metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­cadmium]-μ-2,2′-(1,2-phenyl­enedi­­oxy)di­acetato] mono­hydrate]

aCollege of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, People's Republic of China, and bDepartment of Chemistry, Dezhou University, Dezhou, Shandong 253023, People's Republic of China
*Correspondence e-mail: dzxlzhang@163.com

(Received 28 January 2011; accepted 9 February 2011; online 16 February 2011)

In the title coordination complex, {[Cd(C10H8O6)(H2O)2]·H2O}n the CdII atom is seven-coordinated in a distorted penta­gonal–bipyramidal geometry, the penta­gonal plane comprising four O-atom donors from the 2,2′-(1,2-phenyl­enedi­oxy)diacetate chelate ligand together with a bridging carboxyl­ate O-atom donor, with the axial sites occupied by two water mol­ecules. The resulting helical chains extend along the b axis and are inter­connected by extensive O—H⋯O hydrogen-bonding inter­actions, which also involve the water mol­ecule of solvation, giving a three-dimensional structure.

Related literature

For rigid polycarboxyl­ate ligands, see: Liu et al. (2010[Liu, D., Ren, Z. G., Li, H. X., Chen, Y., Wang, J., Zhang, Y. & Lang, J. P. (2010). CrystEngComm, 12, 1912-1919.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]). For flexible carboxyl­ate complexes, see: Dai et al. (2009[Dai, F. N., He, H. Y., Gao, D. L., Ye, F., Qiu, X. L. & Sun, D. F. (2009). CrystEngComm, 11, 2516-2522.])

[Scheme 1]

Experimental

Crystal data
  • [Cd(C10H8O6)(H2O)2]·H2O

  • Mr = 390.61

  • Monoclinic, P 21 /n

  • a = 7.624 (1) Å

  • b = 7.156 (1) Å

  • c = 23.190 (2) Å

  • β = 93.083 (1)°

  • V = 1263.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.77 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.671, Tmax = 0.787

  • 7467 measured reflections

  • 2893 independent reflections

  • 2676 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.049

  • S = 1.05

  • 2893 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O3Wi 0.84 2.11 2.892 (3) 154
O1W—H12W⋯O1ii 0.84 1.87 2.686 (2) 164
O2W—H21W⋯O6iii 0.84 2.06 2.873 (3) 165
O2W—H22W⋯O3Wiv 0.84 2.03 2.860 (3) 170
O3W—H31W⋯O6 0.84 2.09 2.887 (3) 157
O3W—H32W⋯O2v 0.85 1.99 2.835 (2) 176
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) x, y+1, z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Rigid polycarboxylate ligands have been employed extensively for the construction of metal-organic polymers, e.g. 1,3-benzenedicarboxylate, 1,3,5-benzenetricarboxylate and 4,4'-biphenyldicarboxylate (Liu et al., 2010; Rao et al., 2004). Compared to rigid ligands with a single conformation, flexible ligands may adopt variable conformations when coordinated to metal ions, making it more difficult to predict and control the final coordination networks. Therefore using flexible ligands in the formation of coordination polymers may generate novel complexes with interesting topologies and attractive properties (Dai et al., 2009). The title compound {[(C10H8O6)(H2O)2Cd] . H2O}n (I), was prepared from the reaction of the flexible carboxylate ligand, the 1,2-phenylenedioxydiacetate dianion (PDA) with CdII and the structure is reported here.

In (I) (Fig. 1) the CdII cation is seven-coordinated, involving two carboxyl and two phenoxy O donors (O2, O3, O4, O5) from a PDA ligand [Cd—O range 2.2424 (19) Å–2.5285 (16) Å], and a bridging carboxylate O donor (O6) [Cd—Oi, 2.3596 (15) Å] [for symmetry code (i), see Table 1], which lie in the pentagonal plane of a distorted pentagonal bipyramid. Two water molecules (O1W, O2W) occupy the axial sites (Cd—O, 2.296 (2), 2.316 (2) Å]. The bond angles about CdII are in the range of 61.11 (5) to 165.45 (5) °. The mononuclear units of (I) are connected via the bridging O6i atoms to give helical chains extending along the b axis of the unit cell (Fig. 2). The chains are further inter-connected by extensive hydrogen-bonding interactions (Table 1) involving also the water molecule of solvation (O3W), giving rise to the three-dimensional molecular architecture (Fig. 3).

Related literature top

For rigid polycarboxylate ligands, see: Liu et al. (2010); Rao et al. (2004). For flexible carboxylate complexes, see: Dai et al. (2009)

Experimental top

A mixture of 1,2-phenylenedioxydiacetic acid (H2PDA) (0.023 g, 0.1 mmol) and Cd(NO3)2 . 4H2O (0.038 g, 0.1 mmol) in H2O (7.0 ml) was placed in a 16 ml Teflon-lined stainless steel vessel and heated to 160 °C for 72 h, giving colorless block crystals of (I), which were collected by filtration. The crystals obtained were washed with water and dried in air. Yield: 0.029 g (74% based on Cd).

Refinement top

All H atoms bonded to C atoms were added according to theoretical models, assigned isotropic displacement parameters and allowed to ride on their respective parent atoms [C—H = 0.93–0.97%A and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water molecules were located from the Fourier map with the O—H distances being fixed at 0.85%A and allowed to ride on their parent oxygen atoms in the final cycles of refinement, with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the CdIIcoordination environment of (I) with the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. For symmetry code (i), see Table 1.
[Figure 2] Fig. 2. The one-dimensional helical chain structure of (I) viewed along the a axis.
[Figure 3] Fig. 3. The packing diagram of (I) viewed along the b axis.
catena-Poly[[[diaquacadmium]-µ-2,2'-(1,2-phenylenedioxy)diacetato] monohydrate] top
Crystal data top
[Cd(C10H8O6)(H2O)2]·H2OF(000) = 776
Mr = 390.61Dx = 2.054 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4670 reflections
a = 7.624 (1) Åθ = 2.8–27.5°
b = 7.156 (1) ŵ = 1.77 mm1
c = 23.190 (2) ÅT = 296 K
β = 93.083 (1)°Block, colorless
V = 1263.4 (3) Å30.25 × 0.20 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2893 independent reflections
Radiation source: fine-focus sealed tube2676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 27.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.671, Tmax = 0.787k = 95
7467 measured reflectionsl = 2930
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0217P)2 + 0.8227P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2893 reflectionsΔρmax = 0.52 e Å3
181 parametersΔρmin = 0.43 e Å3
0 restraints
Crystal data top
[Cd(C10H8O6)(H2O)2]·H2OV = 1263.4 (3) Å3
Mr = 390.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.624 (1) ŵ = 1.77 mm1
b = 7.156 (1) ÅT = 296 K
c = 23.190 (2) Å0.25 × 0.20 × 0.14 mm
β = 93.083 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2893 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2676 reflections with I > 2σ(I)
Tmin = 0.671, Tmax = 0.787Rint = 0.017
7467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.05Δρmax = 0.52 e Å3
2893 reflectionsΔρmin = 0.43 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9769 (3)1.4246 (3)0.10705 (9)0.0281 (4)
C20.9052 (3)1.3164 (3)0.05451 (8)0.0262 (4)
H2A0.81581.38980.03360.031*
H2B0.99901.29200.02890.031*
C30.7673 (2)1.0222 (3)0.03073 (8)0.0220 (4)
C40.7833 (3)1.0442 (3)0.02803 (8)0.0258 (4)
H40.84191.14720.04210.031*
C50.7109 (3)0.9109 (3)0.06585 (9)0.0297 (4)
H50.72120.92520.10540.036*
C60.6246 (3)0.7584 (3)0.04544 (9)0.0302 (4)
H60.57690.67010.07120.036*
C70.6081 (3)0.7354 (3)0.01373 (9)0.0281 (4)
H70.54910.63240.02760.034*
C80.6802 (3)0.8668 (3)0.05152 (8)0.0224 (4)
C90.5795 (3)0.7102 (3)0.13513 (8)0.0267 (4)
H9A0.62490.59240.12150.032*
H9B0.45550.71720.12360.032*
C100.6045 (2)0.7211 (3)0.20018 (8)0.0218 (4)
Cd10.834230 (19)1.08605 (2)0.178353 (6)0.02552 (6)
O11.0404 (3)1.5791 (2)0.09652 (8)0.0474 (5)
O20.9688 (2)1.3536 (2)0.15657 (6)0.0364 (4)
O30.8318 (2)1.1441 (2)0.07256 (6)0.0286 (3)
O40.6707 (2)0.8613 (2)0.11069 (6)0.0296 (3)
O50.6948 (2)0.8467 (2)0.22331 (6)0.0315 (3)
O60.53106 (19)0.59313 (18)0.22765 (6)0.0274 (3)
O1W1.0606 (2)0.8817 (2)0.16508 (7)0.0370 (4)
H11W1.14420.88110.19020.044*
H12W1.05650.77560.14950.044*
O2W0.5593 (2)1.2223 (2)0.18164 (7)0.0349 (3)
H21W0.56751.32490.19900.042*
H22W0.50131.15030.20210.042*
O3W0.1714 (2)0.5083 (3)0.25089 (8)0.0464 (4)
H31W0.26190.55230.23660.056*
H32W0.10720.46570.22300.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0339 (11)0.0221 (10)0.0289 (10)0.0027 (8)0.0077 (8)0.0028 (8)
C20.0357 (11)0.0191 (9)0.0239 (9)0.0037 (8)0.0043 (8)0.0035 (7)
C30.0235 (9)0.0226 (9)0.0198 (9)0.0007 (7)0.0004 (7)0.0008 (7)
C40.0292 (10)0.0281 (10)0.0205 (9)0.0020 (8)0.0037 (7)0.0030 (8)
C50.0344 (11)0.0387 (12)0.0164 (9)0.0008 (9)0.0029 (8)0.0009 (8)
C60.0362 (11)0.0331 (11)0.0211 (9)0.0040 (9)0.0010 (8)0.0056 (8)
C70.0321 (10)0.0279 (10)0.0243 (9)0.0067 (8)0.0005 (8)0.0002 (8)
C80.0264 (10)0.0249 (9)0.0160 (8)0.0004 (8)0.0007 (7)0.0019 (7)
C90.0346 (11)0.0245 (10)0.0211 (9)0.0092 (8)0.0014 (8)0.0043 (7)
C100.0226 (9)0.0209 (9)0.0220 (9)0.0029 (7)0.0023 (7)0.0044 (7)
Cd10.03076 (9)0.02554 (9)0.02014 (8)0.00652 (6)0.00025 (6)0.00165 (5)
O10.0815 (14)0.0236 (8)0.0382 (10)0.0203 (8)0.0143 (9)0.0043 (7)
O20.0522 (10)0.0328 (8)0.0241 (7)0.0176 (7)0.0026 (7)0.0013 (6)
O30.0426 (8)0.0255 (7)0.0178 (7)0.0125 (6)0.0021 (6)0.0009 (5)
O40.0446 (9)0.0285 (7)0.0157 (6)0.0153 (6)0.0021 (6)0.0024 (5)
O50.0389 (8)0.0353 (8)0.0204 (7)0.0119 (7)0.0006 (6)0.0027 (6)
O60.0338 (8)0.0252 (7)0.0232 (7)0.0036 (6)0.0030 (6)0.0072 (5)
O1W0.0427 (9)0.0333 (8)0.0345 (8)0.0032 (7)0.0016 (7)0.0098 (7)
O2W0.0424 (9)0.0286 (8)0.0336 (8)0.0016 (7)0.0005 (7)0.0062 (6)
O3W0.0347 (9)0.0617 (12)0.0428 (10)0.0130 (8)0.0006 (7)0.0060 (9)
Geometric parameters (Å, º) top
C1—O11.237 (3)C9—C101.512 (3)
C1—O21.260 (3)C9—H9A0.9700
C1—C21.520 (3)C9—H9B0.9700
C2—O31.427 (2)C10—O51.237 (2)
C2—H2A0.9700C10—O61.263 (2)
C2—H2B0.9700Cd1—O22.2424 (19)
C3—C41.383 (3)Cd1—O1W2.2957 (19)
C3—O31.375 (2)Cd1—O52.2956 (17)
C3—C81.394 (3)Cd1—O2W2.316 (2)
C4—C51.390 (3)Cd1—O6i2.3596 (15)
C4—H40.9300Cd1—O32.4874 (14)
C5—C61.372 (3)Cd1—O42.5285 (16)
C5—H50.9300O6—Cd1ii2.3596 (15)
C6—C71.394 (3)O1W—H11W0.8397
C6—H60.9300O1W—H12W0.8402
C7—C81.380 (3)O2W—H21W0.8383
C7—H70.9300O2W—H22W0.8414
C8—O41.379 (2)O3W—H31W0.8417
C9—O41.420 (2)O3W—H32W0.8470
O1—C1—O2125.4 (2)O2—Cd1—O5165.45 (5)
O1—C1—C2115.13 (19)O1W—Cd1—O587.45 (7)
O2—C1—C2119.45 (17)O2—Cd1—O2W94.24 (7)
O3—C2—C1109.57 (16)O1W—Cd1—O2W163.87 (6)
O3—C2—H2A109.8O5—Cd1—O2W81.78 (7)
C1—C2—H2A109.8O2—Cd1—O6i90.47 (5)
O3—C2—H2B109.8O1W—Cd1—O6i81.05 (6)
C1—C2—H2B109.8O5—Cd1—O6i77.63 (5)
H2A—C2—H2B108.2O2W—Cd1—O6i108.07 (5)
C4—C3—O3125.13 (18)O2—Cd1—O367.33 (5)
C4—C3—C8120.01 (17)O1W—Cd1—O386.56 (6)
O3—C3—C8114.86 (16)O5—Cd1—O3126.40 (5)
C3—C4—C5119.38 (19)O2W—Cd1—O390.19 (5)
C3—C4—H4120.3O6i—Cd1—O3152.55 (5)
C5—C4—H4120.3O2—Cd1—O4128.28 (5)
C6—C5—C4120.65 (19)O1W—Cd1—O482.00 (7)
C6—C5—H5119.7O5—Cd1—O465.31 (5)
C4—C5—H5119.7O2W—Cd1—O482.60 (6)
C5—C6—C7120.26 (19)O6i—Cd1—O4139.69 (5)
C5—C6—H6119.9O3—Cd1—O461.11 (5)
C7—C6—H6119.9C1—O2—Cd1126.53 (13)
C8—C7—C6119.37 (19)C3—O3—C2118.18 (15)
C8—C7—H7120.3C3—O3—Cd1124.97 (11)
C6—C7—H7120.3C2—O3—Cd1116.84 (11)
O4—C8—C7124.89 (17)C8—O4—C9118.20 (15)
O4—C8—C3114.77 (16)C8—O4—Cd1123.27 (11)
C7—C8—C3120.33 (17)C9—O4—Cd1118.19 (11)
O4—C9—C10108.73 (15)C10—O5—Cd1127.30 (13)
O4—C9—H9A109.9C10—O6—Cd1ii107.39 (12)
C10—C9—H9A109.9Cd1—O1W—H11W117.3
O4—C9—H9B109.9Cd1—O1W—H12W128.5
C10—C9—H9B109.9H11W—O1W—H12W107.6
H9A—C9—H9B108.3Cd1—O2W—H21W109.9
O5—C10—O6124.02 (18)Cd1—O2W—H22W105.4
O5—C10—C9120.46 (16)H21W—O2W—H22W107.1
O6—C10—C9115.50 (17)H31W—O3W—H32W106.7
O2—Cd1—O1W99.05 (8)
O1—C1—C2—O3178.37 (19)O2—Cd1—O3—C23.57 (13)
O2—C1—C2—O31.9 (3)O1W—Cd1—O3—C2104.87 (14)
O3—C3—C4—C5179.58 (19)O5—Cd1—O3—C2170.85 (12)
C8—C3—C4—C50.4 (3)O2W—Cd1—O3—C290.94 (14)
C3—C4—C5—C60.1 (3)O6i—Cd1—O3—C241.85 (19)
C4—C5—C6—C70.1 (3)O4—Cd1—O3—C2172.37 (15)
C5—C6—C7—C80.3 (3)C7—C8—O4—C90.3 (3)
C6—C7—C8—O4179.02 (19)C3—C8—O4—C9178.21 (17)
C6—C7—C8—C30.6 (3)C7—C8—O4—Cd1172.86 (15)
C4—C3—C8—O4179.20 (18)C3—C8—O4—Cd18.6 (2)
O3—C3—C8—O40.8 (2)C10—C9—O4—C8173.41 (16)
C4—C3—C8—C70.6 (3)C10—C9—O4—Cd10.1 (2)
O3—C3—C8—C7179.33 (18)O2—Cd1—O4—C813.52 (17)
O4—C9—C10—O50.9 (3)O1W—Cd1—O4—C881.73 (15)
O4—C9—C10—O6179.40 (16)O5—Cd1—O4—C8172.60 (16)
O1—C1—O2—Cd1174.23 (18)O2W—Cd1—O4—C8103.08 (15)
C2—C1—O2—Cd16.0 (3)O6i—Cd1—O4—C8147.63 (13)
O1W—Cd1—O2—C187.61 (19)O3—Cd1—O4—C88.75 (14)
O5—Cd1—O2—C1156.6 (2)O2—Cd1—O4—C9173.33 (13)
O2W—Cd1—O2—C183.22 (19)O1W—Cd1—O4—C991.42 (15)
O6i—Cd1—O2—C1168.62 (19)O5—Cd1—O4—C90.55 (13)
O3—Cd1—O2—C15.22 (17)O2W—Cd1—O4—C983.77 (14)
O4—Cd1—O2—C10.7 (2)O6i—Cd1—O4—C925.53 (18)
C4—C3—O3—C26.8 (3)O3—Cd1—O4—C9178.10 (16)
C8—C3—O3—C2173.16 (17)O6—C10—O5—Cd1179.96 (13)
C4—C3—O3—Cd1172.35 (15)C9—C10—O5—Cd11.6 (3)
C8—C3—O3—Cd17.7 (2)O2—Cd1—O5—C10159.4 (2)
C1—C2—O3—C3176.97 (17)O1W—Cd1—O5—C1083.56 (17)
C1—C2—O3—Cd12.2 (2)O2W—Cd1—O5—C1084.40 (17)
O2—Cd1—O3—C3175.58 (16)O6i—Cd1—O5—C10164.95 (18)
O1W—Cd1—O3—C374.28 (16)O3—Cd1—O5—C100.3 (2)
O5—Cd1—O3—C310.00 (17)O4—Cd1—O5—C101.19 (16)
O2W—Cd1—O3—C389.91 (15)O5—C10—O6—Cd1ii17.0 (2)
O6i—Cd1—O3—C3137.30 (14)C9—C10—O6—Cd1ii161.49 (13)
O4—Cd1—O3—C38.48 (14)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O3Wi0.842.112.892 (3)154
O1W—H12W···O1iii0.841.872.686 (2)164
O2W—H21W···O6iv0.842.062.873 (3)165
O2W—H22W···O3Wv0.842.032.860 (3)170
O3W—H31W···O60.842.092.887 (3)157
O3W—H32W···O2vi0.851.992.835 (2)176
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2; (vi) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Cd(C10H8O6)(H2O)2]·H2O
Mr390.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.624 (1), 7.156 (1), 23.190 (2)
β (°) 93.083 (1)
V3)1263.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.77
Crystal size (mm)0.25 × 0.20 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.671, 0.787
No. of measured, independent and
observed [I > 2σ(I)] reflections
7467, 2893, 2676
Rint0.017
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.049, 1.05
No. of reflections2893
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.43

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O3Wi0.842.112.892 (3)154
O1W—H12W···O1ii0.841.872.686 (2)164
O2W—H21W···O6iii0.842.062.873 (3)165
O2W—H22W···O3Wiv0.842.032.860 (3)170
O3W—H31W···O60.842.092.887 (3)157
O3W—H32W···O2v0.851.992.835 (2)176
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x1, y1, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant No. 20971018), the Natural Science Foundation of Shandong Province (grant No. ZR2010BL010) and the Key Technologies R&D Program of Shandong Province (grant No. 2010GWZ20251).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, F. N., He, H. Y., Gao, D. L., Ye, F., Qiu, X. L. & Sun, D. F. (2009). CrystEngComm, 11, 2516–2522.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLiu, D., Ren, Z. G., Li, H. X., Chen, Y., Wang, J., Zhang, Y. & Lang, J. P. (2010). CrystEngComm, 12, 1912–1919.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds