organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino­pyridinium) 5,5′-disulfanediylbis(1,3,4-thia­diazole-2-thiol­ate) monohydrate

aNew Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao Shandong 266042, People's Republic of China, and bCollege of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: zhaopusu@163.com

(Received 27 December 2010; accepted 4 March 2011; online 12 March 2011)

In the crystal of the title compound, 2C5H7N2+·C4N4S62−·H2O, inter­molecular N—H⋯S and N—H⋯N hydrogen bonds link four cations and two dianions into a centrosymmetric cluster. The crystal packing is further consolidated by ππ inter­actions between the five- and six-membered rings of neighbouring clusters [centroid–centroid distances = 3.692 (3), 3.718 (3), 3.660 (3) and 3.696 (3) Å] and via O—H⋯N, O—H⋯S and N—H⋯O hydrogen bonds involving the uncoordinated water mol­ecules.

Related literature

For general background to supra­molecular compounds, see: Rowsell & Yaghi (2005[Rowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670-4679.]); Neville et al. (2008[Neville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., Letard, J. F., Moubaraki, B., Murray, K. S. & Kepert, C. J. (2008). J. Am. Chem. Soc. 130, 2869-2876.]); Huang et al. (2007[Huang, Y. L., Huang, M. Y., Chan, T. H., Chang, B. C. & Lii, K. L. (2007). Chem. Mater. 19, 3232-3237.]); Burchell et al. (2006[Burchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2006). Cryst. Growth Des. 6, 974-982.]). For related structures, see: Jebas et al. (2006[Jebas, R. S., Periyasamy, B. K. & Balasubramanian, T. (2006). J. Chem. Crystallogr. 36, 503-506.]); Jian et al. (2006[Jian, F. F., Zhang, K. J., Zhao, P. S. & Zheng, J. (2006). Bull. Korean Chem. Soc. 27, 1048-1052.]); Banerjee et al. (2006[Banerjee, R., Saha, B. K. & Desiraju, G. R. (2006). CrystEngComm, 8, 680-688.]); Moers et al. (2000[Moers, O., Wijaya, K., Lange, I., Blaschette, A. & Jones, P. G. (2000). Z. Naturforsch. Teil B, 55, 738-742.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H7N2+·C4N4S62−·H2O

  • Mr = 504.71

  • Monoclinic, P 21 /c

  • a = 7.3109 (15) Å

  • b = 14.112 (3) Å

  • c = 20.930 (4) Å

  • β = 98.13 (3)°

  • V = 2137.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 295 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 9377 measured reflections

  • 4911 independent reflections

  • 3931 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.086

  • S = 1.17

  • 4911 reflections

  • 270 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S6 0.86 2.63 3.488 (3) 177
N2—H2A⋯N8 0.86 1.87 2.726 (3) 171
N3—H3A⋯S1 0.86 2.43 3.273 (3) 166
N4—H4A⋯N5 0.86 1.97 2.826 (3) 179
O1W—H2W1⋯N6 0.80 (4) 2.07 (4) 2.860 (3) 169 (4)
N1—H1B⋯O1Wi 0.86 2.07 2.898 (3) 162
O1W—H1W1⋯S6ii 0.83 (4) 2.47 (4) 3.294 (3) 175 (3)
N3—H3B⋯S6iii 0.86 2.49 3.338 (2) 171
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Research on supramolecular compounds has become popular because of their potential applications in areas such as gas storage (Rowsell et al., 2005), magnetics (Neville et al., 2008) and optics (Huang et al., 2007). Among many strategies for achieving supramolecular compounds with predefined structures, the choice and design of organic molecules as hydrogen-bond acceptors or donors are undoubtedly a key part of the construction of intriguing frameworks driven by hydrogen-bonding interactions (Burchell et al., 2006).

However, in these hydrogen-bond supramolecular compounds, 2-amino-pyridine often only forms co-crystals with another organic acid, such as 3-aminobenzoic acid, naphthalene-1,5-disulfonic acid and nicotinic acid (Jebas et al., 2006). It is less studied that the co-crystals are aggregated by 2-amino-pyridine with a non-acid compound. For example,non-acids compounds of saccharinate (Banerjee et al., 2006) and bis(methanesulfonyl)amide (Moers et al., 2000) have been used to form co-crystals with 2-aminopyridinium and their crystal structures have been reported.

Herein, we will give another report about the synthesis and chacterization of a 2:1 proton-transfer salt formed by 2-aminopyridinium with a non-acid compound of di(2-mercapto-1,3,4- thiadiazyl) disulfide and a water molecule.

Scheme I

The asymmetric unit contains one deprotonated di(2-mercapto-1,3,4-thiadiazyl) disulfide molecule, two protonated 2-amino-pyridine molecules and one water molecule. In the deprotonated di(2-mercapto-1,3,4- thiadiazyl) disulfide, two 2-mercapto-1,3,4-thiadiazyl groups are located at cis-position of the S3—S4 bond. In addition, these two 2-mercapto-1,3,4-thiadiazyl groups are in an opposite position with the dihedral angle between them being 6.84 (2)°. This geometry looks like that there is a C2 symmetric axis passing through the mid-point of the S3—S4 bond. The S3—S4 bond length is 2.06438 (11) Å, which is longer than that in dibenzothiazyl-disulfide [(2.027 (2) Å](Jian et al., 2006). All of the other bond lengths and bond angles in the two pyridyl rings and two thiazolyl rings are in the normal range.

In the crystal lattice, there are eight kinds of hydrogen bonds (Table 2), five of which link two 2-mercapto-1,3,4- thiadiazyl disulfide and four 2-amino-pyridinium ions together to form a macrocycle unit and three of which related to the water molecule help to conjunct all of the macrocycles to build a three dimensional net works of the molecules.

As shown in Fig. 2, after accepting a proton from 2-mercapto-1,3,4-thiadiazyl disulfide, 2-amino-pyridinium ion has become a complete hydrogen bond donor. For example, each of the 2-amino-pyridinium ion containing N4 atom provides its three hydrogen bond donor sites such as N4—H4A, N3—H3A and N3—H3B to participate in building hydrogen bonds with two deprotonated 2-mercapto-1,3,4- thiadiazyl disulfide molecules, and finally to form three hydrogen bonds of N4—H4A···N5, N3—H3A···S1 and N3—H3B···S6. Each of the 2-amino-pyridinium ion containing N2 atom provides two hydrogen bond donor sites of N1—H1A and N2—H2A to construct hydrogen bonds with one deprotonated 2-mercapto-1,3,4- thiadiazyl disulfide molecule, and ultimately to form two hydrogen bonds of N1—H1A···S6 and N2—H2A···N8. Through above hydrogen bond connections, four 2-amino-pyridinium ions and two deprotonated 2-mercapto-1,3,4-thiadiazyl disulfide molecules are join together to give a macrocycle unit. Then, each three macrocycle units are linked together by a water molecule through three hydrogen bonds of N1—H1B···O1W, O1W-H1W1···S6 and O1W-H2W1···N6. Namely, the water molecule acts as two hydrogen bond donor as well as one hydrogen bond acceptor to join three macrocycle units together. Additionally, since the existence of two S3—S4 bonds, each macrocycle is bended to two layers and in each macrocycle unit, there are six hydrogen bond sites to link with six water molecules. Thus, all macrocycles are connected by water molecules to construct a three-dimensional architecture. On the other hand, among the pyridyl and thiadiazyl rings, there are π···π stacking interactions (Table 2) which further stabilize the crystal packing.

Related literature top

For general background to supramolecular compounds, see: Rowsell & Yaghi (2005); Neville et al. (2008); Huang et al. (2007); Burchell et al. (2006). For related structures, see: Jebas et al. (2006); Jian et al. (2006); Banerjee et al. (2006); Moers et al. (2000).

Experimental top

Compound (I) was synthesized by heating together, for 20 min under reflux, 2-amino-pyridine (0.94 g, 10 mmol) and di(2-mercapto-1,3,4-thiadiazyl) disulfide (1.49 g, 5 mmol) in distilled water (30 ml). The colourless crystals were obtained after slow evaporation of the water solvent at room temperature.

Refinement top

The water H atoms were found in a difference Fourier map, and refined isotropically. All other H atoms were fixed geometrically (C—H 0.93 Å, N—H 0.86 Å), and treated as riding, with Uiso= 1.2 Ueq of the parent atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A hydrogen-bonded (dashed lines) centrosymmetric cluster in (I).
Bis(2-aminopyridinium) 5,5'-disulfanediylbis(1,3,4-thiadiazole-2-thiolate) monohydrate top
Crystal data top
2C5H7N2+·C4N4S62·H2OF(000) = 1040
Mr = 504.71Dx = 1.568 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.3109 (15) Åθ = 4–14°
b = 14.112 (3) ŵ = 0.67 mm1
c = 20.930 (4) ÅT = 295 K
β = 98.13 (3)°Block, colourless
V = 2137.8 (7) Å30.24 × 0.22 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 1.8°
Graphite monochromatorh = 99
ω scansk = 1817
9377 measured reflectionsl = 2727
4911 independent reflections3 standard reflections every 100 reflections
3931 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0278P)2 + 0.2825P]
where P = (Fo2 + 2Fc2)/3
4911 reflections(Δ/σ)max = 0.001
270 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
2C5H7N2+·C4N4S62·H2OV = 2137.8 (7) Å3
Mr = 504.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3109 (15) ŵ = 0.67 mm1
b = 14.112 (3) ÅT = 295 K
c = 20.930 (4) Å0.24 × 0.22 × 0.20 mm
β = 98.13 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.023
9377 measured reflections3 standard reflections every 100 reflections
4911 independent reflections intensity decay: none
3931 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.55 e Å3
4911 reflectionsΔρmin = 0.26 e Å3
270 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40901 (12)0.94077 (5)0.59925 (3)0.0364 (2)
S20.26262 (10)0.84201 (4)0.47444 (3)0.02842 (17)
S30.18855 (10)0.64715 (4)0.40985 (3)0.02446 (15)
S40.37606 (10)0.66357 (4)0.34565 (3)0.02432 (15)
S50.29173 (9)0.86996 (4)0.30034 (3)0.02237 (15)
S60.12212 (10)0.98806 (4)0.18451 (3)0.02636 (16)
N10.1312 (3)0.89557 (15)0.04470 (11)0.0380 (6)
H1A0.07160.91750.08000.046*
H1B0.18100.93390.01530.046*
N20.0676 (3)0.74324 (14)0.08195 (10)0.0251 (5)
H2A0.00600.76700.11630.030*
N30.6664 (4)0.84178 (15)0.72187 (11)0.0387 (6)
H3A0.60440.85930.68580.046*
H3B0.71330.88350.74930.046*
N40.6138 (3)0.68622 (14)0.69089 (10)0.0237 (5)
H4A0.55200.70640.65550.028*
N50.4136 (3)0.75310 (14)0.57420 (9)0.0231 (5)
N60.3619 (3)0.68528 (14)0.52826 (9)0.0231 (5)
N70.1864 (3)0.72209 (14)0.23431 (10)0.0254 (5)
N80.1316 (3)0.79840 (14)0.19588 (9)0.0247 (5)
C10.0815 (4)0.64796 (18)0.07686 (13)0.0314 (6)
H1C0.02600.60980.11040.038*
C20.1754 (4)0.60765 (19)0.02344 (14)0.0349 (7)
H2B0.18560.54210.01980.042*
C30.2571 (4)0.66701 (19)0.02635 (13)0.0322 (6)
H3C0.32230.64050.06340.039*
C40.2419 (4)0.76228 (18)0.02103 (12)0.0260 (6)
H4B0.29450.80100.05460.031*
C50.1462 (4)0.80276 (17)0.03563 (12)0.0247 (6)
C60.6319 (4)0.59150 (17)0.70022 (12)0.0249 (6)
H6B0.57930.55030.66810.030*
C70.7250 (4)0.55568 (18)0.75551 (12)0.0274 (6)
H7B0.73640.49060.76200.033*
C80.8036 (4)0.62005 (19)0.80266 (12)0.0282 (6)
H8B0.86780.59720.84110.034*
C90.7875 (4)0.71541 (18)0.79316 (12)0.0266 (6)
H9A0.84100.75710.82480.032*
C100.6895 (4)0.75046 (18)0.73512 (12)0.0250 (6)
C110.3711 (4)0.84127 (17)0.55446 (12)0.0247 (5)
C120.2803 (4)0.72031 (16)0.47427 (11)0.0216 (5)
C130.2721 (3)0.74813 (16)0.29047 (11)0.0205 (5)
C140.1749 (3)0.88218 (17)0.22216 (11)0.0197 (5)
O1W0.3564 (3)0.48901 (14)0.56202 (10)0.0342 (5)
H2W10.371 (5)0.542 (3)0.5504 (17)0.058 (12)*
H1W10.293 (5)0.498 (2)0.5915 (18)0.055 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0584 (6)0.0233 (3)0.0242 (4)0.0096 (3)0.0051 (3)0.0068 (3)
S20.0413 (4)0.0220 (3)0.0193 (3)0.0082 (3)0.0047 (3)0.0003 (2)
S30.0300 (4)0.0230 (3)0.0191 (3)0.0054 (3)0.0009 (3)0.0009 (2)
S40.0292 (4)0.0247 (3)0.0178 (3)0.0056 (3)0.0008 (3)0.0005 (2)
S50.0259 (4)0.0225 (3)0.0169 (3)0.0031 (3)0.0033 (3)0.0015 (2)
S60.0318 (4)0.0221 (3)0.0233 (3)0.0021 (3)0.0025 (3)0.0033 (2)
N10.0514 (17)0.0233 (11)0.0325 (13)0.0013 (11)0.0176 (12)0.0000 (9)
N20.0286 (13)0.0262 (11)0.0180 (11)0.0024 (9)0.0053 (9)0.0025 (8)
N30.0507 (17)0.0279 (12)0.0316 (13)0.0065 (11)0.0146 (12)0.0018 (9)
N40.0251 (13)0.0281 (11)0.0159 (10)0.0007 (9)0.0035 (9)0.0007 (8)
N50.0300 (13)0.0223 (10)0.0157 (10)0.0003 (9)0.0011 (9)0.0004 (8)
N60.0275 (13)0.0221 (10)0.0187 (11)0.0015 (9)0.0004 (9)0.0005 (8)
N70.0345 (14)0.0214 (11)0.0184 (10)0.0005 (9)0.0030 (10)0.0006 (8)
N80.0325 (14)0.0220 (10)0.0170 (11)0.0012 (9)0.0052 (9)0.0003 (8)
C10.0382 (18)0.0242 (14)0.0312 (15)0.0003 (12)0.0024 (13)0.0047 (11)
C20.0412 (19)0.0233 (13)0.0400 (17)0.0050 (12)0.0053 (14)0.0069 (11)
C30.0278 (16)0.0399 (16)0.0282 (14)0.0052 (12)0.0010 (12)0.0121 (11)
C40.0232 (15)0.0342 (14)0.0191 (13)0.0012 (11)0.0023 (11)0.0019 (10)
C50.0228 (15)0.0274 (13)0.0227 (13)0.0019 (11)0.0012 (11)0.0026 (10)
C60.0241 (15)0.0272 (13)0.0235 (13)0.0001 (11)0.0032 (11)0.0044 (10)
C70.0249 (15)0.0290 (13)0.0286 (14)0.0047 (11)0.0050 (12)0.0023 (11)
C80.0204 (14)0.0443 (16)0.0200 (13)0.0036 (12)0.0031 (11)0.0049 (11)
C90.0226 (15)0.0355 (15)0.0203 (13)0.0033 (11)0.0021 (11)0.0044 (10)
C100.0232 (15)0.0266 (13)0.0248 (13)0.0041 (11)0.0017 (11)0.0042 (10)
C110.0288 (15)0.0274 (13)0.0174 (12)0.0038 (11)0.0016 (11)0.0008 (10)
C120.0247 (14)0.0212 (12)0.0180 (12)0.0013 (10)0.0002 (10)0.0030 (9)
C130.0222 (14)0.0215 (12)0.0174 (12)0.0018 (10)0.0009 (10)0.0008 (9)
C140.0189 (13)0.0248 (12)0.0152 (12)0.0007 (10)0.0013 (10)0.0005 (9)
O1W0.0491 (15)0.0229 (11)0.0295 (12)0.0011 (9)0.0022 (10)0.0002 (8)
Geometric parameters (Å, º) top
S1—C111.689 (3)N6—C121.299 (3)
S2—C121.722 (2)N7—C131.304 (3)
S2—C111.749 (3)N7—N81.370 (3)
S3—C121.754 (2)N8—C141.324 (3)
S3—S42.0638 (11)C1—C21.352 (4)
S4—C131.757 (2)C1—H1C0.9300
S5—C131.735 (2)C2—C31.403 (4)
S5—C141.744 (2)C2—H2B0.9300
S6—C141.708 (2)C3—C41.352 (4)
N1—C51.326 (3)C3—H3C0.9300
N1—H1A0.8600C4—C51.410 (3)
N1—H1B0.8600C4—H4B0.9300
N2—C51.348 (3)C6—C71.355 (4)
N2—C11.351 (3)C6—H6B0.9300
N2—H2A0.8600C7—C81.403 (4)
N3—C101.324 (3)C7—H7B0.9300
N3—H3A0.8600C8—C91.363 (4)
N3—H3B0.8600C8—H8B0.9300
N4—C61.355 (3)C9—C101.410 (4)
N4—C101.356 (3)C9—H9A0.9300
N4—H4A0.8600O1W—H2W10.80 (4)
N5—C111.334 (3)O1W—H1W10.83 (4)
N5—N61.371 (3)
Cg1···Cg3i3.692 (3)Cg2···Cg4iii3.660 (3)
Cg1···Cg3ii3.718 (3)Cg2···Cg4iv3.696 (3)
C12—S2—C1188.39 (12)N1—C5—N2119.6 (2)
C12—S3—S4102.56 (9)N1—C5—C4122.8 (2)
C13—S4—S3103.82 (9)N2—C5—C4117.6 (2)
C13—S5—C1488.00 (11)N4—C6—C7121.2 (2)
C5—N1—H1A120.0N4—C6—H6B119.4
C5—N1—H1B120.0C7—C6—H6B119.4
H1A—N1—H1B120.0C6—C7—C8117.7 (2)
C5—N2—C1122.9 (2)C6—C7—H7B121.1
C5—N2—H2A118.5C8—C7—H7B121.1
C1—N2—H2A118.5C9—C8—C7121.2 (2)
C10—N3—H3A120.0C9—C8—H8B119.4
C10—N3—H3B120.0C7—C8—H8B119.4
H3A—N3—H3B120.0C8—C9—C10119.7 (2)
C6—N4—C10122.6 (2)C8—C9—H9A120.2
C6—N4—H4A118.7C10—C9—H9A120.2
C10—N4—H4A118.7N3—C10—N4118.7 (2)
C11—N5—N6113.89 (19)N3—C10—C9123.8 (2)
C12—N6—N5113.05 (19)N4—C10—C9117.5 (2)
C13—N7—N8111.79 (19)N5—C11—S1126.22 (19)
C14—N8—N7115.17 (19)N5—C11—S2110.88 (18)
N2—C1—C2120.5 (3)S1—C11—S2122.88 (15)
N2—C1—H1C119.8N6—C12—S2113.78 (18)
C2—C1—H1C119.8N6—C12—S3121.56 (18)
C1—C2—C3118.4 (2)S2—C12—S3124.59 (14)
C1—C2—H2B120.8N7—C13—S5114.06 (17)
C3—C2—H2B120.8N7—C13—S4120.60 (18)
C4—C3—C2120.7 (3)S5—C13—S4125.02 (14)
C4—C3—H3C119.6N8—C14—S6124.38 (18)
C2—C3—H3C119.6N8—C14—S5110.99 (17)
C3—C4—C5119.8 (2)S6—C14—S5124.63 (14)
C3—C4—H4B120.1H2W1—O1W—H1W1102 (3)
C5—C4—H4B120.1
C12—S3—S4—C1398.27 (12)N6—N5—C11—S20.5 (3)
C11—N5—N6—C120.4 (3)C12—S2—C11—N50.9 (2)
C13—N7—N8—C140.1 (3)C12—S2—C11—S1177.71 (19)
C5—N2—C1—C20.7 (4)N5—N6—C12—S21.1 (3)
N2—C1—C2—C30.2 (4)N5—N6—C12—S3175.97 (18)
C1—C2—C3—C40.1 (5)C11—S2—C12—N61.1 (2)
C2—C3—C4—C51.2 (4)C11—S2—C12—S3175.82 (19)
C1—N2—C5—N1178.1 (3)S4—S3—C12—N6106.0 (2)
C1—N2—C5—C41.9 (4)S4—S3—C12—S277.26 (17)
C3—C4—C5—N1177.9 (3)N8—N7—C13—S50.1 (3)
C3—C4—C5—N22.1 (4)N8—N7—C13—S4173.73 (18)
C10—N4—C6—C71.2 (4)C14—S5—C13—N70.1 (2)
N4—C6—C7—C80.5 (4)C14—S5—C13—S4173.34 (18)
C6—C7—C8—C90.2 (4)S3—S4—C13—N7100.7 (2)
C7—C8—C9—C100.3 (4)S3—S4—C13—S586.25 (17)
C6—N4—C10—N3179.5 (2)N7—N8—C14—S6179.89 (19)
C6—N4—C10—C91.1 (4)N7—N8—C14—S50.2 (3)
C8—C9—C10—N3179.7 (3)C13—S5—C14—N80.2 (2)
C8—C9—C10—N40.3 (4)C13—S5—C14—S6179.88 (18)
N6—N5—C11—S1178.1 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x1, y+3/2, z1/2; (iii) x+1, y+3/2, z+1/2; (iv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S60.862.633.488 (3)177
N2—H2A···N80.861.872.726 (3)171
N3—H3A···S10.862.433.273 (3)166
N4—H4A···N50.861.972.826 (3)179
O1W—H2W1···N60.80 (4)2.07 (4)2.860 (3)169 (4)
N1—H1B···O1Wv0.862.072.898 (3)162
O1W—H1W1···S6iv0.83 (4)2.47 (4)3.294 (3)175 (3)
N3—H3B···S6vi0.862.493.338 (2)171
Symmetry codes: (iv) x, y+3/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula2C5H7N2+·C4N4S62·H2O
Mr504.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.3109 (15), 14.112 (3), 20.930 (4)
β (°) 98.13 (3)
V3)2137.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9377, 4911, 3931
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.086, 1.17
No. of reflections4911
No. of parameters270
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.26

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S60.862.633.488 (3)177
N2—H2A···N80.861.872.726 (3)171
N3—H3A···S10.862.433.273 (3)166
N4—H4A···N50.861.972.826 (3)179
O1W—H2W1···N60.80 (4)2.07 (4)2.860 (3)169 (4)
N1—H1B···O1Wi0.862.072.898 (3)162
O1W—H1W1···S6ii0.83 (4)2.47 (4)3.294 (3)175 (3)
N3—H3B···S6iii0.862.493.338 (2)171
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the Doctoral Foundation of Shandong Province, China (grant No. BS2010CL021) and the Scientific Research Foundation of Qingdao University of Science and Technology of Talents (grant No. 400–0022437).

References

First citationBanerjee, R., Saha, B. K. & Desiraju, G. R. (2006). CrystEngComm, 8, 680–688.  CrossRef CAS Google Scholar
First citationBurchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2006). Cryst. Growth Des. 6, 974–982.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, Y. L., Huang, M. Y., Chan, T. H., Chang, B. C. & Lii, K. L. (2007). Chem. Mater. 19, 3232–3237.  CrossRef CAS Google Scholar
First citationJebas, R. S., Periyasamy, B. K. & Balasubramanian, T. (2006). J. Chem. Crystallogr. 36, 503–506.  CrossRef CAS Google Scholar
First citationJian, F. F., Zhang, K. J., Zhao, P. S. & Zheng, J. (2006). Bull. Korean Chem. Soc. 27, 1048–1052.  CAS Google Scholar
First citationMoers, O., Wijaya, K., Lange, I., Blaschette, A. & Jones, P. G. (2000). Z. Naturforsch. Teil B, 55, 738–742.  CAS Google Scholar
First citationNeville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., Letard, J. F., Moubaraki, B., Murray, K. S. & Kepert, C. J. (2008). J. Am. Chem. Soc. 130, 2869–2876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670–4679.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds