metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m372-m373

(N-Benzyl-N-ethyl­di­thio­carbamato)di-tert-butyl­chloridotin(IV)

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangbaan Malaysia, 43600 Bangi, Malaysia, bDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 16 February 2011; accepted 20 February 2011; online 26 February 2011)

The SnIV atom in the title diorganotin dithio­carbamate, [Sn(C4H9)2Cl(C10H12NS2)], is penta­coordinated by an asymmetrically coordinating dithio­carbamate ligand, a Cl and two C atoms of the Sn-bound tert-butyl groups. The resulting C2ClS2 donor set defines a coordination geometry inter­mediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former. In the crystal structure, C—H⋯π contacts link centrosymmetrically related mol­ecules into dimeric aggregates.

Related literature

For a review on the applications and structural chemistry of tin dithio­carbamates, see: Tiekink (2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). For additional structural analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). For a recently reported related structure, see: Abdul Muthalib et al. (2010[Abdul Muthalib, A. F., Baba, I., Mohamed Tahir, M. I., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1087.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)2Cl(C10H12NS2)]

  • Mr = 478.69

  • Triclinic, [P \overline 1]

  • a = 8.6140 (2) Å

  • b = 10.9604 (3) Å

  • c = 11.4765 (3) Å

  • α = 91.858 (2)°

  • β = 96.193 (2)°

  • γ = 96.011 (2)°

  • V = 1070.24 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 150 K

  • 0.30 × 0.23 × 0.16 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.935, Tmax = 1.000

  • 26998 measured reflections

  • 4865 independent reflections

  • 4707 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.046

  • S = 1.11

  • 4865 reflections

  • 215 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Sn—Cl1 2.4847 (4)
Sn—S1 2.4760 (4)
Sn—S2 2.7409 (4)
Sn—C11 2.1884 (14)
Sn—C15 2.1879 (15)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3a⋯Cg1 0.98 2.78 3.6491 (18) 149
C13—H13b⋯Cg1i 0.98 2.96 3.5401 (18) 119
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Organotin dithiocarbamates attract attention as they exhibit properties suggesting their potential as anti-cancer agents, anti-microbials and insecticides (Tiekink, 2008). Motivated by these and in continuation of structural studies of these systems (Abdul Muthalib et al., 2010), the analysis of the title compound, (I), was undertaken.

The SnIV atom in (I) is five-coordinated, being chelated by an asymmetrically coordinating dithiocarbamate ligand, a Cl and two C atoms of the Sn-bound tert-butyl groups (Fig. 1 and Table 1). The asymmetric chelating mode of the non-symmetric dithiocarbamate ligand is reflected in the non-equivalence of the associated CS bond distances (Table 1). The coordination geometry is intermediate between square pyramidal and trigonal bi-pyramidal with a leaning towards the former. This assignment is based on the value calculated for τ of 0.45 for the Sn atom, which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bi-pyramidal geometries, respectively (Spek, 2009; Addison et al., 1984). The mode of coordination of the dithiocarbamate ligand, the disposition of the ligand donor set, and the intermediate coordination geometry observed for (I) matches with the literature precedents (Tiekink, 2008).

The most prominent feature of the crystal packing is the presence of C–H···π interactions (Table 2). As shown in Fig. 2, these lead to dimeric aggregates. It is also noted that intramolecular C–H···π contacts are present so that the benzene ring participates in two such interactions (Table 2, Fig. 2). The dimeric aggregates stack into columns along the a axis (Fig. 3).

Related literature top

For a review on the applications and structural chemistry of tin dithiocarbamates, see: Tiekink (2008). For additional structural analysis, see: Addison et al. (1984); Spek (2009). For a recently reported related structure, see: Abdul Muthalib et al. (2010).

Experimental top

The dithiocarbamate ligand was prepared by the addition of carbon disulfide (0.01 mol) to an ethanolic solution (20 ml) of ethylbenzylamine (0.01 mol). The mixture was stirred for 1 h at 277 K, after which the solution was added drop wise to a solution of di-tert-butyltin(IV) dichloride (0.005 mol) in ethanol (20 ml). The resulting mixture was stirred for 1 h. The white precipitate was filtered, washed with cold ethanol and dried in a desiccator. Crystallization was carried out by using an ethanol:chloroform (1:2) mixture. Yield 76%; m.p. 451–453 K. Elemental analysis. Found (calculated) for C18H30ClNS2Sn: C, 44.81 (45.16); H 6.27 (6.32), N 2.72 (2.93), S 13.23 (13.40); Sn 23.98 (24.80) %. UV (CHCl3) λmax 244 (L(π) L(π*)). IR (KBr): ν(C—H) 2933m, 2958m; ν(CN) 1496m; ν(N—C) 1185 s; ν(CS) 950 s; ν(Sn—S) 351 s cm-1.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the dimeric aggregate in (I) showing the intra- and intermolecular C–H···π contacts as purple dashed lines.
[Figure 3] Fig. 3. A view in projection down the a axis of (I) showing columns of dimeric aggregates along a. The intermolecular C–H···π contacts are shown as purple dashed lines.
(N-Benzyl-N-ethyldithiocarbamato)di-tert- butylchloridotin(IV) top
Crystal data top
[Sn(C4H9)2Cl(C10H12NS2)]Z = 2
Mr = 478.69F(000) = 488
Triclinic, P1Dx = 1.485 Mg m3
Hall symbol: -P 1Melting point = 451–453 K
a = 8.6140 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9604 (3) ÅCell parameters from 22888 reflections
c = 11.4765 (3) Åθ = 2.4–28.8°
α = 91.858 (2)°µ = 1.51 mm1
β = 96.193 (2)°T = 150 K
γ = 96.011 (2)°Block, colourless
V = 1070.24 (5) Å30.30 × 0.23 × 0.16 mm
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
4865 independent reflections
Radiation source: fine-focus sealed tube4707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1952 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.935, Tmax = 1.000l = 1414
26998 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.279P]
where P = (Fo2 + 2Fc2)/3
4865 reflections(Δ/σ)max = 0.003
215 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Sn(C4H9)2Cl(C10H12NS2)]γ = 96.011 (2)°
Mr = 478.69V = 1070.24 (5) Å3
Triclinic, P1Z = 2
a = 8.6140 (2) ÅMo Kα radiation
b = 10.9604 (3) ŵ = 1.51 mm1
c = 11.4765 (3) ÅT = 150 K
α = 91.858 (2)°0.30 × 0.23 × 0.16 mm
β = 96.193 (2)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
4865 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
4707 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 1.000Rint = 0.034
26998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.11Δρmax = 0.29 e Å3
4865 reflectionsΔρmin = 0.50 e Å3
215 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.908142 (10)0.227855 (8)0.757926 (8)0.01355 (4)
Cl11.09329 (4)0.40294 (3)0.84821 (3)0.02158 (8)
S10.88193 (4)0.35904 (3)0.58681 (3)0.01801 (8)
S20.70139 (5)0.11432 (3)0.57914 (3)0.02180 (8)
N10.69363 (14)0.26534 (11)0.39968 (10)0.0152 (2)
C10.74996 (17)0.24573 (13)0.50861 (12)0.0154 (3)
C20.73841 (18)0.38150 (14)0.34275 (13)0.0192 (3)
H2A0.72330.36600.25660.023*
H2B0.85140.40730.36590.023*
C30.6448 (2)0.48595 (15)0.37411 (15)0.0248 (3)
H3A0.53380.46430.34500.037*
H3B0.68490.56090.33800.037*
H3C0.65550.49980.45950.037*
C40.58006 (18)0.17438 (14)0.32856 (13)0.0185 (3)
H4A0.56130.09960.37340.022*
H4B0.62430.15080.25600.022*
C50.42662 (17)0.22668 (13)0.29687 (13)0.0162 (3)
C60.38063 (18)0.25643 (15)0.18239 (13)0.0206 (3)
H60.44220.23740.12170.025*
C70.24535 (19)0.31377 (15)0.15584 (14)0.0248 (3)
H70.21460.33410.07750.030*
C80.15570 (19)0.34106 (14)0.24459 (15)0.0244 (3)
H80.06440.38180.22730.029*
C90.19895 (18)0.30901 (15)0.35845 (15)0.0230 (3)
H90.13620.32650.41880.028*
C100.33337 (17)0.25166 (14)0.38442 (13)0.0185 (3)
H100.36210.22930.46240.022*
C111.08251 (17)0.09669 (13)0.75357 (13)0.0182 (3)
C121.1743 (2)0.09891 (18)0.87481 (16)0.0344 (4)
H12A1.25380.04130.87450.052*
H12B1.10220.07490.93260.052*
H12C1.22580.18200.89540.052*
C131.0023 (2)0.03233 (15)0.7207 (2)0.0351 (4)
H13A0.94570.03370.64180.053*
H13B0.92800.05580.77710.053*
H13C1.08160.09030.72210.053*
C141.1918 (2)0.13760 (17)0.66298 (17)0.0334 (4)
H14A1.24130.22110.68430.050*
H14B1.13120.13640.58550.050*
H14C1.27310.08160.66090.050*
C150.72963 (18)0.22899 (15)0.87978 (13)0.0210 (3)
C160.6414 (2)0.10044 (16)0.87739 (15)0.0283 (4)
H16A0.56480.09830.93470.042*
H16B0.71620.04080.89710.042*
H16C0.58660.07970.79880.042*
C170.8116 (2)0.2629 (2)1.00325 (15)0.0356 (4)
H17A0.86850.34531.00460.053*
H17B0.88570.20341.02530.053*
H17C0.73300.26181.05900.053*
C180.6177 (2)0.32236 (19)0.8403 (2)0.0390 (5)
H18A0.57170.30130.75940.059*
H18B0.67560.40450.84440.059*
H18C0.53390.32120.89180.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01353 (6)0.01384 (6)0.01283 (6)0.00071 (4)0.00031 (4)0.00204 (4)
Cl10.02389 (18)0.01842 (18)0.01980 (17)0.00371 (14)0.00377 (14)0.00095 (13)
S10.02071 (18)0.01593 (17)0.01529 (16)0.00302 (13)0.00340 (13)0.00330 (13)
S20.0271 (2)0.01675 (18)0.01827 (17)0.00533 (15)0.00567 (15)0.00382 (14)
N10.0147 (6)0.0160 (6)0.0144 (6)0.0026 (5)0.0006 (5)0.0002 (5)
C10.0146 (6)0.0164 (7)0.0150 (6)0.0026 (5)0.0005 (5)0.0010 (5)
C20.0198 (7)0.0232 (8)0.0148 (7)0.0010 (6)0.0023 (6)0.0058 (6)
C30.0268 (8)0.0179 (8)0.0292 (8)0.0013 (6)0.0012 (7)0.0057 (6)
C40.0196 (7)0.0188 (7)0.0160 (7)0.0042 (6)0.0031 (6)0.0051 (5)
C50.0170 (7)0.0143 (7)0.0160 (7)0.0001 (5)0.0019 (5)0.0014 (5)
C60.0218 (7)0.0247 (8)0.0152 (7)0.0028 (6)0.0007 (6)0.0009 (6)
C70.0262 (8)0.0254 (8)0.0210 (8)0.0038 (6)0.0069 (6)0.0033 (6)
C80.0190 (7)0.0183 (8)0.0351 (9)0.0048 (6)0.0032 (7)0.0005 (7)
C90.0199 (7)0.0220 (8)0.0267 (8)0.0005 (6)0.0054 (6)0.0057 (6)
C100.0198 (7)0.0197 (7)0.0151 (7)0.0009 (6)0.0008 (6)0.0003 (5)
C110.0173 (7)0.0152 (7)0.0225 (7)0.0034 (5)0.0018 (6)0.0023 (6)
C120.0352 (10)0.0406 (11)0.0287 (9)0.0197 (8)0.0058 (8)0.0024 (8)
C130.0275 (9)0.0155 (8)0.0613 (13)0.0039 (7)0.0013 (9)0.0013 (8)
C140.0362 (10)0.0296 (10)0.0402 (10)0.0125 (8)0.0202 (8)0.0069 (8)
C150.0190 (7)0.0236 (8)0.0206 (7)0.0001 (6)0.0057 (6)0.0004 (6)
C160.0277 (9)0.0297 (9)0.0263 (8)0.0070 (7)0.0070 (7)0.0042 (7)
C170.0345 (10)0.0516 (12)0.0187 (8)0.0090 (8)0.0097 (7)0.0082 (8)
C180.0289 (9)0.0360 (11)0.0577 (13)0.0138 (8)0.0180 (9)0.0095 (9)
Geometric parameters (Å, º) top
Sn—Cl12.4847 (4)C9—C101.384 (2)
Sn—S12.4760 (4)C9—H90.9500
Sn—S22.7409 (4)C10—H100.9500
Sn—C112.1884 (14)C11—C121.522 (2)
Sn—C152.1879 (15)C11—C141.523 (2)
S1—C11.7470 (15)C11—C131.524 (2)
S2—C11.7109 (15)C12—H12A0.9800
N1—C11.3240 (18)C12—H12B0.9800
N1—C41.4791 (18)C12—H12C0.9800
N1—C21.4839 (19)C13—H13A0.9800
C2—C31.523 (2)C13—H13B0.9800
C2—H2A0.9900C13—H13C0.9800
C2—H2B0.9900C14—H14A0.9800
C3—H3A0.9800C14—H14B0.9800
C3—H3B0.9800C14—H14C0.9800
C3—H3C0.9800C15—C181.525 (2)
C4—C51.509 (2)C15—C161.527 (2)
C4—H4A0.9900C15—C171.530 (2)
C4—H4B0.9900C16—H16A0.9800
C5—C101.390 (2)C16—H16B0.9800
C5—C61.390 (2)C16—H16C0.9800
C6—C71.391 (2)C17—H17A0.9800
C6—H60.9500C17—H17B0.9800
C7—C81.386 (2)C17—H17C0.9800
C7—H70.9500C18—H18A0.9800
C8—C91.386 (2)C18—H18B0.9800
C8—H80.9500C18—H18C0.9800
C15—Sn—C11125.79 (6)C9—C10—C5120.31 (14)
C15—Sn—S1117.55 (4)C9—C10—H10119.8
C11—Sn—S1115.59 (4)C5—C10—H10119.8
C15—Sn—Cl198.77 (4)C12—C11—C14110.27 (15)
C11—Sn—Cl196.17 (4)C12—C11—C13109.80 (14)
S1—Sn—Cl184.342 (12)C14—C11—C13110.21 (14)
C15—Sn—S293.43 (4)C12—C11—Sn108.21 (10)
C11—Sn—S296.04 (4)C14—C11—Sn107.78 (10)
S1—Sn—S268.654 (12)C13—C11—Sn110.52 (10)
Cl1—Sn—S2152.989 (12)C11—C12—H12A109.5
C1—S1—Sn91.00 (5)C11—C12—H12B109.5
C1—S2—Sn83.22 (5)H12A—C12—H12B109.5
C1—N1—C4122.17 (12)C11—C12—H12C109.5
C1—N1—C2121.73 (12)H12A—C12—H12C109.5
C4—N1—C2116.09 (11)H12B—C12—H12C109.5
N1—C1—S2123.80 (11)C11—C13—H13A109.5
N1—C1—S1119.10 (11)C11—C13—H13B109.5
S2—C1—S1117.10 (8)H13A—C13—H13B109.5
N1—C2—C3113.75 (12)C11—C13—H13C109.5
N1—C2—H2A108.8H13A—C13—H13C109.5
C3—C2—H2A108.8H13B—C13—H13C109.5
N1—C2—H2B108.8C11—C14—H14A109.5
C3—C2—H2B108.8C11—C14—H14B109.5
H2A—C2—H2B107.7H14A—C14—H14B109.5
C2—C3—H3A109.5C11—C14—H14C109.5
C2—C3—H3B109.5H14A—C14—H14C109.5
H3A—C3—H3B109.5H14B—C14—H14C109.5
C2—C3—H3C109.5C18—C15—C16110.55 (15)
H3A—C3—H3C109.5C18—C15—C17111.09 (15)
H3B—C3—H3C109.5C16—C15—C17109.57 (14)
N1—C4—C5110.67 (12)C18—C15—Sn108.38 (11)
N1—C4—H4A109.5C16—C15—Sn108.51 (10)
C5—C4—H4A109.5C17—C15—Sn108.66 (10)
N1—C4—H4B109.5C15—C16—H16A109.5
C5—C4—H4B109.5C15—C16—H16B109.5
H4A—C4—H4B108.1H16A—C16—H16B109.5
C10—C5—C6119.24 (14)C15—C16—H16C109.5
C10—C5—C4119.60 (13)H16A—C16—H16C109.5
C6—C5—C4121.08 (14)H16B—C16—H16C109.5
C5—C6—C7120.61 (15)C15—C17—H17A109.5
C5—C6—H6119.7C15—C17—H17B109.5
C7—C6—H6119.7H17A—C17—H17B109.5
C8—C7—C6119.51 (15)C15—C17—H17C109.5
C8—C7—H7120.2H17A—C17—H17C109.5
C6—C7—H7120.2H17B—C17—H17C109.5
C9—C8—C7120.14 (15)C15—C18—H18A109.5
C9—C8—H8119.9C15—C18—H18B109.5
C7—C8—H8119.9H18A—C18—H18B109.5
C10—C9—C8120.15 (14)C15—C18—H18C109.5
C10—C9—H9119.9H18A—C18—H18C109.5
C8—C9—H9119.9H18B—C18—H18C109.5
C15—Sn—S1—C183.40 (7)C8—C9—C10—C50.5 (2)
C11—Sn—S1—C185.49 (6)C6—C5—C10—C92.0 (2)
Cl1—Sn—S1—C1179.64 (5)C4—C5—C10—C9174.62 (14)
S2—Sn—S1—C10.96 (5)C15—Sn—C11—C1255.53 (13)
C15—Sn—S2—C1119.28 (6)S1—Sn—C11—C12136.63 (11)
C11—Sn—S2—C1114.17 (6)Cl1—Sn—C11—C1249.96 (11)
S1—Sn—S2—C10.98 (5)S2—Sn—C11—C12154.18 (11)
Cl1—Sn—S2—C12.29 (6)C15—Sn—C11—C14174.77 (11)
C4—N1—C1—S20.84 (19)S1—Sn—C11—C1417.39 (12)
C2—N1—C1—S2179.45 (10)Cl1—Sn—C11—C1469.28 (11)
C4—N1—C1—S1179.25 (10)S2—Sn—C11—C1486.58 (11)
C2—N1—C1—S10.64 (18)C15—Sn—C11—C1364.74 (14)
Sn—S2—C1—N1178.46 (13)S1—Sn—C11—C13103.11 (12)
Sn—S2—C1—S11.46 (7)Cl1—Sn—C11—C13170.23 (12)
Sn—S1—C1—N1178.32 (11)S2—Sn—C11—C1333.91 (12)
Sn—S1—C1—S21.60 (8)C11—Sn—C15—C18171.31 (11)
C1—N1—C2—C382.33 (17)S1—Sn—C15—C183.68 (13)
C4—N1—C2—C396.36 (15)Cl1—Sn—C15—C1884.49 (12)
C1—N1—C4—C5117.52 (15)S2—Sn—C15—C1871.34 (12)
C2—N1—C4—C561.16 (16)C11—Sn—C15—C1651.22 (13)
N1—C4—C5—C1067.27 (17)S1—Sn—C15—C16116.41 (10)
N1—C4—C5—C6109.31 (16)Cl1—Sn—C15—C16155.42 (10)
C10—C5—C6—C71.8 (2)S2—Sn—C15—C1648.75 (11)
C4—C5—C6—C7174.75 (14)C11—Sn—C15—C1767.86 (14)
C5—C6—C7—C80.2 (2)S1—Sn—C15—C17124.51 (11)
C6—C7—C8—C91.4 (2)Cl1—Sn—C15—C1736.34 (12)
C7—C8—C9—C101.2 (2)S2—Sn—C15—C17167.83 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3a···Cg10.982.783.6491 (18)149
C13—H13b···Cg1i0.982.963.5401 (18)119
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Sn(C4H9)2Cl(C10H12NS2)]
Mr478.69
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.6140 (2), 10.9604 (3), 11.4765 (3)
α, β, γ (°)91.858 (2), 96.193 (2), 96.011 (2)
V3)1070.24 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.30 × 0.23 × 0.16
Data collection
DiffractometerOxford Diffraction Xcaliber Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.935, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
26998, 4865, 4707
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.046, 1.11
No. of reflections4865
No. of parameters215
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.50

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn—Cl12.4847 (4)Sn—C152.1879 (15)
Sn—S12.4760 (4)S1—C11.7470 (15)
Sn—S22.7409 (4)S2—C11.7109 (15)
Sn—C112.1884 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3a···Cg10.982.783.6491 (18)149
C13—H13b···Cg1i0.982.963.5401 (18)119
Symmetry code: (i) x+1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: aibi@ukm.my.

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08–27-111), the Ministry of Higher Education (UKM-ST-06-FRGS0092–2010), Universiti Putra Malaysia and the University of Malaya for supporting this study.

References

First citationAbdul Muthalib, A. F., Baba, I., Mohamed Tahir, M. I., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m372-m373
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds