2.5743 (18) 169 (3)
O2B—H2B⋯O3A 0.95 (3) 1.58 (3) 2.525 (2) 172 (3)
O1W—H2W⋯O1B 0.84 (3) 2.03 (3) 2.873 (2) 178 (4)
N2A—H2NA⋯O1A 0.91 (2) 2.17 (2) 2.984 (2) 150 (2)
N3A—H4NA⋯O4Bi 0.91 (2) 1.97 (3) 2.879 (2) 176 (2)
N3A—H5NA⋯O1Wiii 0.88 (2) 2.03 (2) 2.908 (2) 172.3 (18)
N1B—H1NB⋯O3A 0.89 (2) 1.92 (2) 2.8077 (19) 175.0 (17)
N2B—H2NB⋯O4A 0.93 (2) 1.98 (2) 2.914 (2) 176.2 (18)
N2B—H3NB⋯O1Biv 0.87 (2) 2.34 (2) 3.121 (2) 150.8 (18)
N3B—H5NB⋯O2Av 0.92 (3) 2.50 (2) 3.054 (3) 118.8 (19)
N3B—H5NB⋯O4Av 0.92 (3) 2.03 (3) 2.938 (3) 168 (2)
Symmetry codes: (i) x-1, y, z; (ii) x, y, z-1; (iii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2,6-Diaminopyridinium and diaminopyridine in general have an important role in the preparation of aromatic azo dyes, the subject of many polarographic investigations (Abu Zuhri & Cox, 1989). The crystal structures of 2,6-diaminopyridine (Schwalbe et al., 1987), tetrakis(2,6-diaminopyridinium) diphthalate 2,6-diaminopyridine (Al-Dajani et al., 2009), 2,6-diaminopyridinium pyridinium-2,6-dicarboxylate (Aghabozorg et al., 2005), 2,6-diaminopyridinium hydrogen fumarate (Büyükgüngör & Odabaşoğlu, 2006), bis(2,6-diaminopyridinium) oxalate dihydrate (Odabaşoğlu & Büyükgüngör, 2006), 2,6-diamino pyridinium bromide monohydrate (Haddad & Al-Far, 2003) and 2,6-diamino pyridinium 2-carboxybenzoate (Al-Dajani et al., 2010) have been reported in the literature. Oxalic acid, in principle, exists in three ionization states, viz. singly charged (semioxalate), doubly charged (oxalate) and neutral (oxalic acid). In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title compound, (I), is presented here.

The asymmetric unit of the title compound consists of two crystallographically independent 2,6-diaminopyridinium cations (A & B), two hydrogen oxalate anions (A & B) and a water molecule, as shown in Fig. 1. Each 2,6-diaminopyridinium cation is planar, with a maximum deviation of 0.011 (2)Å for atom C6A in cation A and 0.015 (1)Å for atom N1B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C2A—N1A—C6A [123.88 (15)°] and C2B—N1B—C6B [123.62 (15)°] angles compared to those observed in an unprotonated structure (Schwalbe et al., 1987). The oxalic acid molecule exists in a mono-ionized state in the crystals. Similar observations were also found in the crystal structure of glycinium hydrogen oxalate (Subha Nandhini et al., 2001), creatininium hydrogen oxalate monohydrate (Bahadur et al., 2007) and 3-carboxypyridinium hydrogen oxalate (Athimoolam & Natarajan, 2007). Here, the hydrogen oxalate anions adopt twisted conformations and the dihedral angles between planes of their carboxylic groups are 31.01 (11)° and 63.48 (11)° for anions A and B, respectively.

In the crystal structure, the carboxylate groups of each hydrogen oxalate anion interact with the corresponding 2,6-diaminopyridinium cations via a pair of N—H···O hydrogen bonds forming an R2 2(8) ring motif (Fig. 1) (Bernstein et al., 1995). The ionic units and water molecules are linked by O—H···O and N—H···O (Table 1) hydrogen bonds to form a three-dimensional network (Fig. 2).

Related literature top

For applications of 2,6-diaminopyridine, see: Abu Zuhri & Cox (1989). For related structures, see; Schwalbe et al. (1987); Al-Dajani et al. (2009); Aghabozorg et al. (2005); Büyükgüngör & Odabaşoğlu (2006); Odabaşoğlu & Büyükgüngör (2006); Haddad & Al-Far (2003); Al-Dajani et al. (2010). For details of oxalic acid, see: Subha Nandhini et al. (2001); Bahadur et al. (2007); Athimoolam & Natarajan (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Oxalic acid dihydrate (0.01 mol, 1.3 g) was dissolved in 50 ml of methanol in a round bottom flask. 2,6-diaminopyridine (0.01mol, 1.1 g) was dissolved in 50 ml of methanol in a flask and then added in small portions to the oxalic acid with stirring. The reaction mixture was left stirring for 3 hours at room temperature. Brown precipitate was formed, filtered, and washed with methanol. Recrystallization of the brown precipitate with water has yielded after 48 hours brown crystals which was washed with methanol and dried at 353 K.

Refinement top

The N- and O-bound H atoms were located in a difference map and refined freely [N–H = 0.87 (2)–0.93 (3) Å and O–H = 0.82 (3)– 0.95 (3) Å. The remaining H atoms were positioned geometrically [C–H = 0.93Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound (I).
Bis(2,6-diaminopyridinium) bis(hydrogen oxalate) monohydrate top
Crystal data top
2C5H8N3+·2C2HO4·H2OF(000) = 872
Mr = 416.36Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8066 reflections
a = 8.1681 (1) Åθ = 2.7–29.6°
b = 34.8396 (4) ŵ = 0.13 mm1
c = 7.2031 (1) ÅT = 296 K
β = 114.573 (1)°Block, brown
V = 1864.16 (4) Å30.29 × 0.27 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4287 independent reflections
Radiation source: fine-focus sealed tube3195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.964, Tmax = 0.982k = 4544
33926 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.6267P]
where P = (Fo2 + 2Fc2)/3
4287 reflections(Δ/σ)max = 0.001
318 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
2C5H8N3+·2C2HO4·H2OV = 1864.16 (4) Å3
Mr = 416.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1681 (1) ŵ = 0.13 mm1
b = 34.8396 (4) ÅT = 296 K
c = 7.2031 (1) Å0.29 × 0.27 × 0.15 mm
β = 114.573 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4287 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3195 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.982Rint = 0.037
33926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.49 e Å3
4287 reflectionsΔρmin = 0.30 e Å3
318 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.4482 (2)0.61834 (4)0.9547 (3)0.0707 (5)
O2A0.17712 (17)0.59774 (4)0.7486 (2)0.0604 (4)
H2A0.149 (3)0.6230 (8)0.768 (4)0.086 (8)*
O3A0.57769 (16)0.55605 (3)0.8116 (2)0.0450 (3)
O4A0.32307 (17)0.52706 (3)0.7723 (2)0.0508 (3)
N1A0.24244 (19)0.73699 (4)0.8214 (2)0.0379 (3)
H1NA0.188 (3)0.7149 (6)0.820 (3)0.055 (6)*
N2A0.4866 (3)0.69987 (5)0.8523 (3)0.0532 (4)
H3NA0.591 (3)0.6973 (7)0.850 (3)0.067 (7)*
H2NA0.431 (3)0.6779 (7)0.862 (3)0.065 (7)*
N3A0.0132 (2)0.76858 (5)0.7974 (3)0.0530 (4)
H4NA0.063 (3)0.7457 (7)0.807 (4)0.074 (7)*
H5NA0.073 (3)0.7903 (6)0.783 (3)0.050 (6)*
C7A0.3497 (2)0.59436 (5)0.8417 (3)0.0426 (4)
C8A0.4205 (2)0.55548 (5)0.8045 (3)0.0366 (4)
C2A0.4143 (2)0.73481 (5)0.8371 (3)0.0395 (4)
C3A0.5024 (3)0.76876 (6)0.8363 (3)0.0486 (4)
H3A0.62050.76840.84930.058*
C4A0.4130 (3)0.80282 (6)0.8162 (3)0.0547 (5)
H4A0.47140.82550.81270.066*
C5A0.2398 (3)0.80454 (5)0.8011 (3)0.0516 (5)
H5A0.18200.82800.78760.062*
C6A0.1525 (2)0.77058 (5)0.8062 (3)0.0400 (4)
O3B1.06013 (16)0.66502 (3)0.7787 (2)0.0479 (3)
O4B0.83371 (18)0.69483 (4)0.8123 (2)0.0584 (4)
O1B0.7509 (2)0.61351 (4)0.5650 (2)0.0694 (5)
O2B0.7631 (2)0.61662 (5)0.8760 (2)0.0667 (5)
H2B0.690 (4)0.5942 (9)0.840 (4)0.104 (9)*
N1B0.72190 (18)0.48805 (4)0.7325 (2)0.0376 (3)
H1NB0.671 (3)0.5096 (6)0.750 (3)0.049 (5)*
N2B0.4688 (2)0.45485 (5)0.7030 (3)0.0493 (4)
H2NB0.423 (3)0.4775 (7)0.731 (3)0.062 (6)*
H3NB0.408 (3)0.4336 (7)0.672 (3)0.073 (7)*
N3B0.9553 (3)0.52718 (5)0.7489 (3)0.0582 (5)
H5NB1.071 (3)0.5308 (7)0.762 (3)0.069 (7)*
H4NB0.888 (4)0.5452 (7)0.739 (4)0.076 (8)*
C8B0.9063 (2)0.66636 (5)0.7784 (3)0.0371 (4)
C7B0.7974 (2)0.62902 (5)0.7277 (3)0.0376 (4)
C2B0.6357 (2)0.45385 (5)0.7121 (3)0.0383 (4)
C3B0.7258 (3)0.42076 (5)0.7024 (3)0.0498 (5)
H3B0.67090.39690.68820.060*
C4B0.8978 (3)0.42379 (6)0.7143 (3)0.0535 (5)
H4B0.95940.40150.71080.064*
C5B0.9815 (3)0.45863 (6)0.7310 (3)0.0497 (5)
H5B1.09760.46000.73790.060*
C6B0.8898 (2)0.49165 (5)0.7376 (3)0.0415 (4)
O1W0.8207 (2)0.65644 (5)0.2651 (3)0.0634 (4)
H2W0.798 (4)0.6437 (8)0.351 (4)0.096 (10)*
H1W0.759 (4)0.6459 (9)0.157 (5)0.098 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0486 (9)0.0399 (8)0.1120 (13)0.0056 (6)0.0219 (8)0.0224 (8)
O2A0.0372 (8)0.0412 (8)0.1012 (11)0.0008 (6)0.0271 (7)0.0223 (7)
O3A0.0376 (7)0.0333 (6)0.0729 (8)0.0022 (5)0.0317 (6)0.0039 (6)
O4A0.0405 (7)0.0302 (6)0.0870 (9)0.0055 (5)0.0319 (7)0.0086 (6)
N1A0.0361 (8)0.0298 (7)0.0486 (8)0.0047 (6)0.0185 (6)0.0009 (6)
N2A0.0470 (10)0.0429 (10)0.0781 (12)0.0037 (8)0.0344 (9)0.0017 (8)
N3A0.0452 (10)0.0352 (9)0.0845 (12)0.0038 (8)0.0329 (9)0.0058 (8)
C7A0.0373 (10)0.0314 (9)0.0640 (11)0.0022 (7)0.0259 (8)0.0030 (8)
C8A0.0339 (9)0.0300 (8)0.0489 (9)0.0025 (7)0.0203 (7)0.0012 (7)
C2A0.0387 (9)0.0389 (9)0.0416 (8)0.0012 (7)0.0172 (7)0.0007 (7)
C3A0.0376 (10)0.0504 (11)0.0600 (11)0.0101 (8)0.0223 (8)0.0011 (8)
C4A0.0553 (12)0.0384 (10)0.0720 (13)0.0147 (9)0.0279 (10)0.0001 (9)
C5A0.0525 (12)0.0306 (9)0.0719 (12)0.0024 (8)0.0261 (10)0.0029 (8)
C6A0.0409 (9)0.0331 (9)0.0463 (9)0.0012 (7)0.0186 (7)0.0014 (7)
O3B0.0367 (7)0.0328 (6)0.0814 (9)0.0065 (5)0.0317 (6)0.0092 (6)
O4B0.0447 (8)0.0325 (7)0.1075 (11)0.0017 (6)0.0412 (8)0.0090 (7)
O1B0.0931 (12)0.0613 (9)0.0681 (9)0.0413 (8)0.0479 (9)0.0255 (7)
O2B0.0829 (11)0.0623 (10)0.0626 (9)0.0404 (8)0.0379 (8)0.0107 (7)
N1B0.0342 (8)0.0293 (7)0.0525 (8)0.0011 (6)0.0213 (6)0.0033 (6)
N2B0.0404 (9)0.0338 (8)0.0799 (11)0.0065 (7)0.0314 (8)0.0075 (8)
N3B0.0431 (10)0.0469 (10)0.0936 (14)0.0114 (8)0.0374 (10)0.0109 (9)
C8B0.0321 (9)0.0299 (8)0.0500 (9)0.0009 (7)0.0179 (7)0.0007 (7)
C7B0.0289 (8)0.0316 (8)0.0542 (10)0.0011 (7)0.0191 (7)0.0022 (7)
C2B0.0387 (9)0.0327 (9)0.0454 (9)0.0015 (7)0.0194 (7)0.0007 (7)
C3B0.0538 (12)0.0287 (9)0.0701 (12)0.0037 (8)0.0288 (10)0.0008 (8)
C4B0.0526 (12)0.0430 (11)0.0678 (12)0.0168 (9)0.0279 (10)0.0014 (9)
C5B0.0353 (10)0.0554 (12)0.0610 (11)0.0068 (8)0.0226 (8)0.0024 (9)
C6B0.0348 (9)0.0430 (10)0.0487 (9)0.0026 (7)0.0194 (7)0.0052 (7)
O1W0.0745 (11)0.0547 (9)0.0603 (10)0.0163 (8)0.0274 (9)0.0031 (8)
Geometric parameters (Å, º) top
O1A—C7A1.209 (2)O4B—C8B1.231 (2)
O2A—C7A1.290 (2)O1B—C7B1.200 (2)
O2A—H2A0.94 (3)O2B—C7B1.286 (2)
O3A—C8A1.2637 (19)O2B—H2B0.95 (3)
O4A—C8A1.2303 (19)N1B—C2B1.360 (2)
N1A—C6A1.362 (2)N1B—C6B1.362 (2)
N1A—C2A1.362 (2)N1B—H1NB0.89 (2)
N1A—H1NA0.89 (2)N2B—C2B1.338 (2)
N2A—C2A1.337 (2)N2B—H2NB0.93 (2)
N2A—H3NA0.87 (2)N2B—H3NB0.87 (3)
N2A—H2NA0.91 (2)N3B—C6B1.338 (2)
N3A—C6A1.330 (2)N3B—H5NB0.92 (3)
N3A—H4NA0.91 (3)N3B—H4NB0.82 (3)
N3A—H5NA0.88 (2)C8B—C7B1.532 (2)
C7A—C8A1.539 (2)C2B—C3B1.385 (2)
C2A—C3A1.386 (2)C3B—C4B1.376 (3)
C3A—C4A1.369 (3)C3B—H3B0.9300
C3A—H3A0.9300C4B—C5B1.374 (3)
C4A—C5A1.374 (3)C4B—H4B0.9300
C4A—H4A0.9300C5B—C6B1.385 (3)
C5A—C6A1.390 (2)C5B—H5B0.9300
C5A—H5A0.9300O1W—H2W0.84 (3)
O3B—C8B1.2567 (19)O1W—H1W0.82 (3)
C7A—O2A—H2A106.9 (16)C2B—N1B—C6B123.62 (15)
C6A—N1A—C2A123.88 (15)C2B—N1B—H1NB120.2 (13)
C6A—N1A—H1NA119.4 (14)C6B—N1B—H1NB116.1 (13)
C2A—N1A—H1NA116.8 (14)C2B—N2B—H2NB120.2 (14)
C2A—N2A—H3NA119.8 (16)C2B—N2B—H3NB117.0 (16)
C2A—N2A—H2NA123.8 (14)H2NB—N2B—H3NB123 (2)
H3NA—N2A—H2NA116 (2)C6B—N3B—H5NB120.1 (15)
C6A—N3A—H4NA121.2 (16)C6B—N3B—H4NB117.6 (19)
C6A—N3A—H5NA117.9 (13)H5NB—N3B—H4NB122 (2)
H4NA—N3A—H5NA121 (2)O4B—C8B—O3B126.38 (15)
O1A—C7A—O2A124.31 (16)O4B—C8B—C7B116.86 (14)
O1A—C7A—C8A122.17 (16)O3B—C8B—C7B116.75 (14)
O2A—C7A—C8A113.46 (15)O1B—C7B—O2B124.77 (16)
O4A—C8A—O3A125.94 (15)O1B—C7B—C8B122.12 (16)
O4A—C8A—C7A118.73 (14)O2B—C7B—C8B113.11 (15)
O3A—C8A—C7A115.33 (14)N2B—C2B—N1B117.00 (15)
N2A—C2A—N1A117.55 (16)N2B—C2B—C3B124.81 (17)
N2A—C2A—C3A124.36 (17)N1B—C2B—C3B118.19 (16)
N1A—C2A—C3A118.09 (16)C4B—C3B—C2B118.91 (17)
C4A—C3A—C2A119.02 (17)C4B—C3B—H3B120.5
C4A—C3A—H3A120.5C2B—C3B—H3B120.5
C2A—C3A—H3A120.5C5B—C4B—C3B122.08 (17)
C3A—C4A—C5A122.15 (18)C5B—C4B—H4B119.0
C3A—C4A—H4A118.9C3B—C4B—H4B119.0
C5A—C4A—H4A118.9C4B—C5B—C6B118.73 (17)
C4A—C5A—C6A118.93 (18)C4B—C5B—H5B120.6
C4A—C5A—H5A120.5C6B—C5B—H5B120.6
C6A—C5A—H5A120.5N3B—C6B—N1B117.38 (17)
N3A—C6A—N1A117.60 (16)N3B—C6B—C5B124.22 (17)
N3A—C6A—C5A124.52 (17)N1B—C6B—C5B118.40 (16)
N1A—C6A—C5A117.88 (16)H2W—O1W—H1W103 (3)
C7B—O2B—H2B112.3 (18)
O1A—C7A—C8A—O4A147.14 (19)O4B—C8B—C7B—O1B116.2 (2)
O2A—C7A—C8A—O4A29.9 (2)O3B—C8B—C7B—O1B62.9 (2)
O1A—C7A—C8A—O3A32.5 (3)O4B—C8B—C7B—O2B64.0 (2)
O2A—C7A—C8A—O3A150.49 (17)O3B—C8B—C7B—O2B116.95 (18)
C6A—N1A—C2A—N2A179.59 (16)C6B—N1B—C2B—N2B177.96 (16)
C6A—N1A—C2A—C3A0.4 (2)C6B—N1B—C2B—C3B2.1 (3)
N2A—C2A—C3A—C4A178.82 (19)N2B—C2B—C3B—C4B179.77 (18)
N1A—C2A—C3A—C4A1.2 (3)N1B—C2B—C3B—C4B0.2 (3)
C2A—C3A—C4A—C5A1.4 (3)C2B—C3B—C4B—C5B1.4 (3)
C3A—C4A—C5A—C6A0.0 (3)C3B—C4B—C5B—C6B0.5 (3)
C2A—N1A—C6A—N3A178.21 (16)C2B—N1B—C6B—N3B177.04 (17)
C2A—N1A—C6A—C5A1.8 (3)C2B—N1B—C6B—C5B3.0 (3)
C4A—C5A—C6A—N3A178.47 (19)C4B—C5B—C6B—N3B178.40 (19)
C4A—C5A—C6A—N1A1.5 (3)C4B—C5B—C6B—N1B1.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O3Bi0.89 (2)1.99 (2)2.8668 (19)172.5 (18)
O1W—H1W···O1Aii0.82 (3)2.53 (3)3.219 (3)142 (3)
O1W—H1W···O2Bii0.82 (3)2.28 (3)2.984 (2)145 (3)
N2A—H3NA···O4B0.86 (3)2.11 (3)2.972 (3)173.3 (18)
O2A—H2A···O3Bi0.94 (3)1.65 (3)2.5743 (18)169 (3)
O2B—H2B···O3A0.95 (3)1.58 (3)2.525 (2)172 (3)
O1W—H2W···O1B0.84 (3)2.03 (3)2.873 (2)178 (4)
N2A—H2NA···O1A0.91 (2)2.17 (2)2.984 (2)150 (2)
N3A—H4NA···O4Bi0.91 (2)1.97 (3)2.879 (2)176 (2)
N3A—H5NA···O1Wiii0.88 (2)2.03 (2)2.908 (2)172.3 (18)
N1B—H1NB···O3A0.89 (2)1.92 (2)2.8077 (19)175.0 (17)
N2B—H2NB···O4A0.93 (2)1.98 (2)2.914 (2)176.2 (18)
N2B—H3NB···O1Biv0.87 (2)2.34 (2)3.121 (2)150.8 (18)
N3B—H5NB···O2Av0.92 (3)2.50 (2)3.054 (3)118.8 (19)
N3B—H5NB···O4Av0.92 (3)2.03 (3)2.938 (3)168 (2)
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x1, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula2C5H8N3+·2C2HO4·H2O
Mr416.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.1681 (1), 34.8396 (4), 7.2031 (1)
β (°) 114.573 (1)
V3)1864.16 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.29 × 0.27 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.964, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
33926, 4287, 3195
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.03
No. of reflections4287
No. of parameters318
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O3Bi0.89 (2)1.99 (2)2.8668 (19)172.5 (18)
O1W—H1W···O1Aii0.82 (3)2.53 (3)3.219 (3)142 (3)
O1W—H1W···O2Bii0.82 (3)2.28 (3)2.984 (2)145 (3)
N2A—H3NA···O4B0.86 (3)2.11 (3)2.972 (3)173.3 (18)
O2A—H2A···O3Bi0.94 (3)1.65 (3)2.5743 (18)169 (3)
O2B—H2B···O3A0.95 (3)1.58 (3)2.525 (2)172 (3)
O1W—H2W···O1B0.84 (3)2.03 (3)2.873 (2)178 (4)
N2A—H2NA···O1A0.91 (2)2.17 (2)2.984 (2)150 (2)
N3A—H4NA···O4Bi0.91 (2)1.97 (3)2.879 (2)176 (2)
N3A—H5NA···O1Wiii0.88 (2)2.03 (2)2.908 (2)172.3 (18)
N1B—H1NB···O3A0.89 (2)1.92 (2)2.8077 (19)175.0 (17)
N2B—H2NB···O4A0.93 (2)1.98 (2)2.914 (2)176.2 (18)
N2B—H3NB···O1Biv0.87 (2)2.34 (2)3.121 (2)150.8 (18)
N3B—H5NB···O2Av0.92 (3)2.50 (2)3.054 (3)118.8 (19)
N3B—H5NB···O4Av0.92 (3)2.03 (3)2.938 (3)168 (2)
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x1, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: shaharum@kb.usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SS gratefully acknowledges funding from Universiti Sains Malaysia under the University Research Grant (No. 1001/PPSK/815028). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAbu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta, 11, 277–283.  CrossRef Google Scholar
First citationAghabozorg, H., Akbari Saei, A. & Ramezanipour, F. (2005). Acta Cryst. E61, o3242–o3244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Rosli, M. M. & Fun, H.-K. (2010). Acta Cryst. E66, o2433–o2434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Dajani, M. T. M., Salhin, A., Mohamed, N., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2931–o2932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAthimoolam, S. & Natarajan, S. (2007). Acta Cryst. E63, o963–o965.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBahadur, S. A., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o2387–o2389.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBüyükgüngör, O. & Odabąsoǧlu, M. (2006). Acta Cryst. E62, o3816–o3818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaddad, S. F. & Al-Far, R. H. (2003). Acta Cryst. E59, o1444–o1446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4543–o4544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchwalbe, C. H., Williams, G. J. B. & Koetzle, T. F. (1987). Acta Cryst. C43, 2191–2195.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2001). Acta Cryst. C57, 115–116.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o591-o592
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds