organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-3,5-di­phenyl-4,5-di­hydro-1H-pyrazole

aCollege of Environment and Chemical Engineering, Xi'an Polytechnic University, 710048 Xi'an, Shaanxi, People's Republic of China
*Correspondence e-mail: wllily315668256@yahoo.com.cn

(Received 26 December 2010; accepted 28 January 2011; online 5 February 2011)

In the title compound, C22H18N2O, the pyrazole ring is almost planar (r.m.s. deviation = 0.0098 Å) and its mean plane makes dihedral angles of 62.2 (2), 87.2 (2) and 8.0 (2)° with the phenyl and benzoyl rings, respectively. The crystal packing is stabilized by ππ stacking inter­actions [centroid–centroid distance = 3.658 (2) Å] and weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the coordination properties of aroylhydrazones, see: Egli et al. (2006[Egli, D. H., Linden, A. & Heimgartner, H. (2006). Helv. Chim. Acta, 89, 2815-2824.]); Ge (2006[Ge, W.-Z. (2006). Acta Cryst. E62, o3109-o3110.]); Chopra et al. (2006[Chopra, D., Mohan, T. P. & Vishalakshi, B. (2006). Acta Cryst. E62, o2979-o2980.]). For related structures, see: Seebacher et al. (2003[Seebacher, W., Michl, G., Belaj, F., Brun, R., Saf, R. & Weis, R. (2003). Tetrahedron, 59, 2811-2819.]); Ge (2006[Ge, W.-Z. (2006). Acta Cryst. E62, o3109-o3110.]); Jian & Wang (2006[Jian, F.-F. & Wang, J. (2006). Acta Cryst. E62, o5303-o5304.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582-o583.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N2O

  • Mr = 326.38

  • Orthorhombic, P c a 21

  • a = 20.276 (6) Å

  • b = 5.7859 (17) Å

  • c = 14.786 (4) Å

  • V = 1734.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.18 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2006)[Sheldrick, G. M. (20066). SADABS. University of Göttingen, Germany.] Tmin = 0.986, Tmax = 0.991

  • 8497 measured reflections

  • 1601 independent reflections

  • 1100 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.081

  • S = 1.09

  • 1601 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O1i 0.93 2.72 3.399 (5) 131
C22—H22⋯O1i 0.93 3.00 3.540 (4) 119
C10—H10⋯O1ii 0.93 2.87 3.793 (5) 174
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+1, z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions (Egli et al., 2006; Ge, 2006) and their biological activity (Egli et al., 2006; Chopra et al., 2006). As an extension of work on the structural characterization of aroylhydrazone derivatives, the title compound,C22H18N2O, was successfully synthesized and its crystal structure is reported here.

In the title complex, C22H18N2O, all bond lengths and angles are normal (Allen et al., 1987). The pyrazole ring is planar (rms deviation = 0.0098 Å) and its mean plane makes dihedral angles of 62.2 (1), 87.2 (1) and 8.0 (2)° with the benzene rings C2-C7, C9-C14 and C17-C22, respectively (Fig. 1). The crystal packing is stabilized by π-π stacking interactions between the pyrazole ring and one benzene ring with a centroid-centroid separation of 3.658 (2) Å and by weak intermolecular C—H···O hydrogen bonds (Fig.2; Table 1).

Related literature top

For the coordination properties of aroylhydrazones, see: Egli et al. (2006); Ge (2006); Chopra et al. (2006). For related structures, see: Seebacher et al. (2003); Ge (2006); Jian & Wang (2006); Fun et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

A methanol solution (10 ml) of N'-(E)-(benzylidene acetophenone phenmethyl acylhydrazone) (0.25 mmol,0.082 g) was mixed with a DMF solution (5 ml). The mixture was stirred at 298 K for 2 h. and then filtered. A colorless precipitate was produced after about 20 days. A DMF amount (5 ml) was used to dissolve the precipitate at 330 K. Colorless block-shaped crystals of the title complex were obtained after one month (yield 30%).

Refinement top

H atoms were placed in calculated positions and refined as riding with the following constraints: C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C-H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, and C-H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for methine H atoms. As the structure has no anomalous scatterer, the Friedel-pair reflections were merged.

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound.
1-Benzoyl-3,5-diphenyl-4,5-dihydro-1H-pyrazole top
Crystal data top
C22H18N2OF(000) = 688
Mr = 326.38Dx = 1.250 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1072 reflections
a = 20.276 (6) Åθ = 2.4–17.6°
b = 5.7859 (17) ŵ = 0.08 mm1
c = 14.786 (4) ÅT = 298 K
V = 1734.5 (9) Å3Block, colorless
Z = 40.18 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1601 independent reflections
Radiation source: fine-focus sealed tube1100 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2006)
h = 2423
Tmin = 0.986, Tmax = 0.991k = 66
8497 measured reflectionsl = 1713
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0335P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1601 reflectionsΔρmax = 0.13 e Å3
227 parametersΔρmin = 0.10 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0113 (15)
Crystal data top
C22H18N2OV = 1734.5 (9) Å3
Mr = 326.38Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 20.276 (6) ŵ = 0.08 mm1
b = 5.7859 (17) ÅT = 298 K
c = 14.786 (4) Å0.18 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1601 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2006)
1100 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.991Rint = 0.050
8497 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.09Δρmax = 0.13 e Å3
1601 reflectionsΔρmin = 0.10 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27196 (11)0.5466 (4)0.77340 (17)0.0769 (7)
N10.28823 (12)0.8795 (5)0.84788 (17)0.0617 (7)
N20.33000 (12)1.0610 (4)0.87296 (18)0.0587 (7)
C10.30374 (16)0.7269 (6)0.7810 (2)0.0607 (8)
C20.35797 (16)0.7877 (6)0.7181 (2)0.0602 (8)
C30.36177 (18)0.9982 (7)0.6747 (3)0.0742 (10)
H30.33251.11600.68950.089*
C40.4093 (2)1.0336 (9)0.6092 (3)0.0904 (12)
H40.41051.17310.57800.109*
C50.4545 (2)0.8659 (11)0.5897 (3)0.1057 (16)
H50.48700.89290.54650.127*
C60.4521 (2)0.6593 (10)0.6336 (3)0.1046 (16)
H60.48330.54580.62090.125*
C70.40374 (18)0.6183 (7)0.6965 (3)0.0840 (11)
H70.40160.47520.72500.101*
C80.23482 (15)0.8362 (6)0.9137 (2)0.0630 (9)
H80.23920.67990.93860.076*
C90.16756 (15)0.8651 (6)0.8719 (2)0.0566 (8)
C100.15150 (17)1.0621 (6)0.8242 (3)0.0719 (10)
H100.18331.17550.81500.086*
C110.0887 (2)1.0930 (7)0.7897 (3)0.0838 (11)
H110.07881.22540.75680.101*
C120.04134 (19)0.9293 (9)0.8040 (3)0.0874 (12)
H120.00140.95310.78300.105*
C130.05668 (19)0.7314 (8)0.8490 (3)0.0860 (12)
H130.02480.61760.85680.103*
C140.11969 (17)0.6987 (6)0.8833 (3)0.0726 (10)
H140.12970.56320.91420.087*
C150.25078 (16)1.0154 (6)0.9873 (2)0.0690 (9)
H15A0.21411.12060.99640.083*
H15B0.26120.94071.04430.083*
C160.30982 (15)1.1402 (5)0.9498 (2)0.0572 (8)
C170.34201 (15)1.3367 (6)0.9937 (2)0.0578 (8)
C180.39084 (15)1.4622 (6)0.9502 (3)0.0655 (9)
H180.40461.41700.89290.079*
C190.41933 (17)1.6525 (6)0.9903 (3)0.0745 (10)
H190.45181.73530.95980.089*
C200.39988 (19)1.7206 (7)1.0755 (3)0.0785 (11)
H200.41911.84901.10270.094*
C210.3520 (2)1.5976 (7)1.1199 (3)0.0802 (11)
H210.33911.64211.17770.096*
C220.32291 (17)1.4088 (6)1.0798 (2)0.0718 (10)
H220.29011.32831.11040.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0671 (16)0.0745 (15)0.0890 (18)0.0040 (13)0.0021 (13)0.0112 (14)
N10.0474 (15)0.0756 (18)0.0622 (18)0.0008 (14)0.0018 (13)0.0107 (15)
N20.0485 (14)0.0682 (18)0.0594 (17)0.0074 (14)0.0021 (13)0.0077 (15)
C10.049 (2)0.070 (2)0.062 (2)0.0125 (18)0.0095 (17)0.008 (2)
C20.056 (2)0.074 (2)0.051 (2)0.0028 (18)0.0054 (16)0.0150 (19)
C30.066 (2)0.094 (3)0.063 (2)0.002 (2)0.0115 (19)0.007 (2)
C40.094 (3)0.116 (3)0.062 (2)0.027 (3)0.002 (2)0.010 (2)
C50.090 (3)0.149 (4)0.077 (3)0.039 (4)0.024 (3)0.051 (3)
C60.084 (3)0.121 (4)0.109 (4)0.002 (3)0.027 (3)0.055 (3)
C70.073 (3)0.095 (3)0.083 (3)0.004 (2)0.012 (2)0.024 (2)
C80.052 (2)0.073 (2)0.064 (2)0.0006 (17)0.0000 (16)0.0051 (18)
C90.0491 (17)0.064 (2)0.057 (2)0.0009 (16)0.0016 (15)0.0036 (18)
C100.062 (2)0.075 (2)0.079 (2)0.0017 (19)0.0084 (18)0.001 (2)
C110.078 (3)0.091 (3)0.083 (3)0.015 (2)0.020 (2)0.002 (2)
C120.053 (2)0.123 (3)0.086 (3)0.012 (3)0.007 (2)0.015 (3)
C130.057 (2)0.116 (4)0.085 (3)0.022 (2)0.006 (2)0.013 (3)
C140.063 (2)0.078 (3)0.077 (2)0.007 (2)0.0091 (19)0.002 (2)
C150.0513 (18)0.100 (2)0.056 (2)0.0009 (19)0.0007 (16)0.003 (2)
C160.0480 (18)0.075 (2)0.0483 (19)0.0102 (16)0.0053 (15)0.0023 (18)
C170.0468 (18)0.078 (2)0.0482 (19)0.0109 (17)0.0077 (16)0.0046 (17)
C180.052 (2)0.089 (2)0.0554 (19)0.0029 (18)0.0022 (18)0.008 (2)
C190.063 (2)0.091 (3)0.070 (3)0.0057 (19)0.0032 (19)0.007 (2)
C200.071 (3)0.090 (3)0.075 (3)0.008 (2)0.018 (2)0.020 (2)
C210.077 (3)0.103 (3)0.060 (2)0.004 (2)0.005 (2)0.019 (2)
C220.068 (2)0.098 (3)0.049 (2)0.0001 (19)0.0013 (17)0.006 (2)
Geometric parameters (Å, º) top
O1—C11.231 (4)C10—H100.9300
N1—C11.362 (4)C11—C121.365 (5)
N1—N21.399 (3)C11—H110.9300
N1—C81.478 (4)C12—C131.360 (5)
N2—C161.292 (4)C12—H120.9300
C1—C21.482 (4)C13—C141.387 (5)
C2—C31.379 (5)C13—H130.9300
C2—C71.387 (4)C14—H140.9300
C3—C41.381 (5)C15—C161.504 (5)
C3—H30.9300C15—H15A0.9700
C4—C51.366 (6)C15—H15B0.9700
C4—H40.9300C16—C171.463 (4)
C5—C61.361 (6)C17—C181.386 (4)
C5—H50.9300C17—C221.394 (4)
C6—C71.373 (6)C18—C191.378 (5)
C6—H60.9300C18—H180.9300
C7—H70.9300C19—C201.378 (5)
C8—C91.507 (4)C19—H190.9300
C8—C151.537 (4)C20—C211.371 (5)
C8—H80.9800C20—H200.9300
C9—C141.377 (4)C21—C221.377 (5)
C9—C101.380 (4)C21—H210.9300
C10—C111.383 (5)C22—H220.9300
C1—N1—N2122.6 (3)C12—C11—H11120.0
C1—N1—C8122.5 (3)C10—C11—H11120.0
N2—N1—C8113.3 (3)C13—C12—C11119.9 (4)
C16—N2—N1107.9 (3)C13—C12—H12120.0
O1—C1—N1119.6 (3)C11—C12—H12120.0
O1—C1—C2122.1 (3)C12—C13—C14120.3 (4)
N1—C1—C2118.2 (3)C12—C13—H13119.9
C3—C2—C7118.7 (3)C14—C13—H13119.9
C3—C2—C1122.9 (3)C9—C14—C13120.6 (4)
C7—C2—C1118.2 (3)C9—C14—H14119.7
C2—C3—C4119.7 (4)C13—C14—H14119.7
C2—C3—H3120.1C16—C15—C8103.3 (3)
C4—C3—H3120.1C16—C15—H15A111.1
C5—C4—C3120.7 (4)C8—C15—H15A111.1
C5—C4—H4119.6C16—C15—H15B111.1
C3—C4—H4119.6C8—C15—H15B111.1
C6—C5—C4120.0 (4)H15A—C15—H15B109.1
C6—C5—H5120.0N2—C16—C17121.6 (3)
C4—C5—H5120.0N2—C16—C15114.0 (3)
C5—C6—C7120.0 (4)C17—C16—C15124.4 (3)
C5—C6—H6120.0C18—C17—C22117.7 (3)
C7—C6—H6120.0C18—C17—C16121.4 (3)
C6—C7—C2120.8 (4)C22—C17—C16120.9 (3)
C6—C7—H7119.6C19—C18—C17121.3 (3)
C2—C7—H7119.6C19—C18—H18119.4
N1—C8—C9112.0 (2)C17—C18—H18119.4
N1—C8—C15101.4 (3)C18—C19—C20120.1 (4)
C9—C8—C15114.0 (3)C18—C19—H19119.9
N1—C8—H8109.7C20—C19—H19119.9
C9—C8—H8109.7C21—C20—C19119.5 (4)
C15—C8—H8109.7C21—C20—H20120.2
C14—C9—C10118.2 (3)C19—C20—H20120.2
C14—C9—C8120.7 (3)C20—C21—C22120.6 (4)
C10—C9—C8121.0 (3)C20—C21—H21119.7
C9—C10—C11120.8 (4)C22—C21—H21119.7
C9—C10—H10119.6C21—C22—C17120.8 (4)
C11—C10—H10119.6C21—C22—H22119.6
C12—C11—C10120.1 (4)C17—C22—H22119.6
C1—N1—N2—C16165.4 (3)C14—C9—C10—C110.9 (5)
C8—N1—N2—C160.8 (3)C8—C9—C10—C11176.8 (3)
N2—N1—C1—O1166.0 (3)C9—C10—C11—C121.1 (6)
C8—N1—C1—O11.0 (4)C10—C11—C12—C132.7 (6)
N2—N1—C1—C215.4 (4)C11—C12—C13—C142.3 (6)
C8—N1—C1—C2179.6 (3)C10—C9—C14—C131.3 (5)
O1—C1—C2—C3128.9 (3)C8—C9—C14—C13176.4 (3)
N1—C1—C2—C349.7 (4)C12—C13—C14—C90.3 (6)
O1—C1—C2—C745.7 (4)N1—C8—C15—C162.1 (3)
N1—C1—C2—C7135.7 (3)C9—C8—C15—C16118.4 (3)
C7—C2—C3—C42.0 (5)N1—N2—C16—C17178.2 (2)
C1—C2—C3—C4172.5 (3)N1—N2—C16—C150.8 (3)
C2—C3—C4—C53.0 (5)C8—C15—C16—N21.9 (4)
C3—C4—C5—C61.5 (6)C8—C15—C16—C17177.0 (3)
C4—C5—C6—C70.8 (7)N2—C16—C17—C187.1 (4)
C5—C6—C7—C21.8 (6)C15—C16—C17—C18171.7 (3)
C3—C2—C7—C60.3 (5)N2—C16—C17—C22175.0 (3)
C1—C2—C7—C6175.2 (3)C15—C16—C17—C226.2 (4)
C1—N1—C8—C973.8 (4)C22—C17—C18—C190.4 (5)
N2—N1—C8—C9120.0 (3)C16—C17—C18—C19177.5 (3)
C1—N1—C8—C15164.3 (3)C17—C18—C19—C200.6 (5)
N2—N1—C8—C151.9 (3)C18—C19—C20—C210.0 (5)
N1—C8—C9—C14131.1 (3)C19—C20—C21—C220.7 (5)
C15—C8—C9—C14114.5 (3)C20—C21—C22—C170.9 (5)
N1—C8—C9—C1051.3 (4)C18—C17—C22—C210.3 (5)
C15—C8—C9—C1063.1 (4)C16—C17—C22—C21178.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O1i0.932.723.399 (5)131
C22—H22···O1i0.933.003.540 (4)119
C10—H10···O1ii0.932.873.793 (5)174
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H18N2O
Mr326.38
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)298
a, b, c (Å)20.276 (6), 5.7859 (17), 14.786 (4)
V3)1734.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2006)
Tmin, Tmax0.986, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
8497, 1601, 1100
Rint0.050
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 1.09
No. of reflections1601
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.10

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O1i0.932.723.399 (5)131
C22—H22···O1i0.933.003.540 (4)119
C10—H10···O1ii0.932.873.793 (5)174
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of Shaanxi Province, China (2009JM2012) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D., Mohan, T. P. & Vishalakshi, B. (2006). Acta Cryst. E62, o2979–o2980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEgli, D. H., Linden, A. & Heimgartner, H. (2006). Helv. Chim. Acta, 89, 2815–2824.  Web of Science CSD CrossRef CAS Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGe, W.-Z. (2006). Acta Cryst. E62, o3109–o3110.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJian, F.-F. & Wang, J. (2006). Acta Cryst. E62, o5303–o5304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeebacher, W., Michl, G., Belaj, F., Brun, R., Saf, R. & Weis, R. (2003). Tetrahedron, 59, 2811–2819.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (20066). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds