organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-[2-(3,5-di­methyl-4-oxo-2,6-di­phenyl­piperidin-1-yl)-2-oxoeth­yl]piperazine-1-carboxyl­ate

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, and bDepartment of Image Science and Engineering, Pukyong National University, Busan 608-737, Republic of Korea
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 13 January 2011; accepted 26 January 2011; online 2 February 2011)

In the title compound, C28H35N3O4, the piperidine ring adopts a boat conformation while the piperazine ring adopts a chair conformation with an equatorial orientation of the phenyl groups. The dihedral angle between the mean planes of the benzene rings is 74.14 (8)°. The mol­ecular conformation is stabilized by a weak intra­molecular C—H⋯N inter­action and the crystal packing is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For the biological activity of related structures, see: El-subbagh et al. (2000[El-subbagh, H. I., Abu-zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]); Emami et al. (2006[Emami, S., Shafiee, A. & Foroumadi, A. (2006). Mini Rev. Med. Chem. 6, 375-386.]); Foroumadi et al. (2007[Foroumadi, A., Emami, S., Mansouri, S., Javidnia, A., Saeid-Adeli, N., Shirazi, F. H. & Shafiee, A. (2007). Eur. J. Med. Chem. 42, 985-992.]); Katritzky & Fan (1990[Katritzky, A. R. & Fan, W. (1990). J. Org. Chem. 55, 3205-3209.]); Mobio et al. (1989[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421-427.]). For geometrical analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Emami et al. (2006[Emami, S., Shafiee, A. & Foroumadi, A. (2006). Mini Rev. Med. Chem. 6, 375-386.]); Foroumadi et al. (2007[Foroumadi, A., Emami, S., Mansouri, S., Javidnia, A., Saeid-Adeli, N., Shirazi, F. H. & Shafiee, A. (2007). Eur. J. Med. Chem. 42, 985-992.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C28H35N3O4

  • Mr = 477.59

  • Monoclinic, P 21 /n

  • a = 10.9073 (3) Å

  • b = 19.1940 (6) Å

  • c = 12.2246 (3) Å

  • β = 91.809 (2)°

  • V = 2558.00 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.984

  • 31692 measured reflections

  • 6941 independent reflections

  • 4703 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.142

  • S = 1.01

  • 6941 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2 0.98 2.51 3.1788 (17) 125
C8—H8⋯O2i 0.93 2.54 3.4406 (19) 162
C24—H24A⋯O1ii 0.97 2.56 3.520 (2) 169
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993)[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Several interesting investigations have been carried out with piperidine based heterocyclic compounds and these compounds were found to exhibit numerous pharmacological properties and biological activities such as anticancer, antimicrobial, anti-inflammatory, antiviral, antimalarial and anesthetics (El-subbagh et al., 2000; Mobio et al., 1989; Katritzky & Fan, 1990). Similarly, some compounds containing piperazine are used as antibiotic drugs, e.g., Norfloxacin, Ciprofloxacin, Enoxacin, Ofloxacin and Levofloxacine (Emami et al., 2006; Foroumadi et al., 2007).

In the title compound, C28H35N3O4, the piperidine ring adopts a boat conformation. The corresponding puckering parameters (Cremer & Pople, 1975) and smallest displacement asymmetry parameters (Nardelli, 1983) are q1 = 0.6111 (15) Å, q2 = -0.0839 (15) Å, QT = 0.6168 (15) Å, and θ = 97.81 (14) °. Unlike, the piperazine ring adopts a chair conformation with q1 = 0.0367 (15), q2 = 0.5606 (15) Å, QT = 0.5618 (15) Å and θ = 3.75 (15)°. The phenyl groups are orientated to the same side of the piperazine ring. The dihedral angle between the mean planes of the benzene rings is 74.14 (8)°. The molecular conformation is stabilized by a weak intramolecular C5-H5···N2 interaction and the crystal packing by the weak intermolecular C8-H8···O2i and C24-H24···O1ii interactions [Table 1; symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z].

Related literature top

For the biological activity of related structures, see: El-subbagh et al. (2000); Emami et al. (2006); Foroumadi et al. (2007); Katritzky & Fan (1990); Mobio et al. (1989). For geometrical analysis, see: Cremer & Pople (1975); Emami et al. (2006); Foroumadi et al. (2007); Nardelli (1983).

Experimental top

A mixture of N-chloroacetyl-3,5-dimethyl-2,6-diphenylpiperidin-4-one (0.005 mol), triethylamine (0.01 mol) and N-ethoxycarbonylpiperazine (0.005 mol) in toluene were refluxed for about 6–8 h. After the completion of reaction, excess of solvent was removed under reduced pressure. The obtained residue was column chromatographed on silica gel using benzene:ethyl acetate (2:1) mixture as an eluent which afforded the title compound in good yield. Colourless crystals were grown by slow evaporation method using ethanol as solvent.

Refinement top

H atoms were positioned and refined using a riding model, with aromatic C—H = 0.93 Å, methine C—H = 0.98 Å, methylene C—H = 0.97 Å and methyl C—H = 0.96 Å. The displacement parameters were set to Uiso(H) = 1.5Ueq(C) for the methyl H atoms and to Uiso(H) = 1.2Ueq(C) for the other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Ethyl 4-[2-(3,5-dimethyl-4-oxo-2,6-diphenylpiperidin-1- yl)-2-oxoethyl]piperazine-1-carboxylate top
Crystal data top
C28H35N3O4Z = 4
Mr = 477.59F(000) = 1024
Monoclinic, P21/nDx = 1.240 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.9073 (3) Åθ = 2.0–29.2°
b = 19.1940 (6) ŵ = 0.08 mm1
c = 12.2246 (3) ÅT = 293 K
β = 91.809 (2)°Prism, colourless
V = 2558.00 (12) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6941 independent reflections
Radiation source: fine-focus sealed tube4703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 29.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1414
Tmin = 0.975, Tmax = 0.984k = 2626
31692 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.4844P]
where P = (Fo2 + 2Fc2)/3
6941 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C28H35N3O4V = 2558.00 (12) Å3
Mr = 477.59Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9073 (3) ŵ = 0.08 mm1
b = 19.1940 (6) ÅT = 293 K
c = 12.2246 (3) Å0.30 × 0.20 × 0.20 mm
β = 91.809 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6941 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4703 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.984Rint = 0.029
31692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.01Δρmax = 0.38 e Å3
6941 reflectionsΔρmin = 0.18 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.30276 (10)0.02315 (6)0.45786 (8)0.0474 (3)
N10.27565 (10)0.01252 (6)0.27464 (8)0.0346 (2)
O30.83211 (11)0.26851 (6)0.33044 (11)0.0674 (4)
O40.87576 (10)0.17829 (6)0.44239 (10)0.0594 (3)
N20.48203 (10)0.12188 (6)0.31107 (9)0.0354 (2)
N30.72912 (11)0.16692 (7)0.31251 (11)0.0469 (3)
O10.36909 (18)0.11603 (8)0.02744 (11)0.1013 (6)
C210.35944 (12)0.12158 (7)0.35490 (11)0.0385 (3)
H21A0.30470.14820.30680.046*
H21B0.36180.14410.42600.046*
C200.30991 (11)0.04850 (7)0.36633 (10)0.0346 (3)
C10.24946 (13)0.06249 (7)0.28730 (11)0.0379 (3)
H10.27390.07410.36300.045*
C230.69961 (13)0.09713 (8)0.34954 (14)0.0481 (4)
H23A0.75770.08310.40710.058*
H23B0.70590.06460.28930.058*
C60.11293 (13)0.07761 (7)0.27691 (11)0.0391 (3)
C20.33470 (14)0.10402 (8)0.21546 (12)0.0458 (3)
H20.31070.15320.21820.055*
C70.03802 (14)0.04948 (8)0.35541 (12)0.0454 (3)
H70.07290.02280.41180.054*
C120.18481 (14)0.09997 (7)0.14324 (11)0.0414 (3)
C50.28059 (13)0.04335 (7)0.16348 (10)0.0380 (3)
H50.36150.06480.15690.046*
C40.26648 (15)0.01210 (8)0.07262 (11)0.0473 (3)
H40.17850.02180.06420.057*
C220.57133 (12)0.09542 (7)0.39208 (12)0.0405 (3)
H22A0.55030.04790.41100.049*
H22B0.56820.12340.45800.049*
C110.05813 (15)0.11776 (8)0.19519 (13)0.0498 (4)
H110.10630.13800.14240.060*
C30.32775 (16)0.08057 (9)0.09817 (13)0.0540 (4)
C130.06182 (15)0.08840 (9)0.15817 (13)0.0518 (4)
H130.03590.04520.18320.062*
C250.51477 (13)0.19283 (7)0.28016 (12)0.0434 (3)
H25A0.51340.22280.34400.052*
H25B0.45490.21040.22660.052*
C240.64026 (14)0.19466 (9)0.23281 (12)0.0490 (4)
H24A0.64080.16700.16640.059*
H24B0.66160.24220.21450.059*
C80.08692 (14)0.06037 (9)0.35137 (14)0.0516 (4)
H80.13550.04100.40460.062*
C90.13964 (15)0.09967 (9)0.26901 (15)0.0560 (4)
H90.22390.10700.26600.067*
C170.21955 (18)0.16440 (9)0.10412 (14)0.0577 (4)
H170.30170.17310.09130.069*
C260.81377 (13)0.20954 (8)0.35904 (13)0.0470 (3)
C100.06694 (16)0.12810 (9)0.19096 (15)0.0590 (4)
H100.10250.15460.13470.071*
C180.46803 (16)0.09787 (11)0.25605 (16)0.0661 (5)
H18A0.47500.11260.33100.099*
H18B0.49430.05030.25040.099*
H18C0.51870.12690.21220.099*
C270.97832 (14)0.21660 (10)0.49077 (15)0.0575 (4)
H27A0.98910.20400.56730.069*
H27B0.96160.26620.48670.069*
C160.1336 (2)0.21594 (9)0.08396 (15)0.0719 (6)
H160.15860.25930.05900.086*
C140.02354 (18)0.14019 (11)0.13642 (15)0.0678 (5)
H140.10630.13150.14650.081*
C150.0126 (2)0.20387 (11)0.10038 (16)0.0750 (6)
H150.04500.23880.08710.090*
C190.3060 (2)0.01732 (12)0.03613 (14)0.0801 (7)
H19A0.26540.06100.04970.120*
H19B0.28450.01480.09370.120*
H19C0.39320.02440.03360.120*
C281.09184 (17)0.20086 (12)0.43263 (18)0.0743 (5)
H28A1.15890.22660.46530.111*
H28B1.08130.21380.35710.111*
H28C1.10900.15190.43770.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0544 (6)0.0553 (6)0.0324 (5)0.0062 (5)0.0018 (4)0.0037 (4)
N10.0375 (6)0.0359 (6)0.0303 (5)0.0015 (4)0.0027 (4)0.0030 (4)
O30.0553 (7)0.0542 (7)0.0916 (9)0.0118 (5)0.0117 (6)0.0157 (7)
O40.0454 (6)0.0619 (7)0.0702 (8)0.0039 (5)0.0110 (5)0.0083 (6)
N20.0334 (5)0.0359 (6)0.0368 (6)0.0021 (4)0.0000 (4)0.0029 (4)
N30.0357 (6)0.0506 (7)0.0544 (7)0.0048 (5)0.0009 (5)0.0106 (6)
O10.1630 (17)0.0893 (10)0.0528 (8)0.0586 (11)0.0210 (9)0.0109 (7)
C210.0356 (7)0.0385 (7)0.0414 (7)0.0010 (5)0.0016 (5)0.0017 (6)
C200.0284 (6)0.0408 (7)0.0347 (7)0.0021 (5)0.0036 (5)0.0009 (5)
C10.0429 (7)0.0350 (7)0.0359 (7)0.0000 (5)0.0037 (5)0.0029 (5)
C230.0386 (7)0.0415 (8)0.0642 (10)0.0019 (6)0.0009 (7)0.0053 (7)
C60.0447 (7)0.0325 (6)0.0402 (7)0.0026 (5)0.0020 (6)0.0034 (5)
C20.0509 (8)0.0414 (7)0.0454 (8)0.0084 (6)0.0059 (6)0.0003 (6)
C70.0473 (8)0.0467 (8)0.0423 (8)0.0063 (6)0.0044 (6)0.0023 (6)
C120.0502 (8)0.0430 (7)0.0308 (6)0.0022 (6)0.0003 (6)0.0038 (5)
C50.0400 (7)0.0436 (7)0.0306 (6)0.0016 (6)0.0037 (5)0.0061 (5)
C40.0538 (9)0.0560 (9)0.0323 (7)0.0098 (7)0.0023 (6)0.0018 (6)
C220.0381 (7)0.0391 (7)0.0439 (7)0.0009 (5)0.0020 (6)0.0079 (6)
C110.0549 (9)0.0421 (8)0.0525 (9)0.0010 (7)0.0014 (7)0.0093 (7)
C30.0638 (10)0.0560 (9)0.0426 (8)0.0128 (8)0.0065 (7)0.0071 (7)
C130.0530 (9)0.0537 (9)0.0491 (9)0.0088 (7)0.0108 (7)0.0091 (7)
C250.0416 (7)0.0406 (7)0.0475 (8)0.0032 (6)0.0077 (6)0.0109 (6)
C240.0485 (8)0.0568 (9)0.0415 (8)0.0098 (7)0.0012 (6)0.0114 (7)
C80.0465 (8)0.0525 (9)0.0563 (9)0.0005 (7)0.0090 (7)0.0049 (7)
C90.0439 (8)0.0526 (9)0.0710 (11)0.0026 (7)0.0050 (8)0.0072 (8)
C170.0710 (11)0.0515 (9)0.0501 (9)0.0067 (8)0.0075 (8)0.0152 (7)
C260.0344 (7)0.0501 (9)0.0565 (9)0.0004 (6)0.0049 (6)0.0050 (7)
C100.0600 (10)0.0494 (9)0.0665 (11)0.0061 (7)0.0146 (8)0.0075 (8)
C180.0532 (10)0.0853 (13)0.0599 (10)0.0208 (9)0.0053 (8)0.0007 (9)
C270.0483 (9)0.0631 (10)0.0605 (10)0.0028 (7)0.0062 (7)0.0116 (8)
C160.1107 (17)0.0461 (10)0.0582 (11)0.0082 (10)0.0092 (11)0.0140 (8)
C140.0632 (11)0.0812 (13)0.0598 (11)0.0263 (10)0.0130 (8)0.0089 (10)
C150.0996 (16)0.0673 (12)0.0581 (11)0.0372 (12)0.0015 (11)0.0078 (9)
C190.1185 (18)0.0870 (14)0.0359 (9)0.0339 (13)0.0186 (10)0.0095 (9)
C280.0501 (10)0.0823 (14)0.0905 (14)0.0029 (9)0.0049 (9)0.0082 (11)
Geometric parameters (Å, º) top
O2—C201.2250 (15)C4—H40.9800
N1—C201.3590 (17)C22—H22A0.9700
N1—C11.4768 (17)C22—H22B0.9700
N1—C51.4846 (16)C11—C101.378 (2)
O3—C261.2032 (19)C11—H110.9300
O4—C261.3460 (18)C13—C141.382 (2)
O4—C271.4491 (19)C13—H130.9300
N2—C211.4561 (17)C25—C241.503 (2)
N2—C221.4583 (16)C25—H25A0.9700
N2—C251.4606 (17)C25—H25B0.9700
N3—C261.3461 (19)C24—H24A0.9700
N3—C231.4534 (19)C24—H24B0.9700
N3—C241.4535 (18)C8—C91.370 (2)
O1—C31.1995 (19)C8—H80.9300
C21—C201.5111 (19)C9—C101.373 (3)
C21—H21A0.9700C9—H90.9300
C21—H21B0.9700C17—C161.380 (3)
C1—C61.519 (2)C17—H170.9300
C1—C21.5240 (19)C10—H100.9300
C1—H10.9800C18—H18A0.9600
C23—C221.508 (2)C18—H18B0.9600
C23—H23A0.9700C18—H18C0.9600
C23—H23B0.9700C27—C281.478 (2)
C6—C111.383 (2)C27—H27A0.9700
C6—C71.389 (2)C27—H27B0.9700
C2—C31.502 (2)C16—C151.362 (3)
C2—C181.526 (2)C16—H160.9300
C2—H20.9800C14—C151.362 (3)
C7—C81.378 (2)C14—H140.9300
C7—H70.9300C15—H150.9300
C12—C131.378 (2)C19—H19A0.9600
C12—C171.383 (2)C19—H19B0.9600
C12—C51.5224 (19)C19—H19C0.9600
C5—C41.542 (2)C28—H28A0.9600
C5—H50.9800C28—H28B0.9600
C4—C31.503 (2)C28—H28C0.9600
C4—C191.519 (2)
C20—N1—C1117.26 (10)O1—C3—C2120.61 (15)
C20—N1—C5122.37 (11)O1—C3—C4121.42 (15)
C1—N1—C5119.82 (10)C2—C3—C4117.97 (13)
C26—O4—C27116.47 (13)C12—C13—C14120.76 (16)
C21—N2—C22110.50 (10)C12—C13—H13119.6
C21—N2—C25109.50 (10)C14—C13—H13119.6
C22—N2—C25109.69 (10)N2—C25—C24110.76 (12)
C26—N3—C23125.75 (13)N2—C25—H25A109.5
C26—N3—C24119.64 (13)C24—C25—H25A109.5
C23—N3—C24113.39 (12)N2—C25—H25B109.5
N2—C21—C20111.89 (11)C24—C25—H25B109.5
N2—C21—H21A109.2H25A—C25—H25B108.1
C20—C21—H21A109.2N3—C24—C25109.23 (12)
N2—C21—H21B109.2N3—C24—H24A109.8
C20—C21—H21B109.2C25—C24—H24A109.8
H21A—C21—H21B107.9N3—C24—H24B109.8
O2—C20—N1121.85 (12)C25—C24—H24B109.8
O2—C20—C21119.11 (12)H24A—C24—H24B108.3
N1—C20—C21119.03 (11)C9—C8—C7120.10 (16)
N1—C1—C6111.71 (10)C9—C8—H8120.0
N1—C1—C2109.03 (11)C7—C8—H8120.0
C6—C1—C2117.79 (12)C8—C9—C10119.43 (16)
N1—C1—H1105.8C8—C9—H9120.3
C6—C1—H1105.8C10—C9—H9120.3
C2—C1—H1105.8C16—C17—C12120.73 (18)
N3—C23—C22110.14 (12)C16—C17—H17119.6
N3—C23—H23A109.6C12—C17—H17119.6
C22—C23—H23A109.6O3—C26—O4123.71 (14)
N3—C23—H23B109.6O3—C26—N3124.54 (14)
C22—C23—H23B109.6O4—C26—N3111.75 (13)
H23A—C23—H23B108.1C9—C10—C11120.64 (15)
C11—C6—C7117.74 (14)C9—C10—H10119.7
C11—C6—C1124.57 (13)C11—C10—H10119.7
C7—C6—C1117.68 (12)C2—C18—H18A109.5
C3—C2—C1112.33 (12)C2—C18—H18B109.5
C3—C2—C18107.81 (14)H18A—C18—H18B109.5
C1—C2—C18111.38 (13)C2—C18—H18C109.5
C3—C2—H2108.4H18A—C18—H18C109.5
C1—C2—H2108.4H18B—C18—H18C109.5
C18—C2—H2108.4O4—C27—C28110.34 (15)
C8—C7—C6121.26 (14)O4—C27—H27A109.6
C8—C7—H7119.4C28—C27—H27A109.6
C6—C7—H7119.4O4—C27—H27B109.6
C13—C12—C17117.94 (14)C28—C27—H27B109.6
C13—C12—C5121.97 (13)H27A—C27—H27B108.1
C17—C12—C5120.03 (14)C15—C16—C17120.54 (18)
N1—C5—C12112.88 (11)C15—C16—H16119.7
N1—C5—C4112.24 (11)C17—C16—H16119.7
C12—C5—C4108.85 (11)C15—C14—C13120.53 (19)
N1—C5—H5107.5C15—C14—H14119.7
C12—C5—H5107.5C13—C14—H14119.7
C4—C5—H5107.5C14—C15—C16119.48 (17)
C3—C4—C19111.72 (14)C14—C15—H15120.3
C3—C4—C5114.84 (12)C16—C15—H15120.3
C19—C4—C5110.43 (14)C4—C19—H19A109.5
C3—C4—H4106.4C4—C19—H19B109.5
C19—C4—H4106.4H19A—C19—H19B109.5
C5—C4—H4106.4C4—C19—H19C109.5
N2—C22—C23111.42 (12)H19A—C19—H19C109.5
N2—C22—H22A109.3H19B—C19—H19C109.5
C23—C22—H22A109.3C27—C28—H28A109.5
N2—C22—H22B109.3C27—C28—H28B109.5
C23—C22—H22B109.3H28A—C28—H28B109.5
H22A—C22—H22B108.0C27—C28—H28C109.5
C10—C11—C6120.82 (15)H28A—C28—H28C109.5
C10—C11—H11119.6H28B—C28—H28C109.5
C6—C11—H11119.6
C22—N2—C21—C2070.96 (14)C25—N2—C22—C2357.61 (15)
C25—N2—C21—C20168.12 (11)N3—C23—C22—N254.42 (16)
C1—N1—C20—O210.29 (18)C7—C6—C11—C101.3 (2)
C5—N1—C20—O2178.25 (12)C1—C6—C11—C10179.10 (14)
C1—N1—C20—C21169.07 (11)C1—C2—C3—O1164.94 (19)
C5—N1—C20—C212.39 (17)C18—C2—C3—O172.0 (2)
N2—C21—C20—O2107.37 (14)C1—C2—C3—C414.4 (2)
N2—C21—C20—N172.01 (15)C18—C2—C3—C4108.69 (17)
C20—N1—C1—C6106.90 (13)C19—C4—C3—O121.7 (3)
C5—N1—C1—C681.41 (14)C5—C4—C3—O1148.50 (19)
C20—N1—C1—C2121.17 (12)C19—C4—C3—C2158.92 (17)
C5—N1—C1—C250.52 (15)C5—C4—C3—C232.2 (2)
C26—N3—C23—C22113.00 (16)C17—C12—C13—C141.1 (2)
C24—N3—C23—C2254.22 (17)C5—C12—C13—C14178.29 (15)
N1—C1—C6—C11116.25 (15)C21—N2—C25—C24179.06 (11)
C2—C1—C6—C1111.1 (2)C22—N2—C25—C2459.52 (15)
N1—C1—C6—C764.17 (16)C26—N3—C24—C25112.15 (15)
C2—C1—C6—C7168.49 (12)C23—N3—C24—C2555.93 (17)
N1—C1—C2—C354.18 (16)N2—C25—C24—N357.96 (16)
C6—C1—C2—C374.44 (17)C6—C7—C8—C90.1 (2)
N1—C1—C2—C1866.89 (16)C7—C8—C9—C100.1 (2)
C6—C1—C2—C18164.50 (13)C13—C12—C17—C161.9 (2)
C11—C6—C7—C80.8 (2)C5—C12—C17—C16179.12 (15)
C1—C6—C7—C8179.55 (13)C27—O4—C26—O36.8 (2)
C20—N1—C5—C1269.90 (15)C27—O4—C26—N3173.41 (13)
C1—N1—C5—C12118.85 (13)C23—N3—C26—O3175.88 (16)
C20—N1—C5—C4166.64 (12)C24—N3—C26—O39.4 (2)
C1—N1—C5—C44.61 (16)C23—N3—C26—O43.9 (2)
C13—C12—C5—N154.40 (18)C24—N3—C26—O4170.36 (13)
C17—C12—C5—N1128.50 (14)C8—C9—C10—C110.4 (3)
C13—C12—C5—C470.92 (17)C6—C11—C10—C91.1 (3)
C17—C12—C5—C4106.18 (15)C26—O4—C27—C2888.67 (19)
N1—C5—C4—C337.21 (18)C12—C17—C16—C151.2 (3)
C12—C5—C4—C3162.89 (13)C12—C13—C14—C150.4 (3)
N1—C5—C4—C19164.62 (14)C13—C14—C15—C161.1 (3)
C12—C5—C4—C1969.69 (17)C17—C16—C15—C140.4 (3)
C21—N2—C22—C23178.42 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N20.982.513.1788 (17)125
C8—H8···O2i0.932.543.4406 (19)162
C24—H24A···O1ii0.972.563.520 (2)169
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC28H35N3O4
Mr477.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.9073 (3), 19.1940 (6), 12.2246 (3)
β (°) 91.809 (2)
V3)2558.00 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.975, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
31692, 6941, 4703
Rint0.029
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.142, 1.01
No. of reflections6941
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.18

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N20.982.513.1788 (17)125
C8—H8···O2i0.932.543.4406 (19)162
C24—H24A···O1ii0.972.563.520 (2)169
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

This study was supported financially by Pukyong National University in the 2010 post-doc programme. The authors are thankful to the SAIF, Indian Institute of Technology, Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-subbagh, H. I., Abu-zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science PubMed CAS Google Scholar
First citationEmami, S., Shafiee, A. & Foroumadi, A. (2006). Mini Rev. Med. Chem. 6, 375–386.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationForoumadi, A., Emami, S., Mansouri, S., Javidnia, A., Saeid-Adeli, N., Shirazi, F. H. & Shafiee, A. (2007). Eur. J. Med. Chem. 42, 985–992.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKatritzky, A. R. & Fan, W. (1990). J. Org. Chem. 55, 3205–3209.  CrossRef CAS Web of Science Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421–427.  CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds