metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(pyridine-κN)cadmium]-di-μ2-thio­cyanato-κ2N:S;κ2S:N]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24098 Kiel, Germany
*Correspondence e-mail: jboeckmann@ac.uni-kiel.de

(Received 15 March 2011; accepted 16 March 2011; online 26 March 2011)

The asymmetric unit of the title compound, [Cd(NCS)2(C5H5N)2]n, consists of two crystallographically independent CdII cations, four thio­cyanato anions and four pyridine ligands. The CdII atoms are each coordinated by four N atoms from two pyridine ligands and two thio­cyanato anions, each in a mutually cis orientation, and by two S atoms from two adjacent thio­cyanato anions within a slightly distorted octa­hedral coordination environment. The CdII atoms are μ-1,3-bridged via the thio­cyanato anions into polymeric chains parallel to [001]. The CdII⋯CdII intra­chain separations range between 5.9688 (6) and 6.0195 (6) Å, whereas the shortest CdII⋯CdII inter­chain separations are 7.8272 (7) and 8.6312 (6) Å.

Related literature

For related structures see: Boeckmann & Näther (2010[Boeckmann, J. & Näther, C. (2010). Dalton Trans. pp. 11019-11026.]); Chen et al. (2005[Chen, G., Bai, Z.-P. & Qu, S.-J. (2005). Acta Cryst. E61, m2718-m2719.]); Foner et al. (1975[Foner, S., Frankel, R. B., McNiff, J. E. J., Reiff, W. M., Little, B. F. & Long, G. J. (1975). AIP Conf. Proc. 24, 363-364.]); Marsh et al. (2002[Marsh, R. E., Kapon, M., Hu, S. & Herbstein, F. H. (2002). Acta Cryst. B58, 62-77.]); Porai-Koshits & Tishchenko (1960[Porai-Koshits, M. A. & Tishchenko, G. N. (1960). Crystallogr. Rep. 4, 239-239.]); Reller & Oswald (1986[Reller, A. & Oswald, H.-R. (1986). J. Solid State Chem. 62, 306-316.]); Taniguchi et al. (1987[Taniguchi, M., Sugita, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1321-1326.]); Zhu et al. (2008[Zhu, L., Xu, D., Wang, X. & Yu, G. (2008). J. Chem. Crystallogr. 38, 609-612.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)2(C5H5N)2]

  • Mr = 386.76

  • Triclinic, [P \overline 1]

  • a = 7.8272 (4) Å

  • b = 8.6242 (4) Å

  • c = 23.705 (1) Å

  • α = 84.890 (3)°

  • β = 89.520 (4)°

  • γ = 63.070 (3)°

  • V = 1420.06 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.82 mm−1

  • T = 293 K

  • 0.15 × 0.11 × 0.07 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008)[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.] Tmin = 0.779, Tmax = 0.874

  • 21468 measured reflections

  • 5998 independent reflections

  • 4613 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.083

  • S = 1.17

  • 5998 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Selected bond angles (°)

N1—C1—S1 178.5 (4)
N3—C3—S3 179.1 (5)
N2—C2—S2 179.7 (5)
N4—C4—S4 178.8 (5)

Data collection: X-AREA (Stoe & Cie, 2008)[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; cell refinement: X-AREA[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; data reduction: X-AREA[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure determination of the title compound was performed as a part of a project on the synthesis of new one-dimensional coordination compounds (Boeckmann & Näther, 2010). Within this project we have reacted cadmium(II)chloride with potassium(I)thiocyanate and pyridine in water, which leads to the phase pure formation of catena-poly[bis(µ2-thiocyanato-N, S)-bis(pyridine-N)cadmium(II)].

The title compound crystallizes in the centrosymmetric triclinic space group P1 with four formula units in the unit cell. In the crystal structure each of the two crystallographically independent cadmium atoms is surrounded by four N-atoms of two pyridine ligands and two thiocyanato anions, each in mutually cis orientation, and by two S-atoms of two adjacent thiocyanato anions in a slightly distorted octahedral geometry (Fig. 1 and Tab. 1). The thiocyanato anions bridge the metal cations forming one-dimensional chains (Fig. 2), which elongate along the crystallographic c axis. These chains are arranged in a staggered form and further linked by weak S···S interactions into layers which are located in the ac plane (Fig. 3). A compound of similar composition [Cd(NCS)2(pyridine)2]n has already been described (Taniguchi et al., 1987) and reported to crystallize in the centrosymmetric triclinic space group P1 with six formula units in the unit cell. However, Marsh et al. (2002) found that the triclinic cell can be transformed to a C-centered monoclinic cell with Z = 12. It must be noted that in both cases only unit-cell parameters but no atomic coordinates are reported. Similiar one-dimensional coordination polymers with different transition metals have also been reported (Chen et al. (2005); Foner et al. (1975); Porai-Koshits & Tishchenko (1960); Reller & Oswald (1986); Zhu et al. (2008).

Related literature top

For related structures see: Boeckmann & Näther (2010); Chen et al. (2005); Foner et al.(1975); Marsh et al. (2002); Porai-Koshits & Tishchenko (1960); Reller & Oswald (1986); Taniguchi et al. (1987); Zhu et al. (2008).

Experimental top

The title compound was prepared by the reaction of 91.60 mg CdCl2 (0.50 mmol), 97.2 mg KSCN (1.00 mmol) and 20.2 µL pyridine (0.25 mmol) in 1.50 ml water at RT in a closed 3 ml snap cap vial. After one week colourless needles of the title compound were obtained.

Refinement top

All H atoms were located in difference map but were positioned with idealized geometry and were refined with Ueq(H) = 1.2 Ueq(C) using a riding model with C—H = 0.93 Å. The triclinic unit cell of the title compound can be transformed into a monoclinic C-centered cell but the internal R-value of 0.271 clearly indicates that the crystal symmetry is triclinic. We also checked our model for higher symmetry using PLATON but without success. However, the structure can be solved in space group C2 but refinement leads to very poor reliability factors and severe disorder. Finally ee also have checked if the crystal is pseudo-merohedrically twinned, which is not the case.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compund with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: i = -x + 1, -y + 2, -z + 1; ii = -x + 1, -y + 2, -z.
[Figure 2] Fig. 2. : Packing diagram of the title compound with view along the crystallographic a axis onto the one-dimensional polymeric chains.
[Figure 3] Fig. 3. : Packing diagram of the title compound with view along the crystallographic b axis onto the layers located in the ac plane.
catena-Poly[[bis(pyridine-κN)cadmium]-di-µ2- thiocyanato-κ2N:S;κ2S:N] top
Crystal data top
[Cd(NCS)2(C5H5N)2]Z = 4
Mr = 386.76F(000) = 760
Triclinic, P1Dx = 1.809 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8272 (4) ÅCell parameters from 21468 reflections
b = 8.6242 (4) Åθ = 1.7–26.8°
c = 23.705 (1) ŵ = 1.82 mm1
α = 84.890 (3)°T = 293 K
β = 89.520 (4)°Needle, colourless
γ = 63.070 (3)°0.15 × 0.11 × 0.07 mm
V = 1420.06 (11) Å3
Data collection top
Stoe IPDS-2
diffractometer
5998 independent reflections
Radiation source: fine-focus sealed tube4613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ω scansθmax = 26.8°, θmin = 1.7°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 99
Tmin = 0.779, Tmax = 0.874k = 1010
21468 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0176P)2 + 0.9412P]
where P = (Fo2 + 2Fc2)/3
5998 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Cd(NCS)2(C5H5N)2]γ = 63.070 (3)°
Mr = 386.76V = 1420.06 (11) Å3
Triclinic, P1Z = 4
a = 7.8272 (4) ÅMo Kα radiation
b = 8.6242 (4) ŵ = 1.82 mm1
c = 23.705 (1) ÅT = 293 K
α = 84.890 (3)°0.15 × 0.11 × 0.07 mm
β = 89.520 (4)°
Data collection top
Stoe IPDS-2
diffractometer
5998 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
4613 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.874Rint = 0.071
21468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.17Δρmax = 0.60 e Å3
5998 reflectionsΔρmin = 0.75 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.55905 (5)0.97050 (4)0.375033 (15)0.03786 (11)
Cd20.44978 (6)0.99144 (5)0.125075 (15)0.03970 (11)
S10.8352 (2)0.93622 (19)0.45431 (6)0.0470 (3)
S30.2004 (2)0.9601 (2)0.20176 (6)0.0542 (4)
S20.8141 (2)0.9986 (2)0.29930 (6)0.0479 (3)
S40.1714 (2)1.0203 (2)0.04890 (7)0.0542 (4)
N10.6266 (7)1.0543 (6)0.5514 (2)0.0483 (11)
N30.3481 (7)0.9946 (6)0.3040 (2)0.0501 (12)
N20.6584 (7)0.9716 (6)0.1968 (2)0.0512 (12)
N110.4113 (6)1.2780 (5)0.37531 (19)0.0424 (10)
N210.7184 (7)0.6634 (5)0.3729 (2)0.0452 (11)
N310.2874 (7)1.2985 (6)0.1265 (2)0.0494 (12)
N410.5944 (7)0.6842 (6)0.1253 (2)0.0511 (12)
C10.7117 (7)1.0078 (6)0.5111 (2)0.0371 (11)
C30.2885 (7)0.9809 (6)0.2618 (2)0.0380 (11)
C20.7225 (7)0.9828 (6)0.2393 (2)0.0382 (11)
C40.2834 (8)1.0002 (6)0.0110 (2)0.0386 (11)
C110.3248 (9)1.3573 (7)0.4204 (3)0.0548 (15)
H110.31991.28900.45240.066*
C130.2505 (10)1.6376 (7)0.3758 (3)0.0653 (18)
H130.19911.75800.37640.078*
C140.3353 (10)1.5601 (8)0.3289 (3)0.0614 (17)
H140.33961.62720.29640.074*
C150.4150 (9)1.3809 (7)0.3299 (3)0.0538 (14)
H150.47381.32900.29760.065*
C210.8169 (9)0.5864 (7)0.3292 (3)0.0543 (15)
H210.81850.65660.29720.065*
C220.9167 (10)0.4081 (8)0.3286 (3)0.0624 (17)
H220.98400.35970.29690.075*
C230.9157 (9)0.3043 (8)0.3745 (3)0.0623 (17)
H230.98420.18350.37510.075*
C240.8136 (11)0.3782 (8)0.4199 (3)0.0664 (18)
H240.80910.30920.45180.080*
C250.7165 (10)0.5588 (7)0.4175 (3)0.0561 (15)
H250.64660.60940.44860.067*
C310.2529 (10)1.3725 (8)0.1749 (3)0.0601 (16)
H310.30171.30170.20860.072*
C330.0767 (10)1.6554 (8)0.1281 (4)0.0691 (19)
H330.00631.77570.12870.083*
C340.1113 (11)1.5804 (8)0.0782 (3)0.075 (2)
H340.06471.64880.04390.090*
C350.2159 (10)1.4025 (8)0.0794 (3)0.0636 (17)
H350.23771.35250.04530.076*
C410.6102 (10)0.6087 (8)0.0777 (3)0.0619 (17)
H410.57150.67880.04350.074*
C420.6816 (11)0.4304 (9)0.0770 (3)0.074 (2)
H420.68850.38190.04300.088*
C430.7418 (10)0.3267 (8)0.1266 (4)0.0678 (19)
H430.79210.20610.12700.081*
C440.7273 (12)0.4020 (9)0.1756 (4)0.075 (2)
H440.76530.33400.21020.090*
C450.6555 (10)0.5800 (8)0.1730 (3)0.0624 (17)
H450.64940.63030.20660.075*
C320.1479 (12)1.5493 (8)0.1769 (4)0.074 (2)
H320.12541.59650.21160.088*
C120.2420 (10)1.5359 (8)0.4219 (3)0.0677 (19)
H120.18101.58630.45410.081*
N40.3589 (8)0.9870 (7)0.0535 (2)0.0531 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0446 (2)0.03687 (19)0.0315 (2)0.01765 (16)0.00348 (18)0.00516 (15)
Cd20.0456 (3)0.0426 (2)0.0309 (2)0.01997 (17)0.00095 (18)0.00324 (16)
S10.0417 (8)0.0603 (8)0.0370 (8)0.0204 (6)0.0045 (6)0.0103 (6)
S30.0585 (10)0.0841 (10)0.0350 (8)0.0451 (8)0.0040 (7)0.0085 (7)
S20.0482 (8)0.0707 (9)0.0340 (8)0.0345 (7)0.0035 (6)0.0085 (6)
S40.0474 (9)0.0867 (10)0.0348 (8)0.0355 (8)0.0032 (7)0.0087 (7)
N10.050 (3)0.062 (3)0.039 (3)0.030 (2)0.005 (2)0.007 (2)
N30.053 (3)0.068 (3)0.036 (3)0.033 (2)0.001 (2)0.007 (2)
N20.051 (3)0.069 (3)0.037 (3)0.031 (2)0.003 (2)0.004 (2)
N110.042 (3)0.043 (2)0.039 (3)0.0169 (19)0.001 (2)0.0019 (18)
N210.052 (3)0.040 (2)0.043 (3)0.020 (2)0.000 (2)0.0059 (19)
N310.052 (3)0.044 (2)0.050 (3)0.020 (2)0.001 (2)0.003 (2)
N410.050 (3)0.043 (2)0.056 (3)0.018 (2)0.003 (3)0.002 (2)
C10.038 (3)0.033 (2)0.040 (3)0.018 (2)0.003 (2)0.003 (2)
C30.037 (3)0.037 (2)0.037 (3)0.014 (2)0.006 (2)0.002 (2)
C20.035 (3)0.037 (2)0.042 (3)0.016 (2)0.009 (2)0.001 (2)
C40.040 (3)0.039 (2)0.039 (3)0.019 (2)0.008 (2)0.001 (2)
C110.060 (4)0.049 (3)0.047 (3)0.017 (3)0.007 (3)0.004 (2)
C130.064 (4)0.034 (3)0.086 (5)0.014 (3)0.007 (4)0.001 (3)
C140.069 (4)0.048 (3)0.066 (4)0.028 (3)0.006 (3)0.014 (3)
C150.057 (4)0.052 (3)0.048 (4)0.021 (3)0.004 (3)0.002 (2)
C210.063 (4)0.049 (3)0.050 (4)0.024 (3)0.007 (3)0.009 (3)
C220.067 (4)0.051 (3)0.069 (5)0.023 (3)0.011 (3)0.023 (3)
C230.055 (4)0.044 (3)0.082 (5)0.016 (3)0.006 (3)0.013 (3)
C240.089 (5)0.045 (3)0.059 (4)0.027 (3)0.006 (4)0.005 (3)
C250.072 (4)0.050 (3)0.043 (3)0.024 (3)0.002 (3)0.005 (2)
C310.071 (4)0.051 (3)0.054 (4)0.024 (3)0.005 (3)0.006 (3)
C330.066 (4)0.046 (3)0.093 (6)0.023 (3)0.001 (4)0.008 (4)
C340.081 (5)0.052 (4)0.073 (5)0.018 (3)0.009 (4)0.015 (3)
C350.074 (4)0.055 (4)0.052 (4)0.021 (3)0.001 (3)0.001 (3)
C410.075 (4)0.048 (3)0.052 (4)0.018 (3)0.004 (3)0.007 (3)
C420.080 (5)0.063 (4)0.072 (5)0.025 (4)0.010 (4)0.025 (4)
C430.062 (4)0.048 (3)0.090 (6)0.024 (3)0.005 (4)0.002 (3)
C440.091 (6)0.058 (4)0.068 (5)0.029 (4)0.006 (4)0.012 (3)
C450.074 (5)0.052 (3)0.057 (4)0.026 (3)0.008 (3)0.001 (3)
C320.093 (6)0.050 (4)0.074 (5)0.027 (4)0.006 (4)0.019 (3)
C120.076 (5)0.046 (3)0.064 (5)0.011 (3)0.004 (4)0.011 (3)
N40.054 (3)0.076 (3)0.035 (3)0.035 (2)0.007 (2)0.008 (2)
Geometric parameters (Å, º) top
Cd1—N32.298 (5)C13—H130.9300
Cd1—N1i2.317 (5)C14—C151.378 (8)
Cd1—N112.365 (4)C14—H140.9300
Cd1—N212.367 (4)C15—H150.9300
Cd1—S22.7508 (15)C21—C221.375 (8)
Cd1—S12.7715 (16)C21—H210.9300
Cd2—N4ii2.303 (5)C22—C231.349 (10)
Cd2—N22.309 (5)C22—H220.9300
Cd2—N412.363 (4)C23—C241.361 (9)
Cd2—N312.366 (4)C23—H230.9300
Cd2—S32.7416 (16)C24—C251.385 (8)
Cd2—S42.7503 (17)C24—H240.9300
S1—C11.647 (5)C25—H250.9300
S3—C31.646 (6)C31—C321.371 (9)
S2—C21.642 (6)C31—H310.9300
S4—C41.643 (6)C33—C321.360 (11)
N1—C11.156 (6)C33—C341.365 (11)
N1—Cd1i2.317 (5)C33—H330.9300
N3—C31.144 (7)C34—C351.371 (9)
N2—C21.159 (7)C34—H340.9300
N11—C111.329 (7)C35—H350.9300
N11—C151.342 (7)C41—C421.379 (8)
N21—C211.326 (7)C41—H410.9300
N21—C251.332 (7)C42—C431.358 (11)
N31—C351.318 (8)C42—H420.9300
N31—C311.329 (8)C43—C441.360 (11)
N41—C451.324 (8)C43—H430.9300
N41—C411.331 (8)C44—C451.370 (9)
C4—N41.153 (7)C44—H440.9300
C11—C121.378 (8)C45—H450.9300
C11—H110.9300C32—H320.9300
C13—C141.357 (10)C12—H120.9300
C13—C121.360 (10)N4—Cd2ii2.303 (5)
N3—Cd1—N1i95.37 (17)C14—C13—H13120.6
N3—Cd1—N1190.26 (17)C12—C13—H13120.6
N1i—Cd1—N1191.19 (16)C13—C14—C15119.2 (6)
N3—Cd1—N2190.51 (17)C13—C14—H14120.4
N1i—Cd1—N2191.07 (16)C15—C14—H14120.4
N11—Cd1—N21177.54 (15)N11—C15—C14122.9 (6)
N3—Cd1—S292.60 (12)N11—C15—H15118.6
N1i—Cd1—S2172.02 (13)C14—C15—H15118.6
N11—Cd1—S288.36 (11)N21—C21—C22123.3 (6)
N21—Cd1—S289.27 (12)N21—C21—H21118.3
N3—Cd1—S1175.47 (12)C22—C21—H21118.3
N1i—Cd1—S189.01 (13)C23—C22—C21119.1 (6)
N11—Cd1—S190.83 (12)C23—C22—H22120.4
N21—Cd1—S188.23 (12)C21—C22—H22120.4
S2—Cd1—S183.03 (4)C22—C23—C24119.3 (6)
N4ii—Cd2—N294.30 (17)C22—C23—H23120.3
N4ii—Cd2—N4191.31 (18)C24—C23—H23120.3
N2—Cd2—N4191.26 (18)C23—C24—C25118.4 (6)
N4ii—Cd2—N3191.68 (17)C23—C24—H24120.8
N2—Cd2—N3190.34 (17)C25—C24—H24120.8
N41—Cd2—N31176.50 (16)N21—C25—C24123.2 (6)
N4ii—Cd2—S3174.04 (13)N21—C25—H25118.4
N2—Cd2—S391.52 (13)C24—C25—H25118.4
N41—Cd2—S387.27 (13)N31—C31—C32122.4 (7)
N31—Cd2—S389.57 (12)N31—C31—H31118.8
N4ii—Cd2—S492.06 (14)C32—C31—H31118.8
N2—Cd2—S4173.51 (13)C32—C33—C34118.1 (6)
N41—Cd2—S489.88 (14)C32—C33—H33120.9
N31—Cd2—S488.19 (13)C34—C33—H33120.9
S3—Cd2—S482.16 (5)C33—C34—C35118.8 (7)
C1—S1—Cd1103.53 (19)C33—C34—H34120.6
C3—S3—Cd2101.98 (18)C35—C34—H34120.6
C2—S2—Cd1101.04 (17)N31—C35—C34123.6 (6)
C4—S4—Cd2101.36 (19)N31—C35—H35118.2
C1—N1—Cd1i152.4 (4)C34—C35—H35118.2
C3—N3—Cd1161.5 (4)N41—C41—C42122.6 (6)
C2—N2—Cd2163.6 (4)N41—C41—H41118.7
C11—N11—C15116.7 (5)C42—C41—H41118.7
C11—N11—Cd1122.2 (4)C43—C42—C41119.1 (7)
C15—N11—Cd1121.1 (4)C43—C42—H42120.5
C21—N21—C25116.7 (5)C41—C42—H42120.5
C21—N21—Cd1123.0 (4)C42—C43—C44119.0 (6)
C25—N21—Cd1120.3 (4)C42—C43—H43120.5
C35—N31—C31117.2 (5)C44—C43—H43120.5
C35—N31—Cd2121.2 (4)C43—C44—C45118.7 (7)
C31—N31—Cd2121.4 (4)C43—C44—H44120.7
C45—N41—C41117.1 (5)C45—C44—H44120.7
C45—N41—Cd2121.6 (4)N41—C45—C44123.6 (7)
C41—N41—Cd2121.3 (4)N41—C45—H45118.2
N1—C1—S1178.5 (4)C44—C45—H45118.2
N3—C3—S3179.1 (5)C33—C32—C31119.8 (7)
N2—C2—S2179.7 (5)C33—C32—H32120.1
N4—C4—S4178.8 (5)C31—C32—H32120.1
N11—C11—C12123.2 (6)C13—C12—C11119.2 (6)
N11—C11—H11118.4C13—C12—H12120.4
C12—C11—H11118.4C11—C12—H12120.4
C14—C13—C12118.8 (5)C4—N4—Cd2ii162.1 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C5H5N)2]
Mr386.76
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8272 (4), 8.6242 (4), 23.705 (1)
α, β, γ (°)84.890 (3), 89.520 (4), 63.070 (3)
V3)1420.06 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.82
Crystal size (mm)0.15 × 0.11 × 0.07
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.779, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
21468, 5998, 4613
Rint0.071
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.083, 1.17
No. of reflections5998
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.75

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011).

Selected bond angles (º) top
N1—C1—S1178.5 (4)N2—C2—S2179.7 (5)
N3—C3—S3179.1 (5)N4—C4—S4178.8 (5)
 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project number NA 720/3–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for the opportunity to use of his experimental facility.

References

First citationBoeckmann, J. & Näther, C. (2010). Dalton Trans. pp. 11019–11026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany  Google Scholar
First citationChen, G., Bai, Z.-P. & Qu, S.-J. (2005). Acta Cryst. E61, m2718–m2719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFoner, S., Frankel, R. B., McNiff, J. E. J., Reiff, W. M., Little, B. F. & Long, G. J. (1975). AIP Conf. Proc. 24, 363–364.  CrossRef Google Scholar
First citationMarsh, R. E., Kapon, M., Hu, S. & Herbstein, F. H. (2002). Acta Cryst. B58, 62–77.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPorai-Koshits, M. A. & Tishchenko, G. N. (1960). Crystallogr. Rep. 4, 239–239.  Google Scholar
First citationReller, A. & Oswald, H.-R. (1986). J. Solid State Chem. 62, 306–316.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaniguchi, M., Sugita, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1321–1326.  CrossRef CAS Web of Science Google Scholar
First citationZhu, L., Xu, D., Wang, X. & Yu, G. (2008). J. Chem. Crystallogr. 38, 609–612.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds