organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­benzamido)­acetic acid

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: iukhan@gcu.edu.pk, akkurt@erciyes.edu.tr

(Received 11 March 2011; accepted 13 March 2011; online 19 March 2011)

In the crystal structure of the title mol­ecule, C9H8ClNO3, adjacent mol­ecules are arranged into centrosymmetric dimers through pairs of inter­molecular O—H⋯O inter­actions. Inter­molecular N—H⋯O hydrogen bonds link the dimers into a layer parallel to the bc plane. In the layer, mol­ecules are packed in a face-to-face π-stacked arrangment, showing ππ stacking inter­actions between the benzene rings with a centroid–centroid distance of 3.6884 (8) Å.

Related literature

For crystallographic studies of benzamide derivatives, see: Donnelly et al. (2008[Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335-o340.]); Mugnoli et al. (1991[Mugnoli, A., Carnasciali, M. M., Sancassan, F., Novi, M. & Petrillo, G. (1991). Acta Cryst. C47, 1916-1919.]); Stensland et al. (1995[Stensland, B., Csöregh, I. & Högberg, T. (1995). Acta Cryst. B51, 847-856.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8ClNO3

  • Mr = 213.61

  • Monoclinic, P 21 /c

  • a = 10.5035 (2) Å

  • b = 13.2105 (4) Å

  • c = 7.1226 (2) Å

  • β = 102.203 (1)°

  • V = 965.98 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.36 × 0.21 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 9027 measured reflections

  • 2365 independent reflections

  • 1627 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.02

  • 2365 reflections

  • 133 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.83 (2) 2.06 (2) 2.8491 (19) 160 (2)
O3—H1O⋯O1ii 0.83 (1) 1.85 (2) 2.6613 (16) 165 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzamide is originally a derivative of benzoic acid. Some benzamide derivatives are in use as Analgesics (Ethenzamide, Salicylamide), Antiemetics/Prokinetics (Alizapride, Bromopride, Cinitapride, Cisapride, Clebopride) and Antipsychotics (Amisulpride, Nemonapride, Remoxipride, Sulpiride, Sultopride). Other benzamides are being prepared and there crystallographic studies are done (Donnelly et al., 2008; Stensland et al., 1995; Mugnoli et al., 1991). The given benzamide derivative was prepared using the simple route using water as solvent.

In the title compound (I), (Fig. 1), the bond lengths and bond angles are in agreement with those reported in the literature (Allen et al., 1987). The C1—C6—C7—O1, C1—C6—C7—N1, O1—C7—N1—C8, N1—C8—C9—O2 and N1—C8—C9—O3 torsion angles are 20.2 (2), -159.08 (14), -3.2 (2), 17.7 (2) and -163.65 (14)°, respectively.

In the crystal structure, the molecules adopt a face-to-face π-stacked packing arrangement showing ππ stacking interactions involving the benzene rings [Cg1···Cg1i = 3.6884 (8) Å; symmetry code: (i) x, 3/2 - y, -1/2 + z; Cg1 is a centroid of the benzene ring (C1–C6)].

Related literature top

For crystallographic studies of benzamide derivatives, see: Donnelly et al. (2008); Mugnoli et al. (1991); Stensland et al. (1995). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The calculated amount of glycine (0.5 g, 6.494 mmol) was carefully weighed and transferred to R.B.F (50 ml) containing 10 ml of distilled water. The pH of the water was maintained at 8 with 10% Sod. Carbonate solution which results in the complete dissolution of glycine. Then 4-chlorobenzoyl chloride (0.83 ml, 6.494 mmol) was added and pH was maintained at 8. After 3.5 h the TLC showed the completion of reaction giving a single spot of the product. The reaction mixture was then acidified with 3 N HCl up to pH 3 which resulted in the insoluble precipitate formation. Precipitates were filtered, washed, dried and then crystallized in methanol.

Refinement top

In the last cycles of the refinement, 2 reflections (1 0 0) and (0 2 0) were eliminated due to being poorly measured in the vicinity of the beam stop. H atoms bounded to C atoms were positioned geometrically with C—H = 0.93 and 0.97 Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The hydroxyl and amine H atoms were located in a difference Fourier map, and refined with the distance restraints N—H = 0.86 (2) Å and O—H = 0.82 (2) Å. Their isotropic displacement parameters were set to be 1.2Ueq(N) for amine and 1.5Ueq(O) for hydroxyl.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the centrosymmetric dimers forming through a pair of O—H···O interactions which are connected to each other through intermolecular N—H···O interactions. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
2-(4-Chlorobenzamido)acetic acid top
Crystal data top
C9H8ClNO3F(000) = 440
Mr = 213.61Dx = 1.469 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3071 reflections
a = 10.5035 (2) Åθ = 2.5–26.5°
b = 13.2105 (4) ŵ = 0.37 mm1
c = 7.1226 (2) ÅT = 296 K
β = 102.203 (1)°Needle, colourless
V = 965.98 (4) Å30.36 × 0.21 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1627 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.028
Graphite monochromatorθmax = 28.3°, θmin = 3.3°
ϕ and ω scansh = 1313
9027 measured reflectionsk = 1717
2365 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.1658P]
where P = (Fo2 + 2Fc2)/3
2365 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
C9H8ClNO3V = 965.98 (4) Å3
Mr = 213.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5035 (2) ŵ = 0.37 mm1
b = 13.2105 (4) ÅT = 296 K
c = 7.1226 (2) Å0.36 × 0.21 × 0.13 mm
β = 102.203 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1627 reflections with I > 2σ(I)
9027 measured reflectionsRint = 0.028
2365 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.21 e Å3
2365 reflectionsΔρmin = 0.25 e Å3
133 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.15861 (4)0.81838 (4)0.19567 (7)0.0678 (2)
O10.65691 (11)0.52525 (8)0.26411 (16)0.0518 (4)
O20.46720 (11)0.64368 (9)0.49155 (17)0.0576 (4)
O30.31367 (11)0.53263 (9)0.37136 (17)0.0519 (4)
N10.53959 (13)0.65903 (11)0.1375 (2)0.0515 (5)
C10.88594 (15)0.60968 (12)0.1921 (2)0.0457 (5)
C21.00353 (16)0.65563 (13)0.1908 (2)0.0499 (6)
C31.00957 (15)0.75964 (13)0.1880 (2)0.0453 (5)
C40.90087 (16)0.81827 (12)0.1838 (2)0.0465 (5)
C50.78344 (15)0.77170 (11)0.1832 (2)0.0423 (5)
C60.77497 (14)0.66710 (11)0.1887 (2)0.0379 (4)
C70.65311 (14)0.61215 (11)0.2002 (2)0.0407 (5)
C80.41924 (16)0.61044 (15)0.1527 (2)0.0539 (6)
C90.40478 (14)0.59869 (11)0.3568 (2)0.0411 (5)
H10.881000.539400.195300.0550*
H1N0.538 (2)0.7167 (13)0.092 (3)0.0810*
H1O0.315 (2)0.5241 (19)0.487 (2)0.1020*
H21.077600.616900.191700.0600*
H40.906500.888500.181300.0560*
H50.709300.810800.179100.0510*
H8A0.415400.544100.093300.0650*
H8B0.346800.650000.082500.0650*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0478 (3)0.0785 (4)0.0752 (3)0.0209 (2)0.0086 (2)0.0017 (2)
O10.0541 (7)0.0422 (7)0.0616 (7)0.0003 (5)0.0180 (5)0.0100 (5)
O20.0571 (8)0.0578 (7)0.0566 (7)0.0178 (6)0.0089 (6)0.0106 (6)
O30.0439 (6)0.0499 (7)0.0600 (7)0.0122 (5)0.0067 (5)0.0017 (6)
N10.0389 (8)0.0556 (9)0.0604 (9)0.0027 (6)0.0113 (6)0.0169 (7)
C10.0449 (9)0.0391 (8)0.0547 (9)0.0039 (7)0.0141 (7)0.0045 (7)
C20.0392 (9)0.0546 (10)0.0566 (10)0.0065 (7)0.0119 (7)0.0016 (7)
C30.0414 (9)0.0532 (10)0.0401 (8)0.0082 (7)0.0060 (6)0.0003 (7)
C40.0524 (10)0.0391 (8)0.0461 (9)0.0040 (7)0.0061 (7)0.0011 (7)
C50.0431 (9)0.0409 (8)0.0425 (8)0.0065 (6)0.0081 (6)0.0036 (6)
C60.0395 (8)0.0407 (8)0.0338 (7)0.0019 (6)0.0084 (6)0.0048 (6)
C70.0435 (9)0.0406 (9)0.0394 (8)0.0018 (6)0.0117 (6)0.0035 (6)
C80.0374 (9)0.0698 (12)0.0530 (10)0.0044 (8)0.0065 (7)0.0001 (8)
C90.0300 (8)0.0351 (8)0.0568 (9)0.0026 (6)0.0062 (7)0.0004 (7)
Geometric parameters (Å, º) top
Cl1—C31.7377 (17)C3—C41.375 (2)
O1—C71.2325 (18)C4—C51.378 (2)
O2—C91.1993 (19)C5—C61.386 (2)
O3—C91.3153 (19)C6—C71.489 (2)
O3—H1O0.829 (14)C8—C91.501 (2)
N1—C81.442 (2)C1—H10.9300
N1—C71.334 (2)C2—H20.9300
N1—H1N0.827 (18)C4—H40.9300
C1—C21.378 (2)C5—H50.9300
C1—C61.387 (2)C8—H8A0.9700
C2—C31.376 (2)C8—H8B0.9700
C9—O3—H1O108.0 (16)N1—C8—C9112.86 (13)
C7—N1—C8120.26 (14)O2—C9—O3123.33 (14)
C7—N1—H1N120.1 (15)O2—C9—C8125.00 (14)
C8—N1—H1N119.6 (15)O3—C9—C8111.66 (13)
C2—C1—C6120.68 (15)C2—C1—H1120.00
C1—C2—C3118.96 (15)C6—C1—H1120.00
C2—C3—C4121.49 (15)C1—C2—H2120.00
Cl1—C3—C2119.31 (13)C3—C2—H2121.00
Cl1—C3—C4119.18 (13)C3—C4—H4120.00
C3—C4—C5119.17 (15)C5—C4—H4120.00
C4—C5—C6120.53 (14)C4—C5—H5120.00
C1—C6—C5119.16 (14)C6—C5—H5120.00
C1—C6—C7117.49 (13)N1—C8—H8A109.00
C5—C6—C7123.29 (14)N1—C8—H8B109.00
N1—C7—C6118.25 (13)C9—C8—H8A109.00
O1—C7—N1120.86 (14)C9—C8—H8B109.00
O1—C7—C6120.89 (13)H8A—C8—H8B108.00
C8—N1—C7—C6177.54 (13)C3—C4—C5—C60.6 (2)
C7—N1—C8—C967.7 (2)C4—C5—C6—C7176.22 (13)
C8—N1—C7—O13.2 (2)C4—C5—C6—C10.9 (2)
C2—C1—C6—C7177.03 (13)C1—C6—C7—O120.2 (2)
C2—C1—C6—C50.3 (2)C1—C6—C7—N1159.08 (14)
C6—C1—C2—C30.6 (2)C5—C6—C7—O1156.98 (14)
C1—C2—C3—Cl1177.54 (11)C5—C6—C7—N123.8 (2)
C1—C2—C3—C40.9 (2)N1—C8—C9—O216.7 (2)
Cl1—C3—C4—C5178.18 (11)N1—C8—C9—O3163.65 (14)
C2—C3—C4—C50.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.83 (2)2.06 (2)2.8491 (19)160 (2)
O3—H1O···O1ii0.83 (1)1.85 (2)2.6613 (16)165 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H8ClNO3
Mr213.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.5035 (2), 13.2105 (4), 7.1226 (2)
β (°) 102.203 (1)
V3)965.98 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.36 × 0.21 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9027, 2365, 1627
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.02
No. of reflections2365
No. of parameters133
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.827 (18)2.060 (18)2.8491 (19)160 (2)
O3—H1O···O1ii0.829 (14)1.853 (16)2.6613 (16)165 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University, Lahore.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDonnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMugnoli, A., Carnasciali, M. M., Sancassan, F., Novi, M. & Petrillo, G. (1991). Acta Cryst. C47, 1916–1919.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStensland, B., Csöregh, I. & Högberg, T. (1995). Acta Cryst. B51, 847–856.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds