organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Nitro-1-n-octyl-1H-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fés, Morocco, bService Commun Rayons-X FR2599, Université Paul Sabatier Bâtiment 2R1, 118 route de Narbonne, Toulouse, France, cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 20 January 2011; accepted 26 January 2011; online 5 February 2011)

The benzimidazolone part of the mol­ecule of the title compound, C15H21N3O3, is almost planar (r.m.s. deviation = 0.007 Å) with its mean plane aligned at a dihedral angle of 10.4 (3)° with respect to the mean plane of the nitro substituent. In the crystal, two mol­ecules are disposed about a center of inversion, generating an N—H⋯O hydrogen-bonded cyclic dimer with R22(8) graph-set motif.

Related literature

For the crystal structure of 1-isopropenyl-1H-benzimidazol-2(3H)-one, see: Saber et al. (2010[Saber, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1409.]). For graph-set notation, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C15H21N3O3

  • Mr = 291.35

  • Triclinic, [P \overline 1]

  • a = 4.9997 (3) Å

  • b = 11.4942 (6) Å

  • c = 13.8739 (7) Å

  • α = 74.214 (3)°

  • β = 79.637 (4)°

  • γ = 84.108 (4)°

  • V = 753.50 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.22 × 0.12 × 0.06 mm

Data collection
  • Bruker APEXII diffractometer

  • 10215 measured reflections

  • 3084 independent reflections

  • 1538 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.144

  • S = 0.95

  • 3084 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O1i 0.93 (3) 1.84 (3) 2.755 (3) 169 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Tetraalkylammonium halides are used as phase-transfer catalyst in the synthesis of alkyl-substituted benzimidazolones. A previous study reported the 1-isopropenyl derivative; the amino –NH unit forms a hydrogen bond to the inversion-related molecule to generate a hydrogen-bonded dimer (Saber et al., 2010). The present compound (Scheme I) features a long n-octyl chain that adopts an extended zigzag conformation (Fig. 1). The benzimidazolone part of the C15H21N3O3 molecule is planar (r.m.s. deviation 0.007 Å) and its mean plane is aligned at 10.4 (3) ° with respect to the mean plane of the nitro substituent. Two molecules are disposed about a center of inversion to generate a hydrogen-bonded cyclic dimer, whose hydrogen-bonding motif is described by the R22(8) graph set (Etter, 1990).

Related literature top

For the crystal structure of 1-isopropenyl-1H-benzimidazol-2(3H)-one, see: Saber et al. (2010). For graph-set notation, see: Etter (1990).

Experimental top

To 5-nitro-1H-benzoimidazol-2(3H)-one (0.2 g, 1.1 mmol), potassium carbonate (0.30 g, 2.2 mmol) and tetra-n-butylammonium bromide (0.07 g, 0.2 mmol) in DMF (15 ml) was added 1-bromo-n-octane (0.38 ml, 2.2 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. The compound was recrystallized from diethyl ether to give colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of two molecules of C15H21N3O3 disposed about a center of inversion: drawn at the 50% probability level.
5-Nitro-1-n-octyl-1H-benzimidazol-2(3H)-one top
Crystal data top
C15H21N3O3Z = 2
Mr = 291.35F(000) = 312
Triclinic, P1Dx = 1.284 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.9997 (3) ÅCell parameters from 926 reflections
b = 11.4942 (6) Åθ = 2.1–26.5°
c = 13.8739 (7) ŵ = 0.09 mm1
α = 74.214 (3)°T = 295 K
β = 79.637 (4)°Block, colorless
γ = 84.108 (4)°0.22 × 0.12 × 0.06 mm
V = 753.50 (7) Å3
Data collection top
Bruker APEXII
diffractometer
1538 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.080
Graphite monochromatorθmax = 26.5°, θmin = 2.1°
ϕ and ω scansh = 56
10215 measured reflectionsk = 1414
3084 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0609P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
3084 reflectionsΔρmax = 0.21 e Å3
195 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (4)
Crystal data top
C15H21N3O3γ = 84.108 (4)°
Mr = 291.35V = 753.50 (7) Å3
Triclinic, P1Z = 2
a = 4.9997 (3) ÅMo Kα radiation
b = 11.4942 (6) ŵ = 0.09 mm1
c = 13.8739 (7) ÅT = 295 K
α = 74.214 (3)°0.22 × 0.12 × 0.06 mm
β = 79.637 (4)°
Data collection top
Bruker APEXII
diffractometer
1538 reflections with I > 2σ(I)
10215 measured reflectionsRint = 0.080
3084 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.21 e Å3
3084 reflectionsΔρmin = 0.17 e Å3
195 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6268 (4)0.47630 (17)0.37325 (14)0.0426 (5)
O20.5372 (4)0.15689 (19)0.72705 (15)0.0534 (6)
O30.5678 (4)0.02018 (19)0.64945 (15)0.0534 (6)
N10.3626 (4)0.32787 (19)0.35991 (16)0.0325 (6)
N20.2757 (5)0.3907 (2)0.50001 (18)0.0351 (6)
N30.4666 (5)0.1112 (2)0.65519 (18)0.0407 (6)
C10.1487 (5)0.2628 (2)0.42194 (19)0.0299 (6)
C20.0021 (5)0.1746 (2)0.4085 (2)0.0341 (7)
H20.03870.14910.34910.041*
C30.2003 (5)0.1257 (2)0.48628 (19)0.0336 (7)
H30.30340.06600.48000.040*
C40.2502 (5)0.1658 (2)0.57430 (19)0.0324 (6)
C50.1062 (5)0.2549 (2)0.58994 (19)0.0339 (7)
H50.14330.28020.64940.041*
C60.0937 (5)0.3025 (2)0.51182 (19)0.0316 (7)
C70.4414 (6)0.4067 (3)0.4080 (2)0.0364 (7)
C80.4867 (6)0.3212 (3)0.25805 (19)0.0399 (7)
H8A0.51280.23700.25630.048*
H8B0.66440.35490.24170.048*
C90.3124 (6)0.3898 (2)0.17815 (19)0.0381 (7)
H9A0.41300.39080.11130.046*
H9B0.14880.34690.18720.046*
C100.2313 (6)0.5199 (2)0.1835 (2)0.0407 (7)
H10A0.11830.51810.24840.049*
H10B0.39470.56020.18060.049*
C110.0788 (6)0.5937 (3)0.0999 (2)0.0429 (8)
H11A0.07210.54900.09640.051*
H11B0.19970.60620.03540.051*
C120.0298 (6)0.7161 (3)0.1179 (2)0.0491 (8)
H12A0.12150.75810.12480.059*
H12B0.15430.70240.18160.059*
C130.1770 (6)0.7985 (3)0.0349 (2)0.0507 (9)
H13A0.31210.75280.02130.061*
H13B0.27290.86470.06010.061*
C140.0045 (6)0.8505 (3)0.0629 (2)0.0509 (8)
H14A0.09160.78470.09080.061*
H14B0.14630.89240.04920.061*
C150.1477 (7)0.9384 (3)0.1419 (2)0.0608 (10)
H15A0.02200.96830.20270.091*
H15B0.23011.00500.11560.091*
H15C0.28640.89720.15680.091*
H10.296 (6)0.428 (3)0.549 (2)0.059 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0398 (12)0.0451 (12)0.0468 (12)0.0145 (11)0.0018 (10)0.0170 (10)
O20.0546 (14)0.0572 (14)0.0491 (13)0.0085 (12)0.0087 (11)0.0240 (11)
O30.0546 (14)0.0502 (14)0.0571 (14)0.0244 (12)0.0059 (11)0.0184 (11)
N10.0301 (13)0.0333 (13)0.0366 (13)0.0044 (11)0.0056 (11)0.0123 (10)
N20.0323 (13)0.0398 (14)0.0369 (14)0.0067 (11)0.0038 (11)0.0153 (11)
N30.0350 (14)0.0398 (15)0.0446 (15)0.0036 (12)0.0038 (12)0.0074 (12)
C10.0253 (15)0.0291 (15)0.0350 (15)0.0002 (13)0.0035 (12)0.0089 (12)
C20.0343 (16)0.0342 (16)0.0353 (15)0.0021 (13)0.0053 (13)0.0129 (12)
C30.0337 (16)0.0302 (15)0.0402 (16)0.0038 (13)0.0076 (13)0.0127 (13)
C40.0276 (15)0.0311 (15)0.0357 (15)0.0002 (13)0.0033 (12)0.0058 (12)
C50.0327 (16)0.0371 (16)0.0327 (15)0.0001 (14)0.0044 (13)0.0119 (13)
C60.0306 (15)0.0303 (15)0.0371 (16)0.0002 (13)0.0102 (13)0.0115 (12)
C70.0348 (17)0.0355 (16)0.0426 (17)0.0001 (14)0.0136 (14)0.0123 (14)
C80.0335 (16)0.0457 (18)0.0409 (17)0.0014 (14)0.0004 (13)0.0159 (14)
C90.0344 (16)0.0467 (18)0.0353 (16)0.0033 (14)0.0021 (13)0.0186 (13)
C100.0399 (17)0.0428 (17)0.0394 (16)0.0041 (14)0.0029 (14)0.0121 (13)
C110.0412 (17)0.0477 (18)0.0393 (16)0.0004 (15)0.0021 (14)0.0142 (14)
C120.055 (2)0.0479 (19)0.0447 (18)0.0084 (16)0.0101 (15)0.0150 (15)
C130.051 (2)0.051 (2)0.0470 (18)0.0069 (16)0.0025 (16)0.0134 (15)
C140.0452 (19)0.054 (2)0.0514 (19)0.0034 (16)0.0071 (16)0.0098 (16)
C150.063 (2)0.061 (2)0.053 (2)0.0012 (19)0.0071 (18)0.0094 (17)
Geometric parameters (Å, º) top
O1—C71.230 (3)C9—C101.526 (4)
O2—N31.231 (3)C9—H9A0.9700
O3—N31.235 (3)C9—H9B0.9700
N1—C71.385 (3)C10—C111.515 (4)
N1—C11.388 (3)C10—H10A0.9700
N1—C81.457 (3)C10—H10B0.9700
N2—C71.368 (3)C11—C121.524 (4)
N2—C61.389 (3)C11—H11A0.9700
N2—H10.93 (3)C11—H11B0.9700
N3—C41.464 (3)C12—C131.527 (4)
C1—C21.380 (4)C12—H12A0.9700
C1—C61.414 (3)C12—H12B0.9700
C2—C31.378 (4)C13—C141.500 (4)
C2—H20.9300C13—H13A0.9700
C3—C41.392 (4)C13—H13B0.9700
C3—H30.9300C14—C151.529 (4)
C4—C51.394 (4)C14—H14A0.9700
C5—C61.369 (4)C14—H14B0.9700
C5—H50.9300C15—H15A0.9600
C8—C91.530 (3)C15—H15B0.9600
C8—H8A0.9700C15—H15C0.9600
C8—H8B0.9700
C7—N1—C1109.6 (2)C10—C9—H9B108.9
C7—N1—C8123.1 (2)C8—C9—H9B108.9
C1—N1—C8127.3 (2)H9A—C9—H9B107.8
C7—N2—C6110.3 (2)C11—C10—C9114.5 (2)
C7—N2—H1123.8 (19)C11—C10—H10A108.6
C6—N2—H1125.6 (19)C9—C10—H10A108.6
O2—N3—O3122.7 (2)C11—C10—H10B108.6
O2—N3—C4118.5 (3)C9—C10—H10B108.6
O3—N3—C4118.8 (2)H10A—C10—H10B107.6
C2—C1—N1131.6 (2)C10—C11—C12111.7 (2)
C2—C1—C6121.5 (2)C10—C11—H11A109.3
N1—C1—C6106.8 (2)C12—C11—H11A109.3
C3—C2—C1117.6 (3)C10—C11—H11B109.3
C3—C2—H2121.2C12—C11—H11B109.3
C1—C2—H2121.2H11A—C11—H11B107.9
C2—C3—C4119.8 (3)C11—C12—C13115.1 (2)
C2—C3—H3120.1C11—C12—H12A108.5
C4—C3—H3120.1C13—C12—H12A108.5
C3—C4—C5123.8 (3)C11—C12—H12B108.5
C3—C4—N3118.1 (3)C13—C12—H12B108.5
C5—C4—N3118.0 (2)H12A—C12—H12B107.5
C6—C5—C4115.4 (2)C14—C13—C12114.8 (2)
C6—C5—H5122.3C14—C13—H13A108.6
C4—C5—H5122.3C12—C13—H13A108.6
C5—C6—N2131.8 (3)C14—C13—H13B108.6
C5—C6—C1121.7 (3)C12—C13—H13B108.6
N2—C6—C1106.5 (2)H13A—C13—H13B107.6
O1—C7—N2127.7 (3)C13—C14—C15113.2 (2)
O1—C7—N1125.5 (3)C13—C14—H14A108.9
N2—C7—N1106.8 (3)C15—C14—H14A108.9
N1—C8—C9112.1 (2)C13—C14—H14B108.9
N1—C8—H8A109.2C15—C14—H14B108.9
C9—C8—H8A109.2H14A—C14—H14B107.8
N1—C8—H8B109.2C14—C15—H15A109.5
C9—C8—H8B109.2C14—C15—H15B109.5
H8A—C8—H8B107.9H15A—C15—H15B109.5
C10—C9—C8113.2 (2)C14—C15—H15C109.5
C10—C9—H9A108.9H15A—C15—H15C109.5
C8—C9—H9A108.9H15B—C15—H15C109.5
C7—N1—C1—C2179.8 (3)C2—C1—C6—C50.4 (4)
C8—N1—C1—C22.2 (4)N1—C1—C6—C5179.3 (2)
C7—N1—C1—C60.2 (3)C2—C1—C6—N2179.9 (2)
C8—N1—C1—C6178.2 (2)N1—C1—C6—N20.5 (3)
N1—C1—C2—C3179.3 (2)C6—N2—C7—O1179.2 (3)
C6—C1—C2—C30.3 (3)C6—N2—C7—N10.4 (3)
C1—C2—C3—C40.0 (4)C1—N1—C7—O1179.5 (2)
C2—C3—C4—C50.1 (4)C8—N1—C7—O12.4 (4)
C2—C3—C4—N3179.8 (2)C1—N1—C7—N20.1 (3)
O2—N3—C4—C3170.3 (2)C8—N1—C7—N2177.9 (2)
O3—N3—C4—C310.9 (3)C7—N1—C8—C9100.3 (3)
O2—N3—C4—C59.7 (3)C1—N1—C8—C977.4 (3)
O3—N3—C4—C5169.1 (2)N1—C8—C9—C1052.0 (3)
C3—C4—C5—C60.0 (4)C8—C9—C10—C11175.1 (2)
N3—C4—C5—C6179.9 (2)C9—C10—C11—C12172.1 (3)
C4—C5—C6—N2179.9 (2)C10—C11—C12—C13177.7 (3)
C4—C5—C6—C10.2 (3)C11—C12—C13—C1471.2 (4)
C7—N2—C6—C5179.2 (3)C12—C13—C14—C15176.5 (3)
C7—N2—C6—C10.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.93 (3)1.84 (3)2.755 (3)169 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H21N3O3
Mr291.35
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)4.9997 (3), 11.4942 (6), 13.8739 (7)
α, β, γ (°)74.214 (3), 79.637 (4), 84.108 (4)
V3)753.50 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.12 × 0.06
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10215, 3084, 1538
Rint0.080
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.144, 0.95
No. of reflections3084
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.93 (3)1.84 (3)2.755 (3)169 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank Université Sidi Mohamed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationSaber, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds