metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m337-m338

[(1R*,2S*)-N1-Benzyl-2-phenyl-1-(pyridin-2-yl)-N2-(pyridin-2-ylmeth­yl)ethane-1,2-di­amine]­di­chloridozinc(II)

aDepto. de Química – UFSC, 88040-900 Florianópolis, SC, Brazil
*Correspondence e-mail: adajb@qmc.ufsc.br

(Received 21 January 2011; accepted 4 February 2011; online 16 February 2011)

In the mononuclear zinc title complex, [ZnCl2(C26H26N4)], the ZnII ion is surrounded by three N atoms from a (1R*,2S*)-N1-benzyl-2-phenyl-1-(pyridin-2-yl)-N2-(pyridin-2-ylmeth­yl)ethane-1,2-diamine (BPPPEN) ligand and two terminal chloride ligands, resulting in a highly distorted environment around the metal atom. The calculated τ parameter of 0.42 indicates that the coordination geometry is approximately square-pyramidal. Hydrogen bonds involving centrosymmetric N—H⋯Cl inter­actions form dimeric structures. The mol­ecules are stacked along the a and b axes.

Related literature

For general background to the chemistry and biological properties of vicinal diamines, see: Bennani & Hanessian (1997[Bennani, Y. L. & Hanessian, S. (1997). Chem. Rev. 97, 3161-3195.]); Lucet et al. (1998[Lucet, D., Le Gall, T. & Mioskowski, C. (1998). Angew. Chem. Int. Ed. 37, 2580-2627.]); Fache et al. (2000[Fache, F., Schultz, E., Tommasino, M. L. & Lemaire, M. (2000). Chem. Rev. 100, 2159-2231.]); Saibabu Kottiet al. (2006)[Saibabu Kotti, S. R. S., Timmons, C. & Li, G. G. (2006). Chem. Biol. Drug Des. 67, 101-114.] Alexakis & Andrey (2002[Alexakis, A. & Andrey, O. (2002). Org. Lett. 4, 3611-3614.]); Andrey et al. (2003[Andrey, O., Alexakis, A. & Bernardinelli, G. (2003). Org. Lett. 5, 2559-2561.]); Ma et al. (2003[Ma, Y., Liu, H., Chen, L., Cui, X., Zhu, J. & Deng, J. (2003). Org. Lett. 5, 2103-2106.]); Notz et al. (2004[Notz, W., Tanaka, F. & Barbas, C. F. (2004). Acc. Chem. Res. 37, 580-591.]); Bassindale et al. (2004[Bassindale, M. J., Crawford, J. J., Henderson, K. W. & Kerr, W. J. (2004). Tetrahedron Lett. 45, 4175-4179.]); Mealy et al. (2004[Mealy, M. J., Luderer, M. R., Bailey, W. F. & Sommer, M. B. (2004). J. Org. Chem. 69, 6042-6049.]). For a related structure, see: Mikata et al. (2009[Mikata, Y., Yamashita, A., Kawamura, A., Konno, H., Miyamoto, Y. & Tamotsu, S. (2009). Dalton Trans. pp. 3800-3806.]). For coordination geom­etries, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Vanrijn, J. & Verschoor, G. C. (1984). Dalton Trans. pp. 1349-1346.]). For hydrogen bonds, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C26H26N4)]

  • Mr = 530.78

  • Monoclinic, P 21 /c

  • a = 9.1716 (14) Å

  • b = 28.888 (2) Å

  • c = 10.4304 (12) Å

  • β = 109.541 (8)°

  • V = 2604.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 293 K

  • 0.46 × 0.43 × 0.26 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan [PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); North et al. (1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])] Tmin = 0.615, Tmax = 0.751

  • 4899 measured reflections

  • 4632 independent reflections

  • 2892 reflections with I > 2σ(I)

  • Rint = 0.048

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.169

  • S = 1.05

  • 4632 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl2i 0.91 2.43 3.304 (5) 160
Symmetry code: (i) -x+1, -y, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996[Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There has been much interest in developing methods for making vicinal diamines and their derivatives since they are important in medicinal chemistry, natural products, coordination chemistry and asymmetric catalysis (Bennani & Hanessian, 1997; Lucet et al., 1998; Fache et al., 2000; Saibabu Kotti et al., 2006). They have been extensively used as ligands and catalysts in synthesis with impressive results (Alexakis & Andrey, 2002; Andrey et al., 2003; Ma et al., 2003; Notz et al., 2004; Bassindale et al., 2004; Mealy et al., 2004). We report here the crystal structure of the title new zinc complex with the chelating diamine (1R*, 2S*)-N1-benzyl-2-phenyl-1-(pyridin-2-yl)-N2-[(pyridin-2-yl) methyl] ethane-1, 2-diamine (Fig. 1). In our study of vicinal diamines, we isolated the title complex from a mixture of stereo isomeric diamines in the presence of anhydrous zinc chloride in methanol.

Fig. 2 shows the molecular structure of thr title compound. It is a neutral mononuclear zinc complex, where ZnII ion is surrounded by three nitrogen atoms from BPPPEN ligand and two chloro terminal ligands, resulting in a highly distorted environment around the metal center. The calculated τ parameter of 0.42 indicate the coordination geometry has lightly square pyramidal character (Addison et al., 1984).

Centrosymmetric hydrogen bonds form dimmeric structures through N4—H4··· Cl2 interactions (Fig. 3). The geometric parameters of these interactions are in agreement with those postulated by Steiner (2002). The packing analysis shows that the molecules are stacked along a and b crystallographic axes.

Related literature top

For general background to the chemistry and biological properties of vicinal diamines, see: Bennani et al. (1997); Lucet et al. (1998); Fache et al. (2000); Saibabu Kotti et al. (2006); Alexakis & Andrey (2002); Andrey et al. (2003); Ma et al. (2003); Notz et al. (2004); Bassindale et al. (2004); Mealy et al. (2004). For a related structure, see: Mikata et al. (2009). For coordination geometries, see: Addison et al. (1984). For hydrogen bonds, see: Steiner (2002).

Experimental top

To a solution of BPPPEN (0,5 g; 1,24 mmol) in methanol (25 mL) was added anhydrous ZnCl2 (0,173 g; 1,27 mmol) and the mixture was heated at reflux until all zinc chloride dissolved. The solution was allowed to cool slowly at room temperature and a white crystalline solid, suitable for X-ray crystallographic analysis, was collected after one week (0,177 g; 26%).

Refinement top

H atoms were placed at their idealized positions with distances of 0.93, 0.98 and 0.97 Å and Ueq fixed at 1.2 times Uiso of the preceding atom for CHAr, CH and CH2, respectively. Hydrogen atoms of the amine groups were found from Fourier difference map and treated with riding model.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: SET4 in CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. (1R*, 2S*)-N1-benzyl-2-phenyl-1-(pyridin-2-yl)-N2-[(pyridin-2-yl) methyl] ethane-1, 2-diamine
[Figure 2] Fig. 2. The molecular structure of complex (I) showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level. Hydrogen atoms were omitted for clarity.
[Figure 3] Fig. 3. Packing of the title compound with hydrogen bonding.
[(1R*,2S*)-N1-Benzyl-2-phenyl-1-(pyridin-2-yl)- N2-(pyridin-2-ylmethyl)ethane-1,2-diamine]dichloridozinc(II) top
Crystal data top
[ZnCl2(C26H26N4)]F(000) = 1096
Mr = 530.78Dx = 1.354 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.1716 (14) Åθ = 8.4–13.9°
b = 28.888 (2) ŵ = 1.17 mm1
c = 10.4304 (12) ÅT = 293 K
β = 109.541 (8)°Disc, colorless
V = 2604.3 (5) Å30.46 × 0.43 × 0.26 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2892 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.1°, θmin = 1.4°
ω–2θ scansh = 1010
Absorption correction: ψ scan
[PLATON (Spek, 2009); North et al. (1968)]
k = 340
Tmin = 0.615, Tmax = 0.751l = 120
4899 measured reflections3 standard reflections every 200 reflections
4632 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0767P)2 + 4.3127P]
where P = (Fo2 + 2Fc2)/3
4632 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[ZnCl2(C26H26N4)]V = 2604.3 (5) Å3
Mr = 530.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1716 (14) ŵ = 1.17 mm1
b = 28.888 (2) ÅT = 293 K
c = 10.4304 (12) Å0.46 × 0.43 × 0.26 mm
β = 109.541 (8)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2892 reflections with I > 2σ(I)
Absorption correction: ψ scan
[PLATON (Spek, 2009); North et al. (1968)]
Rint = 0.048
Tmin = 0.615, Tmax = 0.7513 standard reflections every 200 reflections
4899 measured reflections intensity decay: 1%
4632 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.05Δρmax = 0.74 e Å3
4632 reflectionsΔρmin = 0.39 e Å3
298 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.46704 (7)0.07907 (2)0.11615 (6)0.0407 (2)
Cl10.4754 (2)0.13915 (6)0.24916 (18)0.0689 (5)
Cl20.26694 (16)0.02852 (5)0.17505 (17)0.0541 (4)
N10.4102 (5)0.12227 (17)0.0387 (4)0.0422 (11)
H10.40330.14800.01520.051*
C20.5396 (6)0.1186 (2)0.1695 (5)0.0423 (13)
H20.52780.08980.21460.051*
C30.6918 (6)0.11640 (18)0.1384 (5)0.0376 (12)
H30.69860.14470.08880.045*
N40.6810 (5)0.07700 (17)0.0455 (4)0.0412 (10)
H40.67230.04920.08410.049*
C100.2536 (7)0.1176 (2)0.0553 (6)0.0527 (16)
H10A0.21600.08630.03280.063*
H10B0.26360.12330.14960.063*
C110.1394 (7)0.1508 (2)0.0336 (7)0.0578 (17)
C120.0595 (8)0.1409 (3)0.1672 (8)0.073 (2)
H120.07850.11290.20270.088*
C130.0465 (11)0.1704 (4)0.2503 (10)0.107 (3)
H130.10070.16220.33980.128*
C140.0720 (13)0.2124 (4)0.1994 (14)0.126 (4)
H140.14100.23320.25620.151*
C150.0021 (14)0.2238 (4)0.0674 (14)0.131 (4)
H150.01670.25210.03320.158*
C160.1102 (10)0.1915 (3)0.0184 (10)0.097 (3)
H160.16040.19850.10970.116*
C210.5408 (6)0.1586 (2)0.2628 (5)0.0439 (14)
N220.5383 (8)0.1999 (2)0.2084 (6)0.0710 (17)
C230.5386 (11)0.2370 (3)0.2849 (8)0.089 (3)
H230.53900.26610.24730.106*
C240.5384 (11)0.2342 (3)0.4158 (8)0.085 (2)
H240.53470.26070.46550.102*
C250.5437 (11)0.1911 (3)0.4705 (8)0.086 (2)
H250.54680.18760.56000.103*
C260.5446 (9)0.1531 (3)0.3938 (6)0.0666 (19)
H260.54780.12360.43030.080*
C310.8333 (6)0.1148 (2)0.2652 (6)0.0462 (14)
C320.9515 (8)0.1457 (3)0.2857 (8)0.081 (2)
H320.94410.16860.22110.097*
C331.0832 (10)0.1437 (4)0.4016 (10)0.103 (3)
H331.16220.16520.41460.124*
C341.0948 (10)0.1104 (4)0.4943 (9)0.094 (3)
H341.18270.10930.57150.112*
C350.9809 (9)0.0781 (3)0.4783 (7)0.082 (2)
H350.99050.05530.54360.099*
C360.8510 (7)0.0802 (2)0.3625 (6)0.0588 (16)
H360.77380.05810.34930.071*
C400.8042 (6)0.0759 (2)0.0161 (6)0.0516 (15)
H40A0.90180.06760.05250.062*
H40B0.81540.10630.05110.062*
C410.7654 (6)0.0413 (2)0.1293 (6)0.0451 (14)
N420.6161 (5)0.03297 (17)0.1926 (5)0.0456 (12)
C430.5756 (8)0.0035 (2)0.2951 (6)0.0565 (16)
H430.47080.00190.33920.068*
C440.6810 (9)0.0196 (3)0.3402 (7)0.068 (2)
H440.64880.04040.41240.082*
C450.8357 (9)0.0108 (3)0.2740 (7)0.070 (2)
H450.91040.02570.30110.084*
C460.8785 (7)0.0199 (2)0.1688 (7)0.0590 (17)
H460.98250.02630.12410.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0376 (3)0.0438 (4)0.0395 (3)0.0025 (3)0.0115 (2)0.0016 (3)
Cl10.0804 (12)0.0628 (11)0.0625 (10)0.0105 (9)0.0225 (9)0.0193 (9)
Cl20.0394 (8)0.0452 (9)0.0764 (11)0.0050 (6)0.0176 (7)0.0015 (8)
N10.038 (3)0.051 (3)0.041 (2)0.004 (2)0.017 (2)0.001 (2)
C20.049 (3)0.042 (3)0.038 (3)0.001 (3)0.017 (3)0.004 (2)
C30.039 (3)0.034 (3)0.043 (3)0.003 (2)0.019 (2)0.000 (2)
N40.037 (2)0.050 (3)0.038 (2)0.001 (2)0.0144 (19)0.002 (2)
C100.046 (3)0.071 (4)0.047 (3)0.001 (3)0.023 (3)0.003 (3)
C110.048 (4)0.061 (4)0.072 (4)0.008 (3)0.029 (3)0.006 (4)
C120.068 (5)0.074 (5)0.073 (5)0.018 (4)0.017 (4)0.006 (4)
C130.091 (7)0.120 (9)0.097 (7)0.040 (6)0.014 (5)0.010 (6)
C140.107 (8)0.129 (10)0.133 (10)0.062 (7)0.028 (7)0.021 (8)
C150.131 (10)0.107 (9)0.165 (12)0.057 (8)0.062 (9)0.009 (8)
C160.091 (6)0.099 (7)0.105 (7)0.026 (5)0.040 (5)0.012 (6)
C210.049 (3)0.048 (4)0.039 (3)0.003 (3)0.020 (3)0.008 (3)
N220.121 (5)0.050 (4)0.055 (3)0.002 (3)0.047 (4)0.001 (3)
C230.162 (9)0.037 (4)0.087 (6)0.003 (5)0.068 (6)0.005 (4)
C240.135 (7)0.067 (5)0.070 (5)0.004 (5)0.057 (5)0.026 (4)
C250.137 (7)0.083 (6)0.056 (4)0.012 (5)0.059 (5)0.007 (4)
C260.106 (6)0.055 (4)0.048 (4)0.002 (4)0.037 (4)0.000 (3)
C310.043 (3)0.048 (4)0.048 (3)0.000 (3)0.015 (3)0.014 (3)
C320.063 (5)0.092 (6)0.078 (5)0.020 (4)0.013 (4)0.011 (4)
C330.069 (6)0.134 (9)0.092 (7)0.028 (6)0.008 (5)0.036 (7)
C340.067 (6)0.133 (9)0.063 (5)0.011 (6)0.002 (4)0.032 (6)
C350.076 (5)0.108 (7)0.050 (4)0.023 (5)0.004 (4)0.017 (4)
C360.054 (4)0.067 (4)0.048 (3)0.011 (3)0.006 (3)0.008 (4)
C400.037 (3)0.065 (4)0.053 (3)0.000 (3)0.017 (3)0.006 (3)
C410.042 (3)0.054 (4)0.042 (3)0.002 (3)0.017 (3)0.004 (3)
N420.039 (3)0.056 (3)0.043 (3)0.000 (2)0.015 (2)0.006 (2)
C430.055 (4)0.065 (4)0.047 (3)0.007 (3)0.015 (3)0.006 (3)
C440.082 (5)0.073 (5)0.055 (4)0.002 (4)0.030 (4)0.013 (4)
C450.067 (5)0.088 (6)0.063 (4)0.014 (4)0.031 (4)0.010 (4)
C460.043 (3)0.081 (5)0.056 (4)0.007 (3)0.022 (3)0.006 (4)
Geometric parameters (Å, º) top
Zn1—N42.118 (4)N22—C231.334 (9)
Zn1—N12.236 (4)C23—C241.369 (10)
Zn1—N422.238 (5)C23—H230.9300
Zn1—Cl12.2393 (17)C24—C251.366 (11)
Zn1—Cl22.2635 (16)C24—H240.9300
N1—C21.482 (7)C25—C261.359 (10)
N1—C101.509 (7)C25—H250.9300
N1—H10.9223C26—H260.9300
C2—C211.509 (8)C31—C321.364 (9)
C2—C31.537 (7)C31—C361.395 (9)
C2—H20.9800C32—C331.396 (11)
C3—N41.476 (7)C32—H320.9300
C3—C311.513 (8)C33—C341.342 (13)
C3—H30.9800C33—H330.9300
N4—C401.476 (7)C34—C351.369 (12)
N4—H40.9146C34—H340.9300
C10—C111.492 (9)C35—C361.386 (9)
C10—H10A0.9700C35—H350.9300
C10—H10B0.9700C36—H360.9300
C11—C161.358 (10)C40—C411.496 (8)
C11—C121.371 (10)C40—H40A0.9700
C12—C131.362 (11)C40—H40B0.9700
C12—H120.9300C41—N421.328 (7)
C13—C141.375 (14)C41—C461.384 (8)
C13—H130.9300N42—C431.318 (8)
C14—C151.356 (15)C43—C441.381 (9)
C14—H140.9300C43—H430.9300
C15—C161.436 (13)C44—C451.378 (10)
C15—H150.9300C44—H440.9300
C16—H160.9300C45—C461.362 (9)
C21—N221.318 (8)C45—H450.9300
C21—C261.365 (8)C46—H460.9300
N4—Zn1—N179.54 (16)N22—C21—C26121.9 (6)
N4—Zn1—N4275.71 (17)N22—C21—C2114.8 (5)
N1—Zn1—N42155.13 (16)C26—C21—C2123.3 (5)
N4—Zn1—Cl1107.49 (14)C21—N22—C23118.2 (6)
N1—Zn1—Cl194.56 (14)N22—C23—C24123.4 (7)
N42—Zn1—Cl195.09 (14)N22—C23—H23118.3
N4—Zn1—Cl2130.48 (14)C24—C23—H23118.3
N1—Zn1—Cl2101.09 (12)C25—C24—C23117.2 (7)
N42—Zn1—Cl293.20 (13)C25—C24—H24121.4
Cl1—Zn1—Cl2121.64 (7)C23—C24—H24121.4
C2—N1—C10112.8 (4)C26—C25—C24119.8 (7)
C2—N1—Zn1108.5 (3)C26—C25—H25120.1
C10—N1—Zn1119.6 (3)C24—C25—H25120.1
C2—N1—H1119.3C25—C26—C21119.5 (7)
C10—N1—H1105.6C25—C26—H26120.3
Zn1—N1—H189.7C21—C26—H26120.3
N1—C2—C21111.7 (4)C32—C31—C36117.5 (6)
N1—C2—C3108.2 (4)C32—C31—C3121.5 (6)
C21—C2—C3110.9 (5)C36—C31—C3121.0 (5)
N1—C2—H2108.6C31—C32—C33121.4 (9)
C21—C2—H2108.6C31—C32—H32119.3
C3—C2—H2108.6C33—C32—H32119.3
N4—C3—C31113.6 (4)C34—C33—C32119.4 (9)
N4—C3—C2107.7 (4)C34—C33—H33120.3
C31—C3—C2113.0 (4)C32—C33—H33120.3
N4—C3—H3107.4C33—C34—C35121.9 (8)
C31—C3—H3107.4C33—C34—H34119.1
C2—C3—H3107.4C35—C34—H34119.1
C3—N4—C40114.2 (4)C34—C35—C36118.3 (8)
C3—N4—Zn1110.0 (3)C34—C35—H35120.9
C40—N4—Zn1107.1 (3)C36—C35—H35120.9
C3—N4—H4112.7C35—C36—C31121.5 (7)
C40—N4—H4111.4C35—C36—H36119.2
Zn1—N4—H4100.4C31—C36—H36119.2
C11—C10—N1111.7 (5)N4—C40—C41110.1 (5)
C11—C10—H10A109.3N4—C40—H40A109.6
N1—C10—H10A109.3C41—C40—H40A109.6
C11—C10—H10B109.3N4—C40—H40B109.6
N1—C10—H10B109.3C41—C40—H40B109.6
H10A—C10—H10B108.0H40A—C40—H40B108.2
C16—C11—C12118.5 (7)N42—C41—C46121.5 (6)
C16—C11—C10119.9 (7)N42—C41—C40116.5 (5)
C12—C11—C10121.6 (6)C46—C41—C40122.0 (5)
C13—C12—C11122.8 (8)C43—N42—C41118.9 (5)
C13—C12—H12118.6C43—N42—Zn1129.3 (4)
C11—C12—H12118.6C41—N42—Zn1111.5 (4)
C12—C13—C14118.9 (10)N42—C43—C44123.3 (6)
C12—C13—H13120.6N42—C43—H43118.3
C14—C13—H13120.6C44—C43—H43118.3
C15—C14—C13121.0 (10)C45—C44—C43117.4 (6)
C15—C14—H14119.5C45—C44—H44121.3
C13—C14—H14119.5C43—C44—H44121.3
C14—C15—C16118.8 (10)C46—C45—C44119.7 (6)
C14—C15—H15120.6C46—C45—H45120.2
C16—C15—H15120.6C44—C45—H45120.2
C11—C16—C15120.0 (9)C45—C46—C41119.2 (6)
C11—C16—H16120.0C45—C46—H46120.4
C15—C16—H16120.0C41—C46—H46120.4
N4—Zn1—N1—C29.2 (3)C26—C21—N22—C230.4 (11)
N42—Zn1—N1—C23.6 (6)C2—C21—N22—C23179.7 (7)
Cl1—Zn1—N1—C2116.2 (3)C21—N22—C23—C241.3 (14)
Cl2—Zn1—N1—C2120.3 (3)N22—C23—C24—C252.4 (15)
N4—Zn1—N1—C10140.5 (4)C23—C24—C25—C261.9 (14)
N42—Zn1—N1—C10134.9 (4)C24—C25—C26—C210.3 (13)
Cl1—Zn1—N1—C10112.5 (4)N22—C21—C26—C250.9 (11)
Cl2—Zn1—N1—C1011.0 (4)C2—C21—C26—C25179.3 (7)
C10—N1—C2—C2166.1 (6)N4—C3—C31—C32110.5 (7)
Zn1—N1—C2—C21159.1 (4)C2—C3—C31—C32126.4 (6)
C10—N1—C2—C3171.6 (5)N4—C3—C31—C3666.3 (7)
Zn1—N1—C2—C336.7 (5)C2—C3—C31—C3656.8 (7)
N1—C2—C3—N456.4 (5)C36—C31—C32—C331.9 (11)
C21—C2—C3—N4179.2 (4)C3—C31—C32—C33178.8 (7)
N1—C2—C3—C31177.3 (4)C31—C32—C33—C340.7 (14)
C21—C2—C3—C3154.5 (6)C32—C33—C34—C350.2 (14)
C31—C3—N4—C4065.8 (6)C33—C34—C35—C360.2 (13)
C2—C3—N4—C40168.2 (4)C34—C35—C36—C311.5 (10)
C31—C3—N4—Zn1173.7 (4)C32—C31—C36—C352.3 (9)
C2—C3—N4—Zn147.7 (5)C3—C31—C36—C35179.2 (6)
N1—Zn1—N4—C321.3 (3)C3—N4—C40—C41168.0 (5)
N42—Zn1—N4—C3161.2 (4)Zn1—N4—C40—C4146.0 (6)
Cl1—Zn1—N4—C370.3 (3)N4—C40—C41—N4227.5 (8)
Cl2—Zn1—N4—C3117.0 (3)N4—C40—C41—C46154.3 (6)
N1—Zn1—N4—C40145.9 (4)C46—C41—N42—C430.2 (9)
N42—Zn1—N4—C4036.5 (4)C40—C41—N42—C43178.5 (6)
Cl1—Zn1—N4—C4054.4 (4)C46—C41—N42—Zn1173.9 (5)
Cl2—Zn1—N4—C40118.4 (4)C40—C41—N42—Zn14.4 (7)
C2—N1—C10—C11139.8 (5)N4—Zn1—N42—C43163.2 (6)
Zn1—N1—C10—C1190.9 (6)N1—Zn1—N42—C43157.5 (5)
N1—C10—C11—C1697.6 (7)Cl1—Zn1—N42—C4390.0 (5)
N1—C10—C11—C1283.7 (8)Cl2—Zn1—N42—C4332.2 (5)
C16—C11—C12—C130.7 (13)N4—Zn1—N42—C4123.4 (4)
C10—C11—C12—C13179.3 (8)N1—Zn1—N42—C4129.1 (7)
C11—C12—C13—C141.7 (15)Cl1—Zn1—N42—C4183.3 (4)
C12—C13—C14—C152.6 (18)Cl2—Zn1—N42—C41154.5 (4)
C13—C14—C15—C161 (2)C41—N42—C43—C440.4 (10)
C12—C11—C16—C152.3 (13)Zn1—N42—C43—C44173.3 (5)
C10—C11—C16—C15179.0 (8)N42—C43—C44—C450.5 (11)
C14—C15—C16—C111.5 (17)C43—C44—C45—C460.1 (11)
N1—C2—C21—N2252.8 (7)C44—C45—C46—C410.7 (11)
C3—C2—C21—N2268.1 (7)N42—C41—C46—C450.8 (10)
N1—C2—C21—C26127.3 (6)C40—C41—C46—C45179.0 (6)
C3—C2—C21—C26111.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl2i0.912.433.304 (5)160
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[ZnCl2(C26H26N4)]
Mr530.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.1716 (14), 28.888 (2), 10.4304 (12)
β (°) 109.541 (8)
V3)2604.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.46 × 0.43 × 0.26
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
[PLATON (Spek, 2009); North et al. (1968)]
Tmin, Tmax0.615, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
4899, 4632, 2892
Rint0.048
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.169, 1.05
No. of reflections4632
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.39

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SET4 in CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl2i0.912.433.304 (5)160
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Financiadora de Estudos e Projetos (FINEP) for financial support.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Vanrijn, J. & Verschoor, G. C. (1984). Dalton Trans. pp. 1349–1346.  CrossRef Google Scholar
First citationAlexakis, A. & Andrey, O. (2002). Org. Lett. 4, 3611–3614.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAndrey, O., Alexakis, A. & Bernardinelli, G. (2003). Org. Lett. 5, 2559–2561.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBassindale, M. J., Crawford, J. J., Henderson, K. W. & Kerr, W. J. (2004). Tetrahedron Lett. 45, 4175–4179.  Web of Science CrossRef CAS Google Scholar
First citationBennani, Y. L. & Hanessian, S. (1997). Chem. Rev. 97, 3161–3195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFache, F., Schultz, E., Tommasino, M. L. & Lemaire, M. (2000). Chem. Rev. 100, 2159–2231.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLucet, D., Le Gall, T. & Mioskowski, C. (1998). Angew. Chem. Int. Ed. 37, 2580–2627.  CrossRef CAS Google Scholar
First citationMa, Y., Liu, H., Chen, L., Cui, X., Zhu, J. & Deng, J. (2003). Org. Lett. 5, 2103–2106.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMealy, M. J., Luderer, M. R., Bailey, W. F. & Sommer, M. B. (2004). J. Org. Chem. 69, 6042–6049.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMikata, Y., Yamashita, A., Kawamura, A., Konno, H., Miyamoto, Y. & Tamotsu, S. (2009). Dalton Trans. pp. 3800–3806.  Web of Science CSD CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNotz, W., Tanaka, F. & Barbas, C. F. (2004). Acc. Chem. Res. 37, 580–591.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaibabu Kotti, S. R. S., Timmons, C. & Li, G. G. (2006). Chem. Biol. Drug Des. 67, 101–114.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m337-m338
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds