organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4,5-Trihy­dr­oxy­benzoic acid

aDepartment of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: vimon.t@psu.ac.th

(Received 10 February 2011; accepted 28 February 2011; online 5 March 2011)

In the title compound, C7H6O5, the three hy­droxy groups on the ring are oriented in the same direction. There are two intra­molecular O—H⋯O hydrogen bonds in the ring. In the crystal, there are several inter­molecular O—H⋯O hydrogen bonds and a short contact of 2.7150 (18) Å between the O atoms of the para-OH groups of adjacent mol­ecules.

Related literature

For the biological activity of the title compound, see: Gomes et al. (2003[Gomes, C. A., Girao da Cruz, T., Andrade, J. L., Milhazes, N., Borges, F. & Marques, M. P. M. (2003). J. Med. Chem. 46, 5395-5401.]); Priscilla & Prince (2009[Priscilla, D. H. & Prince, P. S. M. (2009). Chem. Biol. Interact. 179, 118-124.]); Lu et al. (2010[Lu, Y., Jiang, F., Jiang, H., Wu, K., Zheng, X., Cai, Y., Katakowski, M., Chopp, M. & To, S. S. T. (2010). Eur. J. Pharmacol. 641, 102-107.]). For the structure of gallic acid monohydrate, see: Okabe et al. (2001[Okabe, N., Kyoyama, H. & Suzuki, M. (2001). Acta Cryst. E57, o764-o766.]); Jiang et al. (2000[Jiang, R.-W., Ming, D.-S., But, P. P. H. & Mak, T. C. W. (2000). Acta Cryst. C56, 594-595.]); Billes et al. (2007[Billes, F., Mohammed-Ziegler, I. & Bombicz, P. (2007). Vib. Spectrosc. 43, 193-202.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6O5

  • Mr = 170.12

  • Monoclinic, C 2/c

  • a = 25.629 (2) Å

  • b = 4.9211 (4) Å

  • c = 11.2217 (9) Å

  • β = 106.251 (1)°

  • V = 1358.77 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.30 × 0.19 × 0.11 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 1.000

  • 7171 measured reflections

  • 1254 independent reflections

  • 1172 reflections with I > 2s(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.06

  • 1254 reflections

  • 121 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 (1) 2.19 (2) 2.6625 (14) 117 (1)
O3—H3⋯O2 0.82 (1) 2.35 (2) 2.7464 (14) 110 (1)
O1—H1⋯O5i 0.84 (1) 1.89 (2) 2.7324 (13) 176 (2)
O3—H3⋯O3ii 0.82 (1) 2.04 (2) 2.8167 (9) 157 (2)
O4—H4⋯O5iii 0.85 (2) 1.81 (2) 2.6570 (13) 175 (2)
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) -x+1, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008)[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]; software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Gallic acid, 3,4,5-trihydroxybenzoic acid, has been reported to have various biological activities such as antioxidant, antimutagenic, anticarcinogenic, antihyperglycemic and cardioprotective effects (Gomes et al., 2003; Priscilla & Prince, 2009; Lu et al., 2010). It has been shown that the activity of polyphenolic compounds, including gallic acid, is dependent on their structural characteristics (Gomes et al., 2003). Thus, the investigation of its crystal structure is important for a better understanding of its biological functions. Recently, different crystal structures of gallic acid monohydrate have been reported (Jiang et al., 2000; Okabe et al., 2001; Billes et al., 2007). Here, for the first time, the crystal structure of anhydrous gallic acid (I) was determined. The molecular structure of I is planar [Fig.1]. All the H atoms of the three hydroxy groups are oriented in the same direction.

The intra-hydrogen bonds are found between these hydroxy groups, O2···O1 = 2.6625 (14) and O3···O2 = 2.7464 (14)Å [Table.1]. This agrees with the report of Okabe et al. (2001). However, this orientation is inconsistent with those described by Billes et al. (2007) and Jiang et al. (2000), in which one H atom of the hydroxy group is oriented in the opposite direction to the others. The dissimilarity between I and the gallic acid monohydrate structure reported by Okabe is the different orientation of their carboxyl groups in relation to the direction of the three hydroxy groups.

The inter-hydrogen bonds in the crystal packing of I are found between oxygen atoms,O3···O3ii [2.8167 (9) Å, symmetry code (ii): 1/2 - x, y + 1/2 - z - 1/2], O1···O5i [2.7324 (13) Å, symmetry code (i): x, -y + 1, z + 1/2] and O4···O5iii [2.6570 (13) Å, symmetry code (iii): -x + 1, -y, -z] [Table 1]. Moreover, the short contact between the oxygen of the hydroxy groups of the adjacent molecule is observed, O2···O2vi [2.7150 (18) Å, symmetry code (vi): 1/2 - x, 2.5 - y, -z]. All intra- and intermolecular interactions including short contacts are depicted in Fig. 2 and the packing interactions as plotted down the b axis are shown in Fig. 3.

Related literature top

For the biological activity of the title compound, see: Gomes et al. (2003); Priscilla & Prince (2009); Lu et al. (2010). For the structure of gallic acid monohydrate, see: Okabe et al. (2001); Jiang et al. (2000); Billes et al. (2007).

Experimental top

Gallic acid monohydrate was obtained from Fluka Chemie GmbH (Buchs, Switzerland). The anhydrous gallic acid crystals for this X-ray structure study were obtained by dissolving gallic acid monohydrate in diethyl ether followed by a slow evaporation of the solvent.

Refinement top

The structure was solved by direct methods refined by a full-matrix least-squares procedure based on F2. All hydrogen atoms of oxygen atoms were located in a difference Fourier map and restrained to ride on their parent atoms, O—H = 0.82–0.85 Å with Uiso(H) = 1.2Ueq(O). The hydrogen atoms of C-sp2 atom are constrained, C—H = 0.96 Å with Uiso(H) = 1.2Ueq(C), respectively.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of I with thermal ellipsoids plotted at the 30% probability level.
[Figure 2] Fig. 2. The intra- and inter hydrogen bonds of I are shown. Symmetry code: i = x, 1 - y, 1/2 + z; ii = 1/2 - x, 1/2 + y, z - 1/2; iii = 1 - x, -y, -z; iv = x, 1 - y, z - 1/2; v = 1/2 - x, y - 1/2, -z - 1/2; vi = 1/2 - x, 2.5 - y, -z.
[Figure 3] Fig. 3. The packing interactions plotted down the b axis.
3,4,5-Trihydroxybenzoic acid top
Crystal data top
C7H6O5F(000) = 704
Mr = 170.12Dx = 1.663 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3476 reflections
a = 25.629 (2) Åθ = 3.3–28.1°
b = 4.9211 (4) ŵ = 0.15 mm1
c = 11.2217 (9) ÅT = 293 K
β = 106.251 (1)°Hexagon, colourless
V = 1358.77 (19) Å30.30 × 0.19 × 0.11 mm
Z = 8
Data collection top
Bruker APEX CCD area-detector
diffractometer
1254 independent reflections
Radiation source: fine-focus sealed tube1172 reflections with I > 2s(I)
Graphite monochromatorRint = 0.022
Frames, each covering 0.3 ° in ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 3030
Tmin = 0.916, Tmax = 1.000k = 55
7171 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.054P)2 + 0.7476P]
where P = (Fo2 + 2Fc2)/3
1254 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.16 e Å3
4 restraintsΔρmin = 0.21 e Å3
Crystal data top
C7H6O5V = 1358.77 (19) Å3
Mr = 170.12Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.629 (2) ŵ = 0.15 mm1
b = 4.9211 (4) ÅT = 293 K
c = 11.2217 (9) Å0.30 × 0.19 × 0.11 mm
β = 106.251 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
1254 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1172 reflections with I > 2s(I)
Tmin = 0.916, Tmax = 1.000Rint = 0.022
7171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0324 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.16 e Å3
1254 reflectionsΔρmin = 0.21 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40390 (5)0.4849 (2)0.00701 (11)0.0251 (3)
C20.40861 (5)0.6475 (3)0.09733 (11)0.0267 (3)
H2A0.43800.62710.16740.032*
C30.36900 (5)0.8389 (3)0.09502 (11)0.0256 (3)
C40.32438 (5)0.8667 (2)0.00919 (11)0.0249 (3)
C50.32041 (5)0.7058 (2)0.11289 (11)0.0247 (3)
C60.36006 (5)0.5156 (3)0.11223 (12)0.0262 (3)
H6A0.35750.40830.18190.031*
C70.44558 (5)0.2786 (2)0.00657 (11)0.0262 (3)
O10.36873 (4)1.0116 (2)0.18952 (9)0.0367 (3)
H10.3935 (6)0.969 (4)0.2539 (15)0.044*
O20.28434 (4)1.0485 (2)0.01206 (10)0.0352 (3)
H20.2920 (6)1.127 (3)0.0553 (13)0.042*
O30.27680 (4)0.7268 (2)0.21619 (9)0.0334 (3)
H30.2610 (7)0.872 (3)0.2151 (16)0.040*
O40.48474 (4)0.2647 (2)0.09722 (9)0.0392 (3)
H40.5076 (7)0.143 (3)0.0928 (17)0.047*
O50.44465 (4)0.12950 (19)0.09537 (8)0.0314 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0237 (6)0.0240 (6)0.0263 (6)0.0027 (5)0.0050 (5)0.0020 (5)
C20.0244 (6)0.0292 (7)0.0234 (6)0.0041 (5)0.0015 (5)0.0025 (5)
C30.0284 (6)0.0248 (6)0.0230 (6)0.0007 (5)0.0062 (5)0.0000 (5)
C40.0224 (6)0.0219 (6)0.0301 (7)0.0036 (5)0.0070 (5)0.0028 (5)
C50.0214 (6)0.0236 (6)0.0254 (6)0.0008 (5)0.0005 (5)0.0018 (5)
C60.0260 (6)0.0252 (6)0.0256 (6)0.0021 (5)0.0042 (5)0.0027 (5)
C70.0238 (6)0.0264 (7)0.0263 (6)0.0028 (5)0.0037 (5)0.0014 (5)
O10.0420 (6)0.0387 (6)0.0251 (5)0.0130 (4)0.0020 (4)0.0060 (4)
O20.0309 (5)0.0345 (6)0.0369 (5)0.0131 (4)0.0038 (4)0.0051 (4)
O30.0265 (5)0.0293 (5)0.0346 (5)0.0063 (4)0.0074 (4)0.0050 (4)
O40.0332 (5)0.0433 (6)0.0324 (5)0.0189 (4)0.0054 (4)0.0078 (4)
O50.0292 (5)0.0322 (5)0.0289 (5)0.0101 (4)0.0019 (4)0.0037 (4)
Geometric parameters (Å, º) top
C1—C61.3918 (17)C5—O31.3706 (14)
C1—C21.3951 (18)C5—C61.3800 (18)
C1—C71.4726 (17)C6—H6A0.9300
C2—C31.3796 (18)C7—O51.2325 (15)
C2—H2A0.9300C7—O41.3093 (15)
C3—O11.3606 (15)O1—H10.844 (14)
C3—C41.3949 (17)O2—H20.821 (14)
C4—O21.3551 (15)O3—H30.824 (14)
C4—C51.3874 (18)O4—H40.850 (15)
C6—C1—C2120.64 (11)O3—C5—C4121.15 (11)
C6—C1—C7119.36 (11)C6—C5—C4120.10 (11)
C2—C1—C7120.00 (11)C5—C6—C1119.77 (12)
C3—C2—C1119.02 (11)C5—C6—H6A120.1
C3—C2—H2A120.5C1—C6—H6A120.1
C1—C2—H2A120.5O5—C7—O4121.64 (11)
O1—C3—C2125.17 (11)O5—C7—C1123.91 (11)
O1—C3—C4114.22 (11)O4—C7—C1114.45 (11)
C2—C3—C4120.60 (11)C3—O1—H1110.2 (12)
O2—C4—C5118.66 (11)C4—O2—H2107.7 (12)
O2—C4—C3121.50 (11)C5—O3—H3109.9 (12)
C5—C4—C3119.85 (11)C7—O4—H4110.8 (12)
O3—C5—C6118.73 (11)
C6—C1—C2—C30.27 (19)O2—C4—C5—C6178.95 (11)
C7—C1—C2—C3179.80 (11)C3—C4—C5—C61.06 (19)
C1—C2—C3—O1179.47 (12)O3—C5—C6—C1178.09 (11)
C1—C2—C3—C41.08 (19)C4—C5—C6—C10.28 (19)
O1—C3—C4—O21.25 (18)C2—C1—C6—C50.96 (19)
C2—C3—C4—O2178.26 (11)C7—C1—C6—C5179.12 (11)
O1—C3—C4—C5178.74 (11)C6—C1—C7—O50.77 (19)
C2—C3—C4—C51.75 (19)C2—C1—C7—O5179.16 (12)
O2—C4—C5—O30.62 (18)C6—C1—C7—O4179.37 (11)
C3—C4—C5—O3179.39 (11)C2—C1—C7—O40.70 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.82 (1)2.19 (2)2.6625 (14)117 (1)
O3—H3···O20.82 (1)2.35 (2)2.7464 (14)110 (1)
O1—H1···O5i0.84 (1)1.89 (2)2.7324 (13)176 (2)
O3—H3···O3ii0.82 (1)2.04 (2)2.8167 (9)157 (2)
O4—H4···O5iii0.85 (2)1.81 (2)2.6570 (13)175 (2)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC7H6O5
Mr170.12
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)25.629 (2), 4.9211 (4), 11.2217 (9)
β (°) 106.251 (1)
V3)1358.77 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.30 × 0.19 × 0.11
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.916, 1.000
No. of measured, independent and
observed [I > 2s(I)] reflections
7171, 1254, 1172
Rint0.022
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.06
No. of reflections1254
No. of parameters121
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821 (14)2.191 (16)2.6625 (14)116.6 (14)
O3—H3···O20.824 (14)2.353 (16)2.7464 (14)110.0 (14)
O1—H1···O5i0.844 (14)1.890 (15)2.7324 (13)175.5 (17)
O3—H3···O3ii0.824 (14)2.040 (15)2.8167 (9)157.0 (16)
O4—H4···O5iii0.850 (15)1.809 (15)2.6570 (13)175.0 (18)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z.
 

Acknowledgements

This work was supported by the Thailand Research Fund through the Royal Golden Jubilee PhD Program under grant No. PHD/0259/2549, the Prince of Songkla University under grant No. PHA520036S and the National Research University Project of Thailand's Office of the Higher Education Commission.

References

First citationBilles, F., Mohammed-Ziegler, I. & Bombicz, P. (2007). Vib. Spectrosc. 43, 193–202.  CrossRef CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGomes, C. A., Girao da Cruz, T., Andrade, J. L., Milhazes, N., Borges, F. & Marques, M. P. M. (2003). J. Med. Chem. 46, 5395–5401.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJiang, R.-W., Ming, D.-S., But, P. P. H. & Mak, T. C. W. (2000). Acta Cryst. C56, 594–595.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLu, Y., Jiang, F., Jiang, H., Wu, K., Zheng, X., Cai, Y., Katakowski, M., Chopp, M. & To, S. S. T. (2010). Eur. J. Pharmacol. 641, 102–107.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N., Kyoyama, H. & Suzuki, M. (2001). Acta Cryst. E57, o764–o766.  CSD CrossRef IUCr Journals Google Scholar
First citationPriscilla, D. H. & Prince, P. S. M. (2009). Chem. Biol. Interact. 179, 118–124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds