organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o796-o797

(2E)-3-(4-Chloro­phen­yl)-1-(2,4-di­methyl­quinolin-3-yl)prop-2-en-1-one

aDepartment of Chemistry, BITS, Pilani - K. K. Birla Goa Campus, Goa 403 726, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 1 March 2011; accepted 2 March 2011; online 5 March 2011)

Two independent mol­ecules comprise the asymmetric unit of the title compound, C20H16ClNO, which differ in the orientation of the chalcone residue with respect to the quinoline ring [the C—C—C(=O)—C torsion angles are 69.5 (2) and 86.0 (2)°]. The configuration about each of the ethyl­ene bonds [1.342 (2) and 1.338 (2) Å] is E. The three-dimensional crystal structure is stabilized by a combination of C—H⋯O, C—H⋯N, C—H⋯π inter­actions and ππ contacts between the independent mol­ecules [Cg(C6 of quinoline)⋯Cg(C6 of quinoline) = 3.6719 (11) Å].

Related literature

For background details and biological applications of quinolines, see: Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1998[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem. 31, 1031-1035.]); Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399-404.]). For the biological activity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. pp. 1125-1149.]); Xiang et al. (2006[Xiang, W., Tiekink, E. R. T., Iouri, K., Nikolai, K. & Mei, L. G. (2006). Eur. J. Pharm. Sci. 27, 175-187.]). For related structures, see: Prasath et al. (2010[Prasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.]); Kaiser et al. (2009[Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16ClNO

  • Mr = 321.79

  • Triclinic, [P \overline 1]

  • a = 11.3172 (5) Å

  • b = 12.0268 (4) Å

  • c = 12.6634 (5) Å

  • α = 111.318 (3)°

  • β = 91.620 (3)°

  • γ = 94.581 (3)°

  • V = 1597.50 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.931, Tmax = 0.976

  • 13075 measured reflections

  • 6879 independent reflections

  • 5750 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.08

  • 6879 reflections

  • 419 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C35–C40 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N2 0.95 2.60 3.500 (2) 158
C20—H20⋯O2i 0.95 2.46 3.317 (2) 150
C34—H34⋯N1 0.95 2.51 3.369 (2) 151
C19—H19⋯Cg1ii 0.95 2.59 3.3826 (17) 142
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinoline derivatives find importance owing to their wide occurrence in natural products and in biologically active compounds (Markees et al., 1970; Campbell et al., 1998; Kalluraya & Sreenivasa, 1998). Quinoline chalcone analogues have also attracted significant attention as a result of their bio-activity, e.g. anti-plasmodial, anti-microbial, anti-malarial and anti-cancer (Dimmock et al., 1999; Xiang et al., 2006). In continuation of structural studies of these derivatives (Kaiser et al., 2009; Prasath et al., 2010), the title compound, (I), was investigated.

Two independent molecules comprise the asymmetric unit of (I), Figs 1 and 2. Each features an E configuration about the CC bond [C13C14 is 1.342 (2) Å and C33C34 is 1.338 (2) Å]. Differences between the independent molecules are highlighted in the overlay diagram, Fig. 3, and relate to the twist about the C9—C12 [C29—C32] bond as seen in the C8—C9—C12—C13 and C28—C29—C32—C33 torsion angles of 69.5 (2) and 86.0 (2) °, respectively.

Molecules are consolidated in the crystal packing by a combination of C—H···O, C—H···N, and C—H···π interactions as detailed in Table 1 as well as π···π contacts, with shortest contact of this type occurring between the two independent molecules [Cg(C1–C6)···Cg(C21–C26) = 3.6719 (11) Å, angle between rings = 1.27 (9) °], Fig. 4.

Related literature top

For background details and biological applications of quinolines, see: Markees et al. (1970); Campbell et al. (1998); Kalluraya & Sreenivasa (1998). For the biological activity of chalcones, see: Dimmock et al. (1999); Xiang et al. (2006). For related structures, see: Prasath et al. (2010); Kaiser et al. (2009).

Experimental top

A mixture of 3-acetyl-2,4-dimethylquinoline (0.01 M), 4-chlorobenzaldehyde (0.01 M) and a catalytic amount of KOH in distilled ethanol was stirred for 12 h at room temperature. The resulting mixture was neutralized with dilute acetic acid. The resultant solid was filtered, dried and purified by column chromatography using a 1:3 mixture of ethyl acetate and hexane. Re-crystallization was by slow evaporation of acetone solution of (I) which yielded colourless prisms in 86% yield; M.pt. 426–428 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006), Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the first independent molecule in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of the second independent molecule in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Overlay diagram of the two independent molecules in (I) with the the first independent molecule shown in red.
[Figure 4] Fig. 4. A view in projection down the a axis of the packing in (I). The C—H···N, C—H···O, C—H···π, and π···π interactions are shown as blue, orange, green and purple dashed lines, respectively.
(2E)-3-(4-Chlorophenyl)-1-(2,4-dimethylquinolin-3-yl)prop-2-en-1-one top
Crystal data top
C20H16ClNOZ = 4
Mr = 321.79F(000) = 672
Triclinic, P1Dx = 1.338 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3172 (5) ÅCell parameters from 6658 reflections
b = 12.0268 (4) Åθ = 2.4–29.2°
c = 12.6634 (5) ŵ = 0.24 mm1
α = 111.318 (3)°T = 100 K
β = 91.620 (3)°Prismatic, colourless
γ = 94.581 (3)°0.30 × 0.20 × 0.10 mm
V = 1597.50 (11) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6879 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5750 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.4041 pixels mm-1θmax = 27.0°, θmin = 2.4°
ω scanh = 1114
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1415
Tmin = 0.931, Tmax = 0.976l = 1616
13075 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.5056P]
where P = (Fo2 + 2Fc2)/3
6879 reflections(Δ/σ)max = 0.001
419 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C20H16ClNOγ = 94.581 (3)°
Mr = 321.79V = 1597.50 (11) Å3
Triclinic, P1Z = 4
a = 11.3172 (5) ÅMo Kα radiation
b = 12.0268 (4) ŵ = 0.24 mm1
c = 12.6634 (5) ÅT = 100 K
α = 111.318 (3)°0.30 × 0.20 × 0.10 mm
β = 91.620 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6879 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
5750 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.976Rint = 0.023
13075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.08Δρmax = 0.30 e Å3
6879 reflectionsΔρmin = 0.30 e Å3
419 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30818 (4)1.10668 (4)0.01940 (3)0.02200 (11)
Cl20.94188 (4)0.07691 (3)0.17947 (4)0.02391 (11)
O10.27425 (11)0.43144 (11)0.19111 (10)0.0237 (3)
O21.01594 (11)0.65990 (10)0.11770 (10)0.0244 (3)
N10.63923 (12)0.47181 (12)0.31920 (11)0.0181 (3)
N20.69353 (12)0.77627 (12)0.28121 (11)0.0183 (3)
C10.65234 (14)0.55428 (14)0.42863 (13)0.0169 (3)
C20.75852 (15)0.56068 (15)0.49298 (14)0.0208 (4)
H20.81720.50820.46040.025*
C30.77728 (16)0.64175 (16)0.60164 (14)0.0240 (4)
H30.84890.64540.64430.029*
C40.69125 (17)0.71968 (16)0.65055 (14)0.0255 (4)
H40.70520.77620.72600.031*
C50.58725 (16)0.71496 (15)0.59032 (14)0.0212 (4)
H50.52950.76790.62470.025*
C60.56483 (15)0.63183 (14)0.47703 (13)0.0164 (3)
C70.36198 (16)0.70116 (16)0.46065 (15)0.0230 (4)
H7A0.29370.68070.40540.034*
H7B0.39120.78560.48060.034*
H7C0.33780.68770.52910.034*
C80.45920 (15)0.62335 (14)0.40959 (13)0.0168 (3)
C90.44899 (14)0.54124 (14)0.29911 (13)0.0167 (3)
C100.54205 (15)0.46604 (14)0.25775 (13)0.0178 (3)
C110.53295 (16)0.37519 (16)0.13797 (14)0.0268 (4)
H11A0.60840.33950.12090.040*
H11B0.51540.41480.08480.040*
H11C0.46910.31220.13030.040*
C120.34040 (15)0.52485 (15)0.22153 (13)0.0185 (3)
C130.31533 (15)0.61965 (15)0.17951 (13)0.0193 (3)
H130.23940.61390.14280.023*
C140.39258 (14)0.71409 (14)0.18947 (13)0.0169 (3)
H140.46730.72070.22840.020*
C150.37082 (14)0.80785 (14)0.14499 (13)0.0163 (3)
C160.45856 (15)0.90306 (15)0.16371 (13)0.0185 (3)
H160.53170.90440.20300.022*
C170.44053 (15)0.99568 (15)0.12578 (14)0.0202 (3)
H170.50021.06030.13950.024*
C180.33394 (15)0.99194 (14)0.06763 (13)0.0172 (3)
C190.24596 (15)0.89808 (14)0.04630 (13)0.0175 (3)
H190.17370.89650.00550.021*
C200.26433 (15)0.80688 (14)0.08494 (13)0.0176 (3)
H200.20410.74260.07070.021*
C210.73255 (15)0.84513 (14)0.39108 (13)0.0169 (3)
C220.65761 (15)0.92923 (15)0.45675 (14)0.0214 (4)
H220.58280.93550.42460.026*
C230.69216 (16)1.00162 (15)0.56633 (14)0.0234 (4)
H230.64141.05820.60960.028*
C240.80236 (17)0.99265 (16)0.61511 (14)0.0248 (4)
H240.82561.04300.69130.030*
C250.87611 (16)0.91200 (15)0.55367 (14)0.0223 (4)
H250.95030.90670.58770.027*
C260.84371 (14)0.83584 (14)0.43949 (13)0.0165 (3)
C271.03653 (16)0.73737 (16)0.41847 (15)0.0240 (4)
H27A1.07570.67610.36010.036*
H27B1.02490.71300.48370.036*
H27C1.08620.81400.44300.036*
C280.91775 (14)0.75128 (14)0.37029 (13)0.0166 (3)
C290.87938 (14)0.68731 (13)0.25941 (13)0.0156 (3)
C300.76478 (15)0.70176 (14)0.21780 (13)0.0172 (3)
C310.72207 (17)0.63121 (17)0.09640 (14)0.0266 (4)
H31A0.63850.64250.08510.040*
H31B0.73010.54590.07900.040*
H31C0.76980.65920.04590.040*
C320.96148 (14)0.61323 (14)0.17584 (13)0.0177 (3)
C330.97704 (15)0.48990 (14)0.16405 (14)0.0187 (3)
H331.03850.45120.11950.022*
C340.90871 (14)0.42888 (14)0.21311 (13)0.0164 (3)
H340.84800.46930.25760.020*
C350.91928 (14)0.30507 (14)0.20433 (13)0.0153 (3)
C360.83251 (15)0.24830 (15)0.24922 (14)0.0191 (3)
H360.76810.29070.28450.023*
C370.83849 (15)0.13140 (15)0.24336 (14)0.0209 (4)
H370.77940.09400.27460.025*
C380.93268 (15)0.07030 (14)0.19082 (13)0.0186 (3)
C391.02011 (15)0.12443 (14)0.14643 (14)0.0193 (3)
H391.08440.08160.11150.023*
C401.01375 (14)0.24142 (14)0.15301 (13)0.0175 (3)
H401.07380.27860.12250.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0232 (2)0.0193 (2)0.0263 (2)0.00249 (16)0.00071 (17)0.01157 (17)
Cl20.0277 (2)0.0146 (2)0.0308 (2)0.00188 (17)0.00441 (18)0.01043 (17)
O10.0212 (6)0.0235 (6)0.0280 (6)0.0027 (5)0.0042 (5)0.0127 (5)
O20.0264 (7)0.0203 (6)0.0300 (6)0.0040 (5)0.0104 (5)0.0123 (5)
N10.0164 (7)0.0177 (7)0.0191 (7)0.0026 (6)0.0009 (6)0.0051 (6)
N20.0168 (7)0.0192 (7)0.0183 (7)0.0023 (6)0.0008 (6)0.0063 (6)
C10.0179 (8)0.0165 (8)0.0176 (8)0.0006 (6)0.0019 (6)0.0081 (6)
C20.0177 (8)0.0245 (9)0.0228 (8)0.0016 (7)0.0020 (7)0.0118 (7)
C30.0221 (9)0.0320 (10)0.0193 (8)0.0018 (8)0.0047 (7)0.0126 (7)
C40.0339 (10)0.0244 (9)0.0163 (8)0.0014 (8)0.0017 (7)0.0062 (7)
C50.0273 (9)0.0193 (8)0.0179 (8)0.0040 (7)0.0030 (7)0.0072 (7)
C60.0194 (8)0.0143 (7)0.0172 (7)0.0000 (6)0.0026 (6)0.0080 (6)
C70.0242 (9)0.0235 (9)0.0226 (8)0.0084 (7)0.0033 (7)0.0087 (7)
C80.0194 (8)0.0154 (8)0.0187 (8)0.0029 (6)0.0026 (7)0.0096 (6)
C90.0159 (8)0.0167 (8)0.0196 (8)0.0001 (6)0.0007 (6)0.0095 (7)
C100.0178 (8)0.0159 (8)0.0188 (8)0.0003 (6)0.0010 (7)0.0055 (6)
C110.0228 (9)0.0270 (9)0.0222 (9)0.0059 (8)0.0029 (7)0.0012 (7)
C120.0165 (8)0.0209 (8)0.0185 (8)0.0035 (7)0.0032 (7)0.0073 (7)
C130.0162 (8)0.0222 (8)0.0194 (8)0.0050 (7)0.0001 (7)0.0071 (7)
C140.0157 (8)0.0202 (8)0.0135 (7)0.0050 (7)0.0011 (6)0.0041 (6)
C150.0167 (8)0.0180 (8)0.0133 (7)0.0040 (6)0.0030 (6)0.0041 (6)
C160.0152 (8)0.0234 (8)0.0165 (8)0.0026 (7)0.0006 (6)0.0067 (7)
C170.0183 (8)0.0213 (8)0.0199 (8)0.0014 (7)0.0004 (7)0.0071 (7)
C180.0205 (8)0.0150 (8)0.0164 (7)0.0044 (6)0.0038 (6)0.0053 (6)
C190.0168 (8)0.0166 (8)0.0171 (8)0.0042 (7)0.0005 (6)0.0032 (6)
C200.0181 (8)0.0160 (8)0.0173 (8)0.0016 (6)0.0013 (7)0.0043 (6)
C210.0186 (8)0.0149 (8)0.0183 (8)0.0017 (6)0.0023 (7)0.0072 (6)
C220.0204 (9)0.0222 (9)0.0231 (8)0.0065 (7)0.0035 (7)0.0090 (7)
C230.0281 (10)0.0211 (9)0.0225 (8)0.0088 (7)0.0070 (7)0.0079 (7)
C240.0327 (10)0.0223 (9)0.0157 (8)0.0037 (8)0.0004 (7)0.0026 (7)
C250.0252 (9)0.0216 (9)0.0198 (8)0.0030 (7)0.0031 (7)0.0072 (7)
C260.0181 (8)0.0140 (8)0.0179 (8)0.0013 (6)0.0010 (6)0.0064 (6)
C270.0208 (9)0.0242 (9)0.0250 (9)0.0069 (7)0.0032 (7)0.0058 (7)
C280.0166 (8)0.0130 (7)0.0217 (8)0.0022 (6)0.0017 (7)0.0082 (6)
C290.0171 (8)0.0117 (7)0.0190 (8)0.0005 (6)0.0024 (6)0.0068 (6)
C300.0183 (8)0.0161 (8)0.0178 (8)0.0010 (7)0.0010 (7)0.0070 (6)
C310.0247 (9)0.0284 (10)0.0199 (8)0.0049 (8)0.0021 (7)0.0007 (7)
C320.0166 (8)0.0161 (8)0.0191 (8)0.0007 (6)0.0012 (7)0.0054 (6)
C330.0202 (8)0.0151 (8)0.0207 (8)0.0057 (7)0.0053 (7)0.0053 (6)
C340.0163 (8)0.0147 (8)0.0162 (7)0.0036 (6)0.0015 (6)0.0028 (6)
C350.0166 (8)0.0148 (8)0.0135 (7)0.0014 (6)0.0017 (6)0.0041 (6)
C360.0197 (8)0.0185 (8)0.0195 (8)0.0040 (7)0.0043 (7)0.0068 (7)
C370.0223 (9)0.0200 (8)0.0219 (8)0.0002 (7)0.0026 (7)0.0099 (7)
C380.0232 (9)0.0134 (8)0.0190 (8)0.0020 (7)0.0054 (7)0.0060 (6)
C390.0164 (8)0.0156 (8)0.0239 (8)0.0036 (6)0.0005 (7)0.0048 (7)
C400.0162 (8)0.0156 (8)0.0199 (8)0.0009 (6)0.0005 (7)0.0059 (6)
Geometric parameters (Å, º) top
Cl1—C181.7404 (16)C18—C191.386 (2)
Cl2—C381.7354 (16)C19—C201.381 (2)
O1—C121.227 (2)C19—H190.9500
O2—C321.2279 (19)C20—H200.9500
N1—C101.312 (2)C21—C221.414 (2)
N1—C11.375 (2)C21—C261.414 (2)
N2—C301.314 (2)C22—C231.369 (2)
N2—C211.373 (2)C22—H220.9500
C1—C61.412 (2)C23—C241.405 (3)
C1—C21.414 (2)C23—H230.9500
C2—C31.365 (2)C24—C251.364 (2)
C2—H20.9500C24—H240.9500
C3—C41.403 (3)C25—C261.420 (2)
C3—H30.9500C25—H250.9500
C4—C51.370 (3)C26—C281.426 (2)
C4—H40.9500C27—C281.507 (2)
C5—C61.421 (2)C27—H27A0.9800
C5—H50.9500C27—H27B0.9800
C6—C81.424 (2)C27—H27C0.9800
C7—C81.506 (2)C28—C291.371 (2)
C7—H7A0.9800C29—C301.433 (2)
C7—H7B0.9800C29—C321.510 (2)
C7—H7C0.9800C30—C311.504 (2)
C8—C91.383 (2)C31—H31A0.9800
C9—C101.428 (2)C31—H31B0.9800
C9—C121.506 (2)C31—H31C0.9800
C10—C111.508 (2)C32—C331.461 (2)
C11—H11A0.9800C33—C341.338 (2)
C11—H11B0.9800C33—H330.9500
C11—H11C0.9800C34—C351.467 (2)
C12—C131.466 (2)C34—H340.9500
C13—C141.342 (2)C35—C401.400 (2)
C13—H130.9500C35—C361.400 (2)
C14—C151.466 (2)C36—C371.388 (2)
C14—H140.9500C36—H360.9500
C15—C161.400 (2)C37—C381.389 (2)
C15—C201.404 (2)C37—H370.9500
C16—C171.390 (2)C38—C391.383 (2)
C16—H160.9500C39—C401.387 (2)
C17—C181.384 (2)C39—H390.9500
C17—H170.9500C40—H400.9500
C10—N1—C1118.49 (14)C15—C20—H20119.6
C30—N2—C21118.16 (14)N2—C21—C22117.67 (15)
N1—C1—C6122.40 (14)N2—C21—C26122.79 (14)
N1—C1—C2117.73 (14)C22—C21—C26119.54 (14)
C6—C1—C2119.87 (14)C23—C22—C21120.46 (16)
C3—C2—C1120.43 (16)C23—C22—H22119.8
C3—C2—H2119.8C21—C22—H22119.8
C1—C2—H2119.8C22—C23—C24120.31 (15)
C2—C3—C4120.26 (16)C22—C23—H23119.8
C2—C3—H3119.9C24—C23—H23119.8
C4—C3—H3119.9C25—C24—C23120.36 (16)
C5—C4—C3120.53 (16)C25—C24—H24119.8
C5—C4—H4119.7C23—C24—H24119.8
C3—C4—H4119.7C24—C25—C26120.98 (16)
C4—C5—C6120.72 (16)C24—C25—H25119.5
C4—C5—H5119.6C26—C25—H25119.5
C6—C5—H5119.6C21—C26—C25118.34 (14)
C1—C6—C5118.19 (15)C21—C26—C28118.04 (14)
C1—C6—C8118.38 (14)C25—C26—C28123.62 (15)
C5—C6—C8123.43 (15)C28—C27—H27A109.5
C8—C7—H7A109.5C28—C27—H27B109.5
C8—C7—H7B109.5H27A—C27—H27B109.5
H7A—C7—H7B109.5C28—C27—H27C109.5
C8—C7—H7C109.5H27A—C27—H27C109.5
H7A—C7—H7C109.5H27B—C27—H27C109.5
H7B—C7—H7C109.5C29—C28—C26118.19 (14)
C9—C8—C6118.16 (14)C29—C28—C27121.81 (14)
C9—C8—C7122.28 (15)C26—C28—C27119.96 (14)
C6—C8—C7119.55 (14)C28—C29—C30119.89 (14)
C8—C9—C10119.42 (15)C28—C29—C32121.05 (14)
C8—C9—C12122.13 (14)C30—C29—C32118.62 (14)
C10—C9—C12118.41 (14)N2—C30—C29122.82 (14)
N1—C10—C9123.13 (14)N2—C30—C31117.12 (14)
N1—C10—C11116.29 (14)C29—C30—C31120.05 (14)
C9—C10—C11120.58 (14)C30—C31—H31A109.5
C10—C11—H11A109.5C30—C31—H31B109.5
C10—C11—H11B109.5H31A—C31—H31B109.5
H11A—C11—H11B109.5C30—C31—H31C109.5
C10—C11—H11C109.5H31A—C31—H31C109.5
H11A—C11—H11C109.5H31B—C31—H31C109.5
H11B—C11—H11C109.5O2—C32—C33120.45 (14)
O1—C12—C13119.77 (15)O2—C32—C29117.96 (14)
O1—C12—C9120.40 (15)C33—C32—C29121.60 (14)
C13—C12—C9119.81 (14)C34—C33—C32123.07 (15)
C14—C13—C12124.27 (15)C34—C33—H33118.5
C14—C13—H13117.9C32—C33—H33118.5
C12—C13—H13117.9C33—C34—C35125.80 (15)
C13—C14—C15125.19 (15)C33—C34—H34117.1
C13—C14—H14117.4C35—C34—H34117.1
C15—C14—H14117.4C40—C35—C36118.54 (14)
C16—C15—C20118.31 (15)C40—C35—C34122.29 (14)
C16—C15—C14119.19 (14)C36—C35—C34119.16 (14)
C20—C15—C14122.50 (15)C37—C36—C35121.45 (15)
C17—C16—C15121.19 (15)C37—C36—H36119.3
C17—C16—H16119.4C35—C36—H36119.3
C15—C16—H16119.4C36—C37—C38118.57 (15)
C18—C17—C16118.76 (16)C36—C37—H37120.7
C18—C17—H17120.6C38—C37—H37120.7
C16—C17—H17120.6C39—C38—C37121.22 (15)
C17—C18—C19121.47 (15)C39—C38—Cl2118.80 (12)
C17—C18—Cl1119.97 (13)C37—C38—Cl2119.98 (13)
C19—C18—Cl1118.56 (13)C38—C39—C40119.85 (15)
C20—C19—C18119.38 (15)C38—C39—H39120.1
C20—C19—H19120.3C40—C39—H39120.1
C18—C19—H19120.3C39—C40—C35120.35 (15)
C19—C20—C15120.89 (15)C39—C40—H40119.8
C19—C20—H20119.6C35—C40—H40119.8
C10—N1—C1—C60.5 (2)C30—N2—C21—C22176.92 (14)
C10—N1—C1—C2178.93 (15)C30—N2—C21—C262.4 (2)
N1—C1—C2—C3179.21 (15)N2—C21—C22—C23179.12 (15)
C6—C1—C2—C30.2 (2)C26—C21—C22—C230.2 (2)
C1—C2—C3—C40.0 (3)C21—C22—C23—C240.4 (3)
C2—C3—C4—C50.4 (3)C22—C23—C24—C250.2 (3)
C3—C4—C5—C60.5 (3)C23—C24—C25—C260.2 (3)
N1—C1—C6—C5179.25 (14)N2—C21—C26—C25179.46 (15)
C2—C1—C6—C50.2 (2)C22—C21—C26—C250.2 (2)
N1—C1—C6—C80.3 (2)N2—C21—C26—C280.2 (2)
C2—C1—C6—C8179.69 (15)C22—C21—C26—C28179.11 (14)
C4—C5—C6—C10.2 (2)C24—C25—C26—C210.4 (2)
C4—C5—C6—C8179.31 (16)C24—C25—C26—C28178.87 (16)
C1—C6—C8—C91.4 (2)C21—C26—C28—C292.7 (2)
C5—C6—C8—C9178.07 (15)C25—C26—C28—C29176.56 (15)
C1—C6—C8—C7177.33 (14)C21—C26—C28—C27179.45 (15)
C5—C6—C8—C73.2 (2)C25—C26—C28—C271.3 (2)
C6—C8—C9—C101.8 (2)C26—C28—C29—C303.3 (2)
C7—C8—C9—C10176.91 (15)C27—C28—C29—C30178.82 (15)
C6—C8—C9—C12179.45 (14)C26—C28—C29—C32168.91 (14)
C7—C8—C9—C120.7 (2)C27—C28—C29—C328.9 (2)
C1—N1—C10—C90.1 (2)C21—N2—C30—C291.7 (2)
C1—N1—C10—C11179.24 (14)C21—N2—C30—C31177.48 (14)
C8—C9—C10—N11.1 (2)C28—C29—C30—N21.2 (2)
C12—C9—C10—N1178.82 (15)C32—C29—C30—N2171.27 (14)
C8—C9—C10—C11179.60 (15)C28—C29—C30—C31179.64 (15)
C12—C9—C10—C111.9 (2)C32—C29—C30—C317.9 (2)
C8—C9—C12—O1112.18 (18)C28—C29—C32—O293.64 (19)
C10—C9—C12—O165.5 (2)C30—C29—C32—O278.7 (2)
C8—C9—C12—C1369.5 (2)C28—C29—C32—C3386.0 (2)
C10—C9—C12—C13112.79 (17)C30—C29—C32—C33101.63 (18)
O1—C12—C13—C14166.68 (16)O2—C32—C33—C34170.54 (16)
C9—C12—C13—C1411.6 (2)C29—C32—C33—C349.8 (3)
C12—C13—C14—C15177.97 (14)C32—C33—C34—C35179.74 (15)
C13—C14—C15—C16178.60 (15)C33—C34—C35—C407.9 (3)
C13—C14—C15—C200.7 (2)C33—C34—C35—C36172.45 (16)
C20—C15—C16—C171.1 (2)C40—C35—C36—C370.2 (2)
C14—C15—C16—C17178.23 (14)C34—C35—C36—C37179.86 (15)
C15—C16—C17—C180.6 (2)C35—C36—C37—C380.5 (2)
C16—C17—C18—C190.3 (2)C36—C37—C38—C390.9 (2)
C16—C17—C18—Cl1179.76 (12)C36—C37—C38—Cl2178.83 (13)
C17—C18—C19—C200.7 (2)C37—C38—C39—C400.7 (2)
Cl1—C18—C19—C20179.33 (12)Cl2—C38—C39—C40179.07 (12)
C18—C19—C20—C150.2 (2)C38—C39—C40—C350.0 (2)
C16—C15—C20—C190.7 (2)C36—C35—C40—C390.5 (2)
C14—C15—C20—C19178.65 (14)C34—C35—C40—C39179.90 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C35–C40 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···N20.952.603.500 (2)158
C20—H20···O2i0.952.463.317 (2)150
C34—H34···N10.952.513.369 (2)151
C19—H19···Cg1ii0.952.593.3826 (17)142
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H16ClNO
Mr321.79
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.3172 (5), 12.0268 (4), 12.6634 (5)
α, β, γ (°)111.318 (3), 91.620 (3), 94.581 (3)
V3)1597.50 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.931, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
13075, 6879, 5750
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.08
No. of reflections6879
No. of parameters419
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006), Qmol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C35–C40 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···N20.952.603.500 (2)158
C20—H20···O2i0.952.463.317 (2)150
C34—H34···N10.952.513.369 (2)151
C19—H19···Cg1ii0.952.593.3826 (17)142
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: juliebhavana@gmail.com.

Acknowledgements

BP acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/2007). The University of Malaya is thanked for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem. 31, 1031–1035.  CrossRef Web of Science Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. pp. 1125–1149.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPrasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiang, W., Tiekink, E. R. T., Iouri, K., Nikolai, K. & Mei, L. G. (2006). Eur. J. Pharm. Sci. 27, 175–187.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o796-o797
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds